Skip to main content
Log in

Recent Advances in Visual Electrochemiluminescence Analysis

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Due to the advantages of low background interference and high sensitivity, electrochemiluminescence (ECL)-based sensor has developed rapidly in recent years. The ECL sensors have shown the potential in the ultrasensitive and real-time analysis. Especially, the visual ECL analysis, including visual detection, cell imaging and single particle analysis, has offered many unique sensing platforms for analysis research and point-of-care testing. The high throughput ECL image analysis can not only provide ECL intensity but also reveal more information about the chemical reaction activity of particle and the physiological processes of cell operation. Therefore, we review the novel ECL luminophore, sensing systems, and successful applications in the visual ECL detection and imaging in this paper. First, the different ECL luminophore is summarized. Second, we discuss the ECL sensing mechanisms, focusing on the advantages and limitations of different sensing methods. Then, we highlight the recent advances in representative examples of visual ECL analysis, including aptasensing, multiplex immunoassays, cell imaging and single-particle analysis. At last, the outlook and prospects for the future visual ECL analysis are discussed based on the current development of ECL research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. [45], American Chemical Society

Fig. 2

Reprinted with permission from Ref.[52], American Chemical Society

Fig. 3

Reprinted with permission from Ref. [27], American Chemical Society

Fig. 4

Reprinted with permission from Ref. [58], Elsevier

Fig. 5

Reprinted with permission from Ref. [59], Elsevier

Fig. 6

Reprinted with permission from Ref.[73], American Chemical Society

Fig. 7

Reprinted with permission from Ref. [43], American Chemical Society

Fig. 8

Reprinted with permission from Ref. [51], Elsevier

Fig. 9

Reprinted with permission from Ref. [61], Elsevier

Fig. 10

Reprinted with permission from Ref. [83], John Wiley and Sons

Fig. 11

Reprinted with permission from Ref. [84], American Chemical Society

Fig. 12

Reprinted with permission from Ref. [62], American Chemical Society

Similar content being viewed by others

References

  1. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304. https://doi.org/10.1039/b923679c.

    Article  CAS  PubMed  Google Scholar 

  2. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–366.

    Article  CAS  PubMed  Google Scholar 

  3. Guo W, Liu Y, Cao Z, Su B. Imaging analysis based on electrogenerated chemiluminescence. J Anal Test. 2017;1(2):14. https://doi.org/10.1007/s41664-017-0013-9.

    Article  Google Scholar 

  4. Wang C, Zhang N, Wei D, Feng R, Fan D, Hu L, et al. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens Bioelectron. 2019;142:111521. https://doi.org/10.1016/j.bios.2019.111521.

    Article  CAS  PubMed  Google Scholar 

  5. Du X, Kang T, Lu L, Cheng S. An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal Method. 2018;10(1):51–8. https://doi.org/10.1039/c7ay02334k.

    Article  CAS  Google Scholar 

  6. Li M, Zhang N, Zhao W, Luo X, Chen H, Xu J-J. Ultrasensitive detection of microRNA-21 based on plasmon-coupling-induced electrochemiluminescence enhancement. Electrochem Commun. 2018;94:36–40. https://doi.org/10.1016/j.elecom.2018.08.003.

    Article  CAS  Google Scholar 

  7. Zhao M, Chen A, Huang D, Chai Y, Zhuo Y, Yuan R. MoS2 Quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89(16):8335–422. https://doi.org/10.1021/acs.analchem.7b01558.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang W, Song Y, He S, Shang L, Ma R, Jia L, et al. Perylene diimide as a cathodic electrochemiluminescence luminophore for immunoassays at low potentials. Nanoscale. 2019;11(43):20910–6. https://doi.org/10.1039/c9nr06812k.

    Article  CAS  PubMed  Google Scholar 

  9. Ma C, Cao Y, Gou X, Zhu JJ. Recent progress in electrochemiluminescence sensing and tmaging. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04947.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence imaging for bioanalysis. Annu Rev Anal Chem. 2019;12:275–95. https://doi.org/10.1146/annurev-anchem-061318115226.

    Article  CAS  Google Scholar 

  11. Li S, Liu Y, Ma Q. Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. TrAC Trend Anal Chem. 2019;110:277–92. https://doi.org/10.1016/j.trac.2018.11.019.

