Skip to main content
Log in

Molecular rotation-caused autocorrelation behaviors of thermal noise in water

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The finite autocorrelation time of thermal noise is crucial to unidirectional transportation on the molecular scale. Therefore, it is important to understand the cause of the intrinsic picosecond autocorrelation time of thermal noise in water. In this work, we use molecular dynamics simulations to compare the autocorrelation behaviors of the thermal noise, hydrogen bonds, and molecular rotations found in water. We found that the intrinsic picosecond autocorrelation time for thermal noise is caused by finite molecular rotation relaxation, in which hydrogen bonds play the role of a bridge. Furthermore, the simulation results show that our method of calculating the autocorrelation of thermal noise, by observing the fluctuating force on an oxygen atom of water, provides additional information about molecular rotations. Our findings may advance the understanding of the anomalous dynamic nanoscale behavior of particles, and the applications of terahertz technology in measuring the structural and dynamical information of molecules in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Efremov, Z. Wang, Universal optimal working cycles of molecular motors. Phys. Chem. Chem. Phys. 13, 6223–6233 (2011). https://doi.org/10.1039/C0CP02118K

    Article  Google Scholar 

  2. M. Alvarez-Pérez, S.M. Goldup, D.A. Leigh et al., A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008). https://doi.org/10.1021/ja7102394

    Article  Google Scholar 

  3. A. Yildiz, P.R. Selvin, Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38, 574–582 (2005). https://doi.org/10.1021/ar040136s

    Article  Google Scholar 

  4. T.E. Kelly, R.A. Silva, H.D. Silva et al., A rationally designed prototype of a molecular motor. J. Am. Chem. Soc. 122, 6935–6949 (2000). https://doi.org/10.1021/ja001048f

    Article  Google Scholar 

  5. B. Wand, L. Vuković, P. Král, Nanoscale rotary motors driven by electron tunneling. Phys. Rev. Lett. 101, 186808 (2008). https://doi.org/10.1103/PhysRevLett.101.186808

    Article  Google Scholar 

  6. J. Liu, G. Shi, P. Guo et al., Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115, 164502 (2015). https://doi.org/10.1103/PhysRevLett.115.164502

    Article  Google Scholar 

  7. F. Ganazzoli, G. Raffaini, Computer simulation of polypeptideadsorption on model biomaterials. Phys. Chem. Chem. Phys. 7, 3651–3663 (2005). https://doi.org/10.1039/B506813D

    Article  Google Scholar 

  8. J. Su, K. Yang, H. Guo, Asymmetric transport of water molecules through a hydrophobic conical channel. RSC Adv. 4, 40193–40198 (2014). https://doi.org/10.1039/C4RA07034H

    Article  Google Scholar 

  9. E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, Ionic current rectification through silica nanopores. J. Phys. Chem. C 113, 1850–1862 (2009). https://doi.org/10.1021/jp804724p

    Article  Google Scholar 

  10. Y. Wand, Y. Zhao, J. Huang, Giant pumping of single-file water molecules in a carbon nanotube. J. Phys. Chem. B 115, 13275–13279 (2011). https://doi.org/10.1021/jp2069557

    Article  Google Scholar 

  11. C. Zhu, H. Li, S. Meng, Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 141, 18C528 (2014). https://doi.org/10.1063/1.4898075

    Article  Google Scholar 

  12. X. Nan, Y.W. Guo, R.Z. Wan, Effect of Na and Cl ions on water evaporation on graphene oxide. Nucl. Sci. Tech. 30, 122 (2019). https://doi.org/10.1007/s41365-019-0646-7

    Article  Google Scholar 

  13. C. Caleman, D. van der Spoel, Evaporation from water clusters containing singly charged ions. Phys. Chem. Chem. Phys. 9, 5105–5111 (2007). https://doi.org/10.1039/B706243E

    Article  Google Scholar 

  14. R. Levy, M. Maaloum, Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechmology 13, 33 (2002). https://doi.org/10.1088/0957-4484/13/1/307

    Article  Google Scholar 

  15. A. Burtzlaff, A. Weismann, M. Brandbyge et al., Shot noise as a probe of spin-polarized transport through single atoms. Phys. Rev. Lett. 114, 016602 (2015). https://doi.org/10.1103/PhysRevLett.114.016602

    Article  Google Scholar 

  16. Y. Hovav, I. Kaminker, D. Shimon et al., The electron depolarization during dynamic nuclear polarization: measurements and simulations. Phys. Chem. Chem. Phys. 17, 226–244 (2015). https://doi.org/10.1039/C4CP03825H

    Article  Google Scholar 

  17. H.J. Butt, M. Jaschke, Calculation of thermal noise in atomic force microscopy. Nanotechmology 6, 1 (1995). https://doi.org/10.1088/0957-4484/6/1/001

