Skip to main content
Log in

Green and sustainable synthesis of silica nanoparticles

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SiNPs) have shown a wide range of applications in various technological fields. It is due to their unique properties such as biocompatibility, stability, tunable pore size, high surface area and surface reactivity. The ease of surface functionalization of SiNPs further extends their applications in biomedicine, targeted drug delivery and biosensing applications. Most of the works on SiNPs are focused on their synthesis by chemical methods for different applications. However, SiNPs can be prepared by green synthetic protocols that utilize plants, agriculture waste, industrial waste, fungi, bacteria, yeast, clay/mineral, worms, actinomycetes, etc. The green and sustainable methods offer distinctive encouraging features to produce nanomaterials with desired properties. The green synthesis of silica nanoparticles is an important area of research having considerable potential for further future developments. In this mini review, collective information on current green approaches for the synthesis of SiNPs is presented. The various green methods of synthesis for SiNPs are discussed with examples from the literature. The future challenges and expected advances are also pointed out which will decide the direction of research in this field.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Lu et al. © 2012 Elsevier

Fig. 4

Reproduced with permission from Yan et al. © 2017 American Chemical Society

Fig. 5

Reproduced with permission from Stopic et al. © 2019 MDPI

Fig. 6

Reproduced with permission from San et al. © 2014 Elsevier

Fig. 7
Fig. 8

Reproduced with permission from Bansal et al. © 206 American Chemical Society

Similar content being viewed by others

References

  1. Jadhav SA (2014) Incredible pace of research on mesoporous silica nanoparticles. Inorg Chem Front 1:735–739. https://doi.org/10.1039/C4QI00118D

    Article  Google Scholar 

  2. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  3. Singh L, Agarwal S, Bhattacharyya S et al (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol 1:9. https://doi.org/10.5772/2F50950

    Article  Google Scholar 

  4. Azlina H, Hasnidawani J, Norita H, Surip S (2016) Synthesis of sio2 nanostructures using sol-gel method. Acta Phys Pol A 129:842–844

    Article  Google Scholar 

  5. Rahman I, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:1–15. https://doi.org/10.1155/2012/132424

    Article  Google Scholar 

  6. Yugandhar P, Haribabu R, Savithramma N (2015) Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 5:1031–1039. https://doi.org/10.1007/s13205-015-0307-4

    Article  Google Scholar 

  7. Jadhav SA, Garud HB, Thoravat SS, Patil VS, Shinde PS, Burungale SH, Patil PS. Synthesis and testing of functional mesoporous silica nanoparticles for removal of Cr(VI) ions from water (2021) Biointerface Res Appl Chem 11:8599–8607. https://doi.org/10.33263/BRIAC112.85998607

    Article  Google Scholar 

  8. Ji-Hun Y, Chang-Wu L, Sung-Soon I, Jai-Sung L (2003) Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Adv Mater 15:55–59. https://doi.org/10.1007/BF02700020

    Article  Google Scholar 

  9. Yue R, Meng D, Ni Y, Jia Y, Liu G, Yang J, Liu H, Wu X, Chen Y (2013) One-step flame synthesis of hydrophobic silica nanoparticles. Powder Technol 235:909–913. https://doi.org/10.1016/j.powtec.2012.10.021

    Article  Google Scholar 

  10. San N, Kurşungöz C, Tümtaş T, Yaşa O, Ortaç B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35. https://doi.org/10.1016/j.partic.2013.11.003

    Article  Google Scholar 

  11. Lin C, Chang J, Yeh Y, Wu S, Liu Y, Mou C (2015) Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale 7:9614–9626. https://doi.org/10.1039/C5NR01395J

    Article  Google Scholar 

  12. Barry Carter C, Grant Norton M (2013) Ceramic materials-science and engineering, Foreward by David R. Clarke. Springer, New York

    Google Scholar 

  13. Creighton JR, Ho P (2001) Introduction to chemical vapor deposition (CVD). ASM International 2001. ASM International, Materials Park

  14. Klabaunde Kenneth J, Richards Ryan M (2001) Nanoscale materials in chemistry. Wiley. https://doi.org/10.1002/0471220620