    Article  CAS  Google Scholar 

  12. Liu Y, Guo W, Su B. Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. Chin Chem Lett. 2019;30:1593–9. https://doi.org/10.1016/j.cclet.2019.05.038.

    Article  CAS  Google Scholar 

  13. Wang W, Cui H, Deng Z, Dong Y, Guo J. A general E-E/C mechanism for the counter-peak in luminol electrochemiluminescence. J Electroanal Chem. 2008;612:277–87. https://doi.org/10.1016/j.jelechem.2007.09.036.

    Article  CAS  Google Scholar 

  14. Xiao F, Wang M, Wang F, Xia X. Graphene-ruthenium(II) complex composites for sensitive ECL immunosensors. Small. 2014;10:706–16. https://doi.org/10.1002/smll.201301566.

    Article  CAS  PubMed  Google Scholar 

  15. Babamiri B, Hallaj R, Salimi A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosens Bioelectron. 2018;99:353–60. https://doi.org/10.1016/j.bios.2017.07.062.

    Article  CAS  PubMed  Google Scholar 

  16. Jie G, Ge J, Gao X, Li C. Amplified electrochemiluminescence detection of CEA based on magnetic Fe3O4 @Au nanoparticles-assembled Ru@SiO2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron. 2018;118:115–21. https://doi.org/10.1016/j.bios.2018.07.046.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Zhao Y, Wang M, Li H, Saqib M, Ge C, et al. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin I. Anal Chem. 2019;91(4):3048–54. https://doi.org/10.1021/acs.analchem.8b05443.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Jiang X, Yuan R, Chai Y. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens Bioelectron. 2018;121:250–6. https://doi.org/10.1016/j.bios.2018.09.022.

    Article  CAS  PubMed  Google Scholar 

  19. Hu G, Xiong C, Liang W, Zeng X, Xu H, Yang Y, et al. Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl Mater Interfaces. 2018;10(18):15913–9. https://doi.org/10.1021/acsami.8b05038.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Zhang Y, Sha H, Xiong X, Jia N. Design and biosensing of a ratiometric electrochemiluminescence resonance energy transfer aptasensor between a g-C3N4 nanosheet and Ru@MOF for amyloid-beta protein. ACS Appl Mater Interfaces. 2019;11(40):36299–306. https://doi.org/10.1021/acsami.9b09492.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, He J, Zhang C, Li J, Fu X, Mao W, et al. Novel Ce(III)-metal organic framework with a luminescent property to fabricate an electrochemiluminescence immunosensor. ACS Appl Mater Interfaces. 2020;12(1):338–46. https://doi.org/10.1021/acsami.9b19246.

    Article  CAS  PubMed  Google Scholar 

  22. Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem. 2019;91(15):10156–63. https://doi.org/10.1021/acs.analchem.9b02169.

    Article  CAS  PubMed  Google Scholar 

  23. He S, Wang X, Xiang G, Lac K, Wang S, Ding ZE. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound. Electrochim Acta. 2018;271:448–53. https://doi.org/10.1016/j.electacta.2018.03.056.

    Article  CAS  Google Scholar 

  24. Dong Y, Wang J, Peng Y, Zhu J. Electrogenerated chemiluminescence of Si quantum dots in neutral aqueous solution and its biosensing application. Biosens Bioelectron. 2017;89:1053–8. https://doi.org/10.1016/j.bios.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Xu Y, Chen Y, Wang C, Jiang J, Dong J, et al. Dual enhanced electrochemiluminescence of aminated Au@SiO2/CdS quantum dot superstructures: electromagnetic field enhancement and chemical enhancement. ACS Appl Mater Interfaces. 2019;11(4):4488–99. https://doi.org/10.1021/acsami.8b14886.