    Article  Google Scholar 

  18. J. Siódmiak, P. Beldowski, Hyaluronic acid dynamics and its interaction with synovial fluid components as a source of the color noise. Fluct. Noise Lett. 18, 1940013 (2019). https://doi.org/10.1142/S0219477519400133

    Article  Google Scholar 

  19. P. Hanggi, P. Jung, Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995). https://doi.org/10.1002/9780470141489.ch4

    Article  Google Scholar 

  20. X.J. Gong, J.Y. Li, H.J. Lu et al., A charge-driven molecular water pump. Nat. Nanotechnol. 2, 709–712 (2007). https://doi.org/10.1038/nnano.2007.320

    Article  Google Scholar 

  21. S. Joseph, N.R. Aluru, Pumping of confined water in carbon nanotubes by rotation–translation coupling. Phys. Rev. Lett. 101, 064502 (2008). https://doi.org/10.1103/PhysRevLett.101.064502

    Article  Google Scholar 

  22. F. Detcheverry, L. Bocquet, Thermal fluctuations in nanofluidic transport. Phys. Rev. Lett. 109, 024501 (2012). https://doi.org/10.1103/PhysRevLett.109.024501

    Article  Google Scholar 

  23. D.J. Bonthuis, K. Falk, C.N. Kaplan et al., Comment on “pumping of confined water in carbon nanotubes by rotation–translation coupling”. Phys. Rev. Lett. 105, 209401 (2010). https://doi.org/10.1103/PhysRevLett.105.209401

    Article  Google Scholar 

  24. D.J. Bonthuis, D. Horinek, L. Bocquet et al., Electrokinetics at aqueous interfaces without mobile charges. Langmuir 26, 12614–12625 (2010). https://doi.org/10.1021/la9034535

    Article  Google Scholar 

  25. M.E. Suk, N.R. Aluru, Suk and Aluru Reply. Phys. Rev. Lett. 105, 209402 (2010). https://doi.org/10.1103/PhysRevLett.105.209402

    Article  Google Scholar 

  26. R.Z. Wan, J. Hu, H.P. Fang, Asymmetric transportation induced by thermal noise at the nanoscale. Sci. China Phys. Mech. 55, 751–756 (2012). https://doi.org/10.1007/s11433-012-4695-8

    Article  Google Scholar 

  27. Z. Zhu, N. Sheng, R.Z. Wan et al., Intrinsic autocorrelation time of picoseconds for thermal noise in water. J. Phys. Chem. A 118, 8936–8941 (2014). https://doi.org/10.1021/jp5009785

    Article  Google Scholar 

  28. Z. Zhu, N. Sheng, H.P. Fang et al., Colored spectrum characteristics of thermal noise on the molecular scale. Phys. Chem. Chem. Phys. 18, 30189–30195 (2016). https://doi.org/10.1039/C6CP04433F

    Article  Google Scholar 

  29. S. Mukherjee, S. Mondal, B. Bagchi, Mechanism of solvent control of protein dynamics. Phys. Rev. Lett. 122, 058101 (2019). https://doi.org/10.1103/PhysRevLett.122.058101

    Article  Google Scholar 

  30. B.J. Gertner, R.M. Whitnell, K.R. Wilson et al., Activation to the transition state: reactant and solvent energy flow for a model SN2 reaction in water. J. Am. Chem. Soc. 113, 74–87 (1991). https://doi.org/10.1021/ja00001a014

    Article  Google Scholar 

  31. J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933). https://doi.org/10.1063/1.1749327

    Article  Google Scholar 

  32. Y.W. Guo, R.Z. Wan, Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures. Phys. Chem. Chem. Phys. 20, 12272–12277 (2018). https://doi.org/10.1039/C8CP00037A

    Article  Google Scholar 

  33. C.N. Peng, The effects of hydrogen on the helium behavior in palladium. Nucl. Sci. Tech. 27, 106 (2016). https://doi.org/10.1007/s41365-016-0115-5

    Article  Google Scholar 

  34. W. Xu, Y.S. Tu, C.L. Wang et al., Water transport through T-shaped carbon nanotubes. Nucl. Sci. Tech. 22, 307–310 (2011). https://doi.org/10.13538/j.1001-8042/nst.22.307-310

    Article  Google Scholar 

  35. X. Ren, B. Zhou, C. Wang, Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer. Nucl. Sci. Tech. 23, 252–256 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.252-256

    Article  Google Scholar 

  36. L.W. Gao, X.B. Xia, X.Q. Xu et al., Immobilization of radioactive fluoride waste in aluminophosphate glass: a molecular dynamics simulation. Nucl. Sci. Tech. 29, 92 (2018). https://doi.org/10.1007/s41365-018-0443-8