  15. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    Google Scholar 

  16. Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12:3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002

    Article  Google Scholar 

  17. Das R, Pachapur V, Lonappan L, Naghdi M, Pulicharla R, Maiti S et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-017-0029-4

    Article  Google Scholar 

  18. Shwokat A, Kim M, Gopalan A, Reddy K, Lee K (2007) Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered Mesoporous silica. Bull Korean Chem Soc 28(11):1985–1992. https://doi.org/10.5012/bkcs.2007.28.11.1985

    Article  Google Scholar 

  19. Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) Hepper. Int J Adv Res 1:89–103

    Google Scholar 

  20. Shende S, Ingle A, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microb Biot 31:865–873. https://doi.org/10.1007/s11274-015-1840-3

    Article  Google Scholar 

  21. Bukkitgar S, Kumar S, Pratibha XX, Singh S, Singh V, Raghava Reddy K et al (2020) Functional nanostructured metal oxides and its hybrid electrodes—recent advancements in electrochemical biosensing applications. Microchemical J 159:102. https://doi.org/10.1016/j.microc.2020.105522

    Article  Google Scholar 

  22. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia Arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostructure Chem 4:115. https://doi.org/10.1007/s40097-014-0115-0

    Article  Google Scholar 

  23. Naseem T, Farrukh M (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7. https://doi.org/10.1155/2015/912342

    Article  Google Scholar 

  24. Reddy K, Lee K, Gopalan A, Kang H (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67(10):943–954. https://doi.org/10.1016/j.reactfunctpolym.2007.05.023

    Article  Google Scholar 

  25. Shetti N, Malode S, Nayak D, Naik R, Kuchinad G, Reddy K et al (2020) Hetero-nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem J 155:104727. https://doi.org/10.1016/j.microc.2020.104727

    Article  Google Scholar 

  26. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/C4RA12784F

    Article  Google Scholar 

  27. Bukkitgar S, Shetti N, Malladi R, Reddy K, Kalanur S, Aminabhavi T (2020) Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J Mol Liq 300:112368. https://doi.org/10.1016/j.molliq.2019.112368

    Article  Google Scholar 

  28. Ilager D, Shetti N, Malladi R, Shetty N, Reddy K, Aminabhavi T (2021) Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J Mol Liq 322:114552. https://doi.org/10.1016/j.molliq.2020.114552

    Article  Google Scholar 

  29. Koutavarapu R, Reddy C, Syed K, Reddy K, Shetti N, Aminabhavi T, Shim J (2021) Ultra-small zinc oxide nanosheets anchored onto sodium bismuth sulfide nanoribbons as solar-driven photocatalysts for removal of toxic pollutants and phtotoelectrocatalytic water oxidation. Chemosphere 267:128559. https://doi.org/10.1016/j.chemosphere.2020.128559

    Article  Google Scholar 

  30. Koutavarapu R, Babu B, Reddy C, Reddy I, Reddy K, Rao M et al (2020) ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J Environ Manag 265:110504. https://doi.org/10.1016/j.jenvman.2020.110504

    Article  Google Scholar 

  31. Shetti N, Malode S, Ilager D, Raghava Reddy K, Shukla S, Aminabhavi T (2019) A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31(6):1040–1049. https://doi.org/10.1002/elan.201800775

    Article  Google Scholar 

  32. Shetti N, Malode S, Nayak D, Reddy K (2019) Novel heterostructured Ru-doped TiO2/CNTs hybrids with enhanced electrochemical sensing performance for cetirizine. Mater Res Express 6(11):115085. https://doi.org/10.1088/2053-1591/ab4b92

    Article  Google Scholar 

  33. Jansomboon W, Boonmaloet K, Sukaros S, Prapainainar P (2016) Rice hull micro and nanosilica: synthesis and characterization. Key Eng Mater 718:77–80. https://doi.org/10.4028/www.scientific.net/KEM.718.77

  34. Lu P, Hsieh Y (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155. https://doi.org/10.1016/j.powtec.2012.04.002

    Article  Google Scholar 

  35. Mohd N, Wee N, Azmi A (2017) Green synthesis of silica nanoparticles using sugarcane bagasse. AIP Conf Proc 1885:1–7. https://doi.org/10.1063/1.5002317