    Article  CAS  PubMed  Google Scholar 

  26. Gao H, Wen L, Wu Y, Yan X, Li J, Li X, et al. Sensitive and facile electrochemiluminescent immunoassay for detecting genetically modified rapeseed based on novel carbon nanoparticles. J Agric Food Chem. 2018;66(20):5247–53. https://doi.org/10.1021/acs.jafc.8b01080.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Liu Y, Nie Y, Liu Y, Ma Q. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS Gene Detection. Anal Chem. 2019;91(21):13780–6. https://doi.org/10.1021/acs.analchem.9b03212.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chen M, Wu J, Mo F, Fu Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Anal Chim Acta. 2019;1086:66–74. https://doi.org/10.1016/j.aca.2019.08.012.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Wang M, Nie Y, Zhang Q, Ma Q. Sulfur regulated boron nitride quantum dots electrochemiluminescence with amplified surface plasmon coupling strategy for BRAF gene detection. Anal Chem. 2019;91(9):6250–8. https://doi.org/10.1021/acs.analchem.9b00965.

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Zhong X, Jiang X, Zhuo Y, Yuan R, Wei S. An ultrasensitive aptasensor based on self-enhanced Au nanoclusters as highly efficient electrochemiluminescence indicator and multi-site landing DNA walker as signal amplification. Biosens Bioelectron. 2019;130:262–8. https://doi.org/10.1016/j.bios.2019.01.057.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Chen F, Song X, He P, Zhang S. Proximity ligation detection of lectin concanavalin A and fluorescence imaging cancer cells using carbohydrate functionalized DNA-silver nanocluster probes. Biosens Bioelectron. 2018;104:27–31. https://doi.org/10.1016/j.bios.2017.12.048.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Y, Wang H, Zhang H, Chai Y, Yuan R. Programmable modulation of copper nanoclusters electrochemiluminescence via DNA nanocranes for ultrasensitive detection of microRNA. Anal Chem. 2018;90(5):3543–9. https://doi.org/10.1021/acs.analchem.7b05402.

    Article  CAS  PubMed  Google Scholar 

  33. Liao H, Zhou Y, Chai Y, Yuan R. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosens Bioelectron. 2018;114:10–4. https://doi.org/10.1016/j.bios.2018.05.011.

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Lin J, Zhao T, Hu D, Wu T, Liu Y. Intrinsic, "vacancy point defect" induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J Am Chem Soc. 2016;138(24):7718–24. https://doi.org/10.1021/jacs.6b03662.

    Article  CAS  PubMed  Google Scholar 

  35. Cui H, Hu D, Zhang J, Gao G, Chen Z, Li W, et al. Gold nanoclusters-indocyanine green nanoprobes for synchronous cancer imaging, treatment, and real-time monitoring based on fluorescence resonance energy transfer. ACS Appl Mater Interfaces. 2017;9(30):25114–27. https://doi.org/10.1021/acsami.7b06192.

    Article  CAS  PubMed  Google Scholar 

  36. Jia Y, Yang L, Xue J, Zhang N, Fan D, Ma H, et al. Bioactivity-protected electrochemiluminescence biosensor using gold nanoclusters as the low-potential luminophor and Cu2S snowflake as co-reaction accelerator for procalcitonin analysis. ACS Sens. 2019;4(7):1909–16. https://doi.org/10.1021/acssensors.9b00870.

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Ma H, Padelford JW, Qinchen W, Yu W, Wang S, et al. Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J Am Chem Soc. 2019;141(24):9603–9. https://doi.org/10.1021/jacs.9b02547.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou Y, Chen S, Luo X, Chai Y, Yuan R. Ternary electrochemiluminescence nanostructure of au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers. Anal Chem. 2018;90(16):10024–30. https://doi.org/10.1021/acs.analchem.8b02642.

    Article  CAS  PubMed  Google Scholar 

  39. Fang D, Zhang S, Dai H, Lin Y. An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens Bioelectron. 2019;146:111768. https://doi.org/10.1016/j.bios.2019.111768.

    Article  CAS  PubMed  Google Scholar 

  40. Luo JH, Li Q, Chen SH, Yuan R. Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA. ACS Appl Mater Interfaces. 2019;11(30):27363–70. https://doi.org/10.1021/acsami.9b09339.

    Article  CAS  PubMed  Google Scholar 

  41. Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron. 2018;100:28–34. https://doi.org/10.1016/j.bios.2017.08.047.