    Article  Google Scholar 

  37. X.C. Nie, B. Zhou, C.L. Wang et al., Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate. Nucl. Sci. Tech. 29, 18 (2018). https://doi.org/10.1007/s41365-018-0364-6

    Article  Google Scholar 

  38. C.L. Zhao, W.Z. Sun, X.D. Lv et al., Incident angle effect on F+ ions interaction with β-SiC: Molecular dynamics simulation. Nucl. Tech. 34, 1 (2011).  http://d.old.wanfangdata.com.cn/Periodical/hjs201101012. (in Chinese)

  39. Y.F. Ding, Z.B. Zhang, X.Z. Ke et al., Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation. Nucl. Tech. 28, 4 (2005). https://doi.org/10.3321/j.issn:0253-3219.2005.04.012(in Chinese)

    Article  Google Scholar 

  40. N. Sheng, Y.S. Tu, P. Guo et al., Asymmetrical free diffusion with orientation-dependence of molecules in finite timescales. Sci. China Phys. Mech. 56, 1047–1052 (2013). https://doi.org/10.1007/s11433-013-5081-x

    Article  Google Scholar 

  41. J.Y. Su, H.X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5, 351–359 (2011). https://doi.org/10.1021/nn1014616

    Article  Google Scholar 

  42. S. Pronk, S. Pall, R. Schulz et al., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013). https://doi.org/10.1093/bioinformatics/btt055

    Article  Google Scholar 

  43. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  44. S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984). https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  45. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  46. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). https://doi.org/10.1063/1.464397

    Article  Google Scholar 

  47. W. Nadler, T. Krausche, Universality in hydrogen-bond networks. Phys. Rev. A 44, 7888–7890 (1991). https://doi.org/10.1103/PhysRevA.44.R7888

    Article  Google Scholar 

  48. L.J. Zhang, W. Jian, L. Yi et al., A novel water layer structure inside nanobubbles at room temperature. Nucl. Sci. Tech. 25, 060503 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060503

    Article  Google Scholar 

  49. M.X. He, M. Li, Z. Tian et al., Terahertz spectral properties of melamine and its deuterated isotope, melamine-d6. Nucl. Sci. Tech. 23, 209–214 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.209-214

    Article  Google Scholar 

  50. S.J. Shao, P. Guo, L. Zhao et al., Ordered water monolayer on ionic model substrates studied by molecular dynamics simulations. Nucl. Sci. Tech. 25, 020502 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020502

    Article  Google Scholar 

  51. Z. Zhu, H.K. Guo, X.K. Jiang et al., Reversible hydrophobicity–hydrophilicity transition modulated by surface curvature. J. Phys. Chem. Lett. 9, 2346–2352 (2018). https://doi.org/10.1021/acs.jpclett.8b00749

    Article  Google Scholar 

  52. Z. Zhu, C. Chang, Y.S. Shu et al., Transition to a superpermeation phase of confined water induced by a terahertz electromagnetic wave. J. Phys. Chem. Lett. 11, 256–262 (2019). https://doi.org/10.1021/acs.jpclett.9b03228

    Article  Google Scholar 

  53. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001). https://doi.org/10.1038/35102535

    Article  Google Scholar 

  54. M. Thomas, M. Brehm, R. Fligg et al., Computing vibrational spectra from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 15, 6608–6622 (2013). https://doi.org/10.1039/C3CP44302G

    Article  Google Scholar 

  55. D.L. Gilden, Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56 (2001). https://doi.org/10.1037/0033-295X.108.1.33

    Article  Google Scholar 

  56. P. Stoica, R.L. Moses, Spectral Analysis of Signals (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  57. D.L. Gilman, T. Thornton, M.W. Mallon, 1/f noise in human cognition. Science 267, 1837–1839 (1995). https://doi.org/10.1126/science.7892611

    Article  Google Scholar 

  58. T. Ji, H.W. Zhao, P.Y. Han et al., Terahertz identification and quantification of penicillamine enantiomers. Nucl. Sci. Tech. 24, 010201 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.01.005

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Hai-Ping Fang for his constructive suggestions and are grateful to Xing Liu, Xue-Chuan Nie, Gang Fang, and Yi-Zhou Yang for their help. The authors also appreciate the support received from the Shanghai Supercomputer Center of China, the Computer Network Information Center of the Chinese Academy of Science, the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (second phase).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Zhu or Chun-Lei Wang.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2018YFE0205501 and 2018YFB1801500), the National Natural Science Foundation of China (No. 11904231), the Shanghai Sailing Program (No. 19YF1434100).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YW., Qin, JY., Hu, JH. et al. Molecular rotation-caused autocorrelation behaviors of thermal noise in water. NUCL SCI TECH 31, 53 (2020). https://doi.org/10.1007/s41365-020-00767-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00767-w

Keywords

Navigation