    Article  Google Scholar 

  36. Falk G, Shinde G, Teixeira L, Moraes E, de Oliveira A (2019) Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram Int 45:21618–21624. https://doi.org/10.1016/j.ceramint.2019.07.157

    Article  Google Scholar 

  37. Sankar S, Sharma S, Kaur N, Lee B, Kim D, Lee S, Jung H (2016) Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int 42:4875–4885. https://doi.org/10.1016/j.ceramint.2015.11.172

    Article  Google Scholar 

  38. Vaibhav V, Vijayalakshmi U, Roopan S (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A 139:515–520. https://doi.org/10.1016/j.saa.2014.12.083

    Article  Google Scholar 

  39. Espíndola-Gonzalez A, Martinez-Hernández A, Angeles-Chávez C, Castaño V, Velasco-Santos C (2010) Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes. Nanoscale Res Lett 5:1408–1417. https://doi.org/10.1007/s11671-010-9654-6

    Article  Google Scholar 

  40. Ghorbani F, Younesi H, Mehraban Z, Çelik M, Ghoreyshi A, Anbia M (2013) Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. J Taiwan Inst Chem Eng 44:821–828. https://doi.org/10.1016/j.jtice.2013.01.019

    Article  Google Scholar 

  41. Athinarayanan J, Jaafari S, Periasamy V, Almanaa T, Alshatwi A (2020) Fabrication of biogenic silica nanostructures from sorghum bicolor leaves for food industry applications. SILICON 12:2829–2836. https://doi.org/10.1007/s12633-020-00379-4

    Article  Google Scholar 

  42. Balamurugan M, Saravanan S (2012) Producing nanosilica from Sorghum vulgare seed heads. Powder Technol 224:345–350. https://doi.org/10.1016/j.powtec.2012.03.017

    Article  Google Scholar 

  43. Sivakumar G, Amutha K (2012) Studies on silica obtained from cow dung ash. Adv Mater Res 584:470–473. https://doi.org/10.4028/www.scientific.net/AMR.584.470

    Article  Google Scholar 

  44. Wassie A, Srivastava V (2017) Synthesis and characterization of nano-silica from Teff straw. J Nano Res 46:64–72. https://doi.org/10.4028/www.scientific.net/JNanoR.46.64

    Article  Google Scholar 

  45. Yadav V, Fulekar M (2019) Green synthesis and characterization of amorphous silica nanoparticles from fly ash. Materials Today: Proceedings 18:4351–4359. https://doi.org/10.1016/j.matpr.2019.07.395

    Article  Google Scholar 

  46. Yan F, Jiang J, Li K, Liu N, Chen X, Gao Y, Tian S (2017) Green synthesis of Nanosilica from coal fly ash and its stabilizing effect on CaO sorbents for CO2 capture. Environ Sci Technol 51:7606–7615. https://doi.org/10.1021/acs.est.7b00320

    Article  Google Scholar 

  47. Sarikaya M, Depci T, Aydogmus R, Yucel A, Kizilkaya N (2016) Production of nano amorphous SiO2 from Malatya pyrophyllite. IOP Conf Ser Earth Environ Sci 44:052004

    Article  Google Scholar 

  48. Zulfiqar U, Subhani T, Husain S (2016) Synthesis and characterization of silica nanoparticles from clay. J Asian Ceram Soc 4:91–96. https://doi.org/10.1016/j.jascer.2015.12.001

    Article  Google Scholar 

  49. Mourhly A, Khachani M, Hamidi A, Kacimi M, Halim M, Arsalane S (2015) The synthesis and characterization of low-cost mesoporous silica SiO2 from local Pumice rock. Nanomater Nanotechnol 5:35. https://doi.org/10.5772/2F62033

    Article  Google Scholar 

  50. Stopic S, Dertmann C, Koiwa I, Kremer D, Wotruba H, Etzold S, Telle R, Knops P, Friedrich B (2019) Synthesis of nanosilica via Olivine mineral carbonation under high pressure in an autoclave. Metals 9:708. https://doi.org/10.3390/met9060708