    Article  CAS  PubMed  Google Scholar 

  42. Luo J, Cheng D, Li PX, Yao Y, Chen S, Yuan R, et al. An electrochemiluminescent sensor based on functionalized conjugated polymer dots for the ultrasensitive detection of Cu2+. Chem Commun (Camb). 2018;54(22):2777–800. https://doi.org/10.1039/c7cc09878b.

    Article  CAS  Google Scholar 

  43. Feng Y, Wang N, Ju H. Highly efficient electrochemiluminescence of cyanovinylene-contained polymer dots in aqueous medium and its application in imaging analysis. Anal Chem. 2018;90(2):1202–8. https://doi.org/10.1021/acs.analchem.7b03821.

    Article  CAS  PubMed  Google Scholar 

  44. Wang N, Feng Y, Wang Y, Ju H, Yan F. Electrochemiluminescent imaging for multi-immunoassay sensitized by dual DNA amplification of polymer dot signal. Anal Chem. 2018;90(12):7708–14. https://doi.org/10.1021/acs.analchem.8b01610.

    Article  CAS  PubMed  Google Scholar 

  45. Dai R, Wu F, Xu H, Chi Y. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium. ACS Appl Mater Interfaces. 2015;7:15160–7. https://doi.org/10.1021/acsami.5b04305.

    Article  CAS  PubMed  Google Scholar 

  46. Wang N, Wang Z, Chen L, Chen W, Quan Y, Cheng Y, et al. Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chem Sci. 2019;10(28):6815–20. https://doi.org/10.1039/c9sc01570a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou J, Nie L, Zhang B, Zou G. Spectrum-resolved triplex-color electrochemiluminescence multiplexing immunoassay with highly-passivated nanocrystals as tags. Anal Chem. 2018;90:12361–5. https://doi.org/10.1021/acs.analchem.8b04424.

    Article  CAS  PubMed  Google Scholar 

  48. Cui C, Jin R, Jiang D, Zhang J, Zhu J. Electrogenerated chemiluminescence in submicrometer wells for very high-density biosensing. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04488.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu F, Zhou Y, Zhang H, Yuan R, Chai YQ. Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem. 2018;90(3):2263–70. https://doi.org/10.1021/acs.analchem.7b04631.

    Article  CAS  PubMed  Google Scholar 

  50. Song X, Li X, Wei D, Feng R, Yan T, Wang Y, et al. CuS as co-reaction accelerator in PTCA- K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-beta protein. Biosens Bioelectron. 2019;126:222–9. https://doi.org/10.1016/j.bios.2018.10.068.

    Article  CAS  PubMed  Google Scholar 

  51. Nie Y, Liu Y, Zhang Q, Su X, Ma Q. Novel coreactant modifier-based amplified electrochemiluminescence sensing method for point-of-care diagnostics of galactose. Biosens Bioelectron. 2019;138:111318. https://doi.org/10.1016/j.bios.2019.111318.

    Article  CAS  PubMed  Google Scholar 

  52. Yang L, Jia Y, Wu D, Zhang Y, Ju H, Du Y, et al. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal Chem. 2019;91(21):14066–73. https://doi.org/10.1021/acs.analchem.9b03796.

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Feng Q, Zhou Z, Zhao W, Xu J, Chen H. Plasmon-enhanced electrochemiluminescence for nucleic acid detection based on gold nanodendrites. Anal Chem. 2018;90(2):1340–7. https://doi.org/10.1021/acs.analchem.7b04307.

    Article  CAS  PubMed  Google Scholar 

  54. Das R, Parveen S, Bora A, Giri P. Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dot. Carbon. 2020;160:273–86. https://doi.org/10.1016/j.carbon.2020.01.030.

    Article  CAS  Google Scholar 

  55. Zhang C, Zhang T, Zhang Z, Zheng H. Plasmon enhanced fluorescence and Raman scattering by [Au–Ag alloy NP cluster]@SiO2 core–shell nanostructure. Front Chem. 2019;7:647. https://doi.org/10.3389/fchem.2019.00647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He Z, Kang T, Lu L, Cheng S. An electrochemiluminescence sensor based on CdSe@CdS-functionalized MoS2 and a GOD-labeled DNA probe for the sensitive detection of Hg(ii). Anal Methods-UK. 2020;12:491–8. https://doi.org/10.1039/c9ay02524c.