    Article  Google Scholar 

  51. Babu R, Yugandhar P, Savithramma N (2018) Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodon dactylon L.: a green approach. Bull Mater Sci 41:65. https://doi.org/10.1007/s12034-018-1584-4

    Article  Google Scholar 

  52. Sethy N, Arif Z, Mishra P, Kumar P (2019) Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties. J Polym Eng 39:679–687. https://doi.org/10.1515/polyeng-2019-0120

    Article  Google Scholar 

  53. Durairaj K, Senthilkumar P, Velmurugan P, Dhamodaran K, Kadirvelu K, Kumaran S (2019) Sol-gel mediated synthesis of silica nanoparticle from Bambusa vulgaris leaves and its environmental applications: kinetics and isotherms studies. J Sol-Gel Sci Technol 90:653–664. https://doi.org/10.1007/s10971-019-04922-7

    Article  Google Scholar 

  54. Jabeen N, Maqbool Q, Sajjad S, Minhas A, Younas U, Anwaar S, Nazar M, Kausar R, Hussain S (2017) Biosynthesis and characterisation of nano-silica as potential system for carrying streptomycin at nano-scale drug delivery. IET Nanobiotechnol 11:557. https://doi.org/10.1049/iet-nbt.2016.0106

    Article  Google Scholar 

  55. Al-Azawi MT, Hadi SM, Mohammed CH (2019) Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thuja orientalis leaf and their effect on biofilm formation. Iraqi J Agric Sci 50:245–255. https://doi.org/10.36103/ijas.v50iSpecial.196

    Article  Google Scholar 

  56. Irzaman XX, Oktaviani N, Irmansyah XX (2018) Ampel bamboo leaves silicon dioxide (SiO2) extraction. IOP Conf Ser Earth Environ Sci 141:012014

    Article  Google Scholar 

  57. Yusaidi N, Abdullah S, Zarib N (2019) Structural analysis of silica extract from banana stems via acid leaching under different reaction time. Int J Eng Adv Technol 9:5858–5862

    Article  Google Scholar 

  58. Agunsoye JO, Adebisi JA, Bello SA, Haris M, Agboola JB, Hassan SB (2018) Synthesis of silicon nanoparticles from Cassava periderm by reduction method. Contributed papers from materials science and technology, pp 701–709

  59. Anuar M, Fen Y, Zaid M, Matori K, Khaidir R (2018) Synthesis and structural properties of coconut husk as potential silica source. Results Phys 11:1–4. https://doi.org/10.1016/j.rinp.2018.08.018

    Article  Google Scholar 

  60. Pal S, Tak Y, Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  Google Scholar 

  61. Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash N, Crawford S, Ashok kumar M, (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815. https://doi.org/10.1007/s11051-009-9621-2

    Article  Google Scholar 

  62. Vetchinkina E, Loshchinina E, Kupryashina M, Burov A, Nikitina V (2019) Shape and size diversity of gold, silver, selenium and silica nanoparticles prepared by green synthesis using fungi and bacteria. Ind Eng Chem Res 58:17207–17218. https://doi.org/10.1021/acs.iecr.9b03345

    Article  Google Scholar 

  63. Singh S, Bhatta U, Satyam P, Dhawan A, Sastry M, Prasad B (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18:2601–2606. https://doi.org/10.1039/B719528A

    Article  Google Scholar 

  64. Show S, Tamang A, Chowdhury T, Mandal D, Chattopadhyay B (2014) Bacterial (BKH1) assisted silica nanoparticles from silica rich substrates: a facile and green approach for biotechnological applications. Colloids Surf B 126:245–250. https://doi.org/10.1016/j.colsurfb.2014.12.039

    Article  Google Scholar 

  65. Liu F, Yang W, Wang Y, Xue X, Yang H (2014) Photochemical synthesis of silica nanoparticles. Chem Lett 43:720–722. https://doi.org/10.1246/cl.131133

    Article  Google Scholar 

  66. Zamani H, Jafari A, Mousavi S, Darezereshki E (2020) Biosynthesis of silica nanoparticle using Saccharomyces cervisiae and its application on enhanced oil recovery. J Petrol Sci Eng 190:107002. https://doi.org/10.1016/j.petrol.2020.107002