    Article  CAS  Google Scholar 

  57. Feng Q, Shen Y, Li M, Zhang Z, Zhao W, Xu J, et al. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem. 2016;88(1):937–44. https://doi.org/10.1021/acs.analchem.5b03670.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Nie Y, Wang M, Zhang Q, Ma Q. Distance-dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosens Bioelectron. 2020;148:111823. https://doi.org/10.1016/j.bios.2019.111823.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Jin R, Jiang D, Chen HY. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc. 2019;141(26):10294–9. https://doi.org/10.1021/jacs.9b03007.

    Article  CAS  PubMed  Google Scholar 

  60. Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140(44):14753–60. https://doi.org/10.1021/jacs.8b08080.

    Article  CAS  PubMed  Google Scholar 

  61. Lu H, Zhao W, Xu J, Chen H. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens Bioelectron. 2018;102:624–30. https://doi.org/10.1016/j.bios.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Fu J, Cui C, Jiang D, Chen Z, Chen H, et al. In situ visualization of electrocatalytic reaction activity at quantum dots for water oxidation. Anal Chem. 2018;90(14):8635–41. https://doi.org/10.1021/acs.analchem.8b01935.

    Article  CAS  PubMed  Google Scholar 

  63. Qi L, Xia Y, Qi W, Gao W, Wu F, Xu G. Increasing electrochemiluminescence intensity of a wireless electrode array chip by thousands of times using a diode for sensitive visual detection by a digital camera. Anal Chem. 2016;88(2):1123–7. https://doi.org/10.1021/acs.analchem.5b04304.

    Article  CAS  PubMed  Google Scholar 

  64. Khoshfetrat SM, Khoshsafar H, Afkhami A, Mehrgardi MA, Bagheri H. Enhanced visual wireless electrochemiluminescence immunosensing of prostate-specific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal Chem. 2019;91(9):6383–90. https://doi.org/10.1021/acs.analchem.9b01506.

    Article  CAS  PubMed  Google Scholar 

  65. Khoshfetrat SM, Bagheri H, Mehrgardi MA. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosens Bioelectron. 2018;100:382–8. https://doi.org/10.1016/j.bios.2017.09.035.

    Article  CAS  PubMed  Google Scholar 

  66. Wu M, Yuan D, Xu J, Chen H. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem Sci. 2013;4(3):1182. https://doi.org/10.1039/c2sc22055e.

    Article  CAS  Google Scholar 

  67. Zhang J, Lu L, Zhu X, Zhang L, Yun S, Duanmu C, et al. Direct observation of oxidation reaction via closed bipolar electrode-anodic electrochemiluminescence protocol: structural property and sensing applications. ACS Sens. 2018;3(11):2351–8. https://doi.org/10.1021/acssensors.8b00736.

    Article  CAS  PubMed  Google Scholar 

  68. Ma X, Qi L, Gao W, Yuan F, Xia Y, Lou B, et al. A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochim Acta. 2019;308:20–4. https://doi.org/10.1016/j.electacta.2019.04.015.

    Article  CAS  Google Scholar 

  69. Liu Y, Chen X, Wang M, Ma Q. A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing Escherichia coli detection. Green Chem. 2018;20(24):5520–7. https://doi.org/10.1039/c8gc03010c.

    Article  CAS  Google Scholar 

  70. Li S, Lu Y, Liu L, Low SS, Su B, Wu J, et al. Fingerprints mapping and biochemical sensing on smartphone by electrochemiluminescence. Sensors Actuators B Chem. 2019;285:34–41. https://doi.org/10.1016/j.snb.2019.01.035.

    Article  CAS  Google Scholar 

  71. Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed Engl. 2012;51(32):8068–72. https://doi.org/10.1002/anie.201203815.

    Article  CAS  PubMed  Google Scholar 

  72. Tan J, Xu L, Li T, Su B, Wu J. Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization. Angew Chem Int Ed Engl. 2014;53(37):9822–6. https://doi.org/10.1002/anie.201404948.

    Article  CAS  PubMed  Google Scholar 

  73. Dauphin AL, Akchach A, Voci S, Kuhn A, Xu G, Bouffier L, Sojic N. Tracking magnetic rotating objects by bipolar electrochemiluminescence. J Phys Chem Lett. 2019;10:5318–24. https://doi.org/10.1021/acs.jpclett.9b02188.

    Article  CAS  PubMed  Google Scholar 

  74. Gao W, Muzyka K, Ma X, Lou B, Xu G. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem Sci. 2018;9:3911–6. https://doi.org/10.1039/C8SC00410B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liang X, Bao N, Luo X, Ding S. CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosens Bioelectron. 2018;117:145–52. https://doi.org/10.1016/j.bios.2018.06.006.

    Article  CAS  PubMed  Google Scholar 

  76. Barbante GJ, Kebede N, Hindson CM, Doeven EH, Zammit EM, Hanson GR, Hogan CF, Francis PS. Control of excitation and quenching in multi-colour electrogenerated chemiluminescence systems through choice of co-reactant. Chem Eur J. 2014;20:14026–31.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou J, Ma G, Chen Y, Fang D, Jiang D, Chen HY. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal Chem. 2015;87(16):8138–43. https://doi.org/10.1021/acs.analchem.5b00542.

    Article  CAS  PubMed  Google Scholar 

  78. Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, et al. Single cell electrochemiluminescence imaging: From the proof-of-concept to disposable device-based analysis. J Am Chem Soc. 2017;139(46):16830–7. https://doi.org/10.1021/jacs.7b09260.

    Article  CAS  PubMed  Google Scholar 

  79. Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem. 2019;411(19):4375–82. https://doi.org/10.1007/s00216-019-01761-x.

    Article  CAS  PubMed  Google Scholar 

  80. Liu G, Ma C, Jin BK, Chen Z, Zhu JJ. Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode. Anal Chem. 2018;90(7):4801–6. https://doi.org/10.1021/acs.analchem.8b00194.

    Article  CAS  PubMed  Google Scholar 

  81. Hong J, Ming L, Tu Y. Intensification of the electrochemiluminescence of luminol on hollow TiO2 nanoshell-modified indium tin oxide electrodes. Talanta. 2014;128:242–7. https://doi.org/10.1016/j.talanta.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  82. Cao J, Wang Y, Zhang J, Dong Y, Liu F, Ren S, et al. Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal Chem. 2018;90(17):10334–9. https://doi.org/10.1021/acs.analchem.8b02141.

    Article  CAS  PubMed  Google Scholar 

  83. Ding H, Guo W, Su B. Imaging cell-matrix adhesions and collective migration of living cells by electrochemiluminescence microscopy. Angew Chem Int Ed Engl. 2020;59(1):449–56. https://doi.org/10.1002/anie.201911190.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-microscopy for microrna imaging in single cancer cell combined with chemotherapy-photothermal therapy. Anal Chem. 2019;91(19):12581–6. https://doi.org/10.1021/acs.analchem.9b03694.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu M, Pan J, Wu Z, Gao X, Zhao W, Xia X, Xu J, Chen H. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au–Pt janus nanoparticle. Angew Chem Int Ed. 2018;57:4010–4. https://doi.org/10.1002/anie.201800706.

  86. Chen Y, Zhao D, Fu J, Gou X, Jiang D, Dong H, et al. In situ imaging facet-induced spatial heterogeneity of electrocatalytic reaction activity at the subparticle level via electrochemiluminescence microscopy. Anal Chem. 2019;91(10):6829–35. https://doi.org/10.1021/acs.analchem.9b01044.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu H, Jin R, Jiang D, Zhu J. Perturbation electrochemiluminescence imaging to observe the fluctuation of charge-transfer resistance in individual graphene microsheets with redox-induced defects. ACS Appl Mater Interfaces. 2019;11(50):46666–700. https://doi.org/10.1021/acsami.9b14017.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Youth Science Fund of Jilin Province (20140520081JH) and “Thirteenth Five Year” Project of the Science and Technology Research in the Education Department of Jilin Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, X. & Ma, Q. Recent Advances in Visual Electrochemiluminescence Analysis. J. Anal. Test. 4, 92–106 (2020). https://doi.org/10.1007/s41664-020-00129-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00129-w

Keywords

Navigation