    Article  Google Scholar 

  67. Pieła A, Żymańczyk-Duda E, Brzezińska-Rodak M, Duda M, Grzesiak J, Saeid A, Mironiuk M, Klimek-Ochab M (2020) Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing. Bioorg Chem 99:1073. https://doi.org/10.1016/j.bioorg.2020.103773

    Article  Google Scholar 

  68. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589. https://doi.org/10.1039/B503008K

    Article  Google Scholar 

  69. Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005) Bioleaching of Sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17:889–892. https://doi.org/10.1002/adma.200401176

    Article  Google Scholar 

  70. Bansal V, Ahmad A, Sastry M (2006) Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 128:14059–14066. https://doi.org/10.1021/ja062113+

    Article  Google Scholar 

  71. Rohatgi K, Prasad S, Rohatgi P (1987) Release of silica-rich particles from rice husk by microbial fermentation. J Mater Sci Lett 6:829–831. https://doi.org/10.1007/BF01729027

    Article  Google Scholar 

  72. Zielonka A, Żymańczyk-Duda E, Brzezińska-Rodak M, Duda M, Grzesiak J, Klimek-Ochab M (2018) Nanosilica synthesis mediated by Aspergillus parasiticus strain. Fungal Biol 122:333–344. https://doi.org/10.1016/j.funbio.2018.02.004

    Article  Google Scholar 

  73. Estevez M, Vargas S, Castaño V, Rodriguez R (2009) Silica nano-particles produced by worms through a bio-digestion process of rice husk. J Non-Cryst Solids 355:844–850. https://doi.org/10.1016/j.jnoncrysol.2009.04.011

    Article  Google Scholar 

  74. Kaur T, Singh G, Kaur G, Kaur S, Gill P (2016) Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms. Mater Res Express 3:085026

    Article  Google Scholar 

  75. Yepez A, Prinsen P, Pineda A, Balu AM, Garcia A, Lam FLY, Luque R (2018) A comprehensive study on the continuous flow synthesis of supported iron oxide nanoparticles on porous silicates and their catalytic applications. Reac Chem Eng 3:757–768. https://doi.org/10.1039/C8RE00063H

    Article  Google Scholar 

  76. Jundale R, Bari A, Thara C, Kulkarni A (2018) Continuous flow synthesis of micron size silica nanoparticles: parametric study and effect of dosing strategy. J Flow Chem 8:59–67. https://doi.org/10.1007/s41981-018-0008-3

    Article  Google Scholar 

  77. Liu Z, Zhu J, Peng C, Wakihara T, Okubo T (2019) Continuous flow synthesis of ordered porous materials: from zeolites to metal-organic frameworks and mesoporous silica. React Chem Eng 4:1699–1720. https://doi.org/10.1039/C9RE00142E

    Article  Google Scholar 

  78. Wacker JB, Lignos I, Parashar VK, Gijs MAM (2012) Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. Lab Chip 12:3111. https://doi.org/10.1039/C2LC40300E

    Article  Google Scholar 

  79. Al-Kattan A, Nirwan VP, Popov A, Ryabchikov YV, Tselikov G, Sentis M, Fahmi A, Kabashin AV (2018) Recent advances in laser- ablative synthesis of bare Au and Si nanoparticles and assessment of their prospects for tissue engineering applications. Int J Mol Sci 19:1563. https://doi.org/10.3390/ijms19061563

    Article  Google Scholar 

  80. Díaz de Greñu B, de Reyes R, Costero AM, Amorós P, Ros-Lis JV (2020) Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials 10:1092. https://doi.org/10.3390/nano10061092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SAJ and SDK developed the idea and performed literature search and complied the manuscript. All other co-authors contributed towards final completion of the paper.

Corresponding author

Correspondence to Sushilkumar A. Jadhav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karande, S.D., Jadhav, S.A., Garud, H.B. et al. Green and sustainable synthesis of silica nanoparticles. Nanotechnol. Environ. Eng. 6, 29 (2021). https://doi.org/10.1007/s41204-021-00124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00124-1

Keywords

Navigation