Skip to main content
Log in

Preparation of electrically conductive PLA/rGO nanocomposite filaments

  • Original Article
  • Published:
Graphene Technology Aims and scope Submit manuscript

Abstract

Aiming to produce electrically conductive polylactic acid (PLA), a reduced graphene oxide (rGO) with low oxygen content was prepared to produce PLA/rGO nanocomposites by melt compounding. The electrical conductivity of PLA/rGO composites improved significantly with the incorporation of rGO at a moderate filler loading, thanks to the large lateral size, low thickness, and low oxygen content of the rGO prepared. Filament for fused-deposition modeling has been produced based on the composite produced at 2% in weight with the purpose of producing devices for electronic applications. An all-polymer humidity sensor device has been prepared using the PLA/rGO filament produced demonstrating the ability to produce all-polymer devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    Article  CAS  Google Scholar 

  2. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352

    Article  CAS  Google Scholar 

  3. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780

    Article  CAS  Google Scholar 

  4. Ho PKH, Thomas DS, Friend RH, Tessler N (1999) All-polymer optoelectronic devices. Science 285:233–236

    Article  CAS  Google Scholar 

  5. Argun AA, Cirpan A, Reynolds JR (2003) The first truly all-polymer electrochromic devices. Adv Mater 15:1338–1341

    Article  CAS  Google Scholar 

  6. Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265(5179):1684–1686

    Article  CAS  Google Scholar 

  7. Gofer Y, Sarker H, Killian JG, Poehler TO, Searson PC (1997) An all-polymer charge storage device. Appl. Phys. Lett. 71(11):1582–1584

    Article  CAS  Google Scholar 

  8. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  9. Verma M, Chauhan SS, Dhawan SK, Choudhary V (2017) Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Compos B Eng 120:118–127

    Article  CAS  Google Scholar 

  10. Norazlina H, Kamal Y (2015) Graphene modifications in polylactic acid nanocomposites: a review. Polym. Bull. 72(4):931–961

    Article  CAS  Google Scholar 

  11. Shen Y et al (2012) Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos Sci Technol 72(12):1430–1435

    Article  CAS  Google Scholar 

  12. Gao Y, Picot OT, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86:117–131

    Article  CAS  Google Scholar 

  13. Lei L, Qiu J, Sakai E (2012) Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27

    Article  CAS  Google Scholar 

  14. Cai C, Liu L, Fu Y (2019) Processable conductive and mechanically reinforced polylactide/graphene bionanocomposites through interfacial compatibilizer. Polym Compos 40(1):389–400

    Article  CAS  Google Scholar 

  15. Singh S, Ramakrishna S, Berto F (2019) 3D printing of polymer composites: a short review. Mater Des Process Commun. https://doi.org/10.1002/mdp2.97

    Article  Google Scholar 

  16. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototype J 19(5):353–364

    Article  Google Scholar 

  17. Zhang D et al (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86

    Article  CAS  Google Scholar 

  18. Farahani RD, Dubé M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28:5794–5821

    Article  CAS  Google Scholar 

  19. Utela B, Storti D, Anderson R, Ganter M (2008) A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 10(2):96–104

    Article  Google Scholar 

  20. Gnanasekaran K et al (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28

    Article  Google Scholar 

  21. Lamberti P et al (2018) Evaluation of thermal and electrical conductivity of carbon-based PLA nanocomposites for 3D printing. AIP Conf Proc 1981:3–7

    Google Scholar 

  22. Wei X et al (2015) 3D printable graphene composite. Sci Rep 5:11181. https://doi.org/10.1038/srep11181

    Article  Google Scholar 

  23. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1(1):2–30

    Article  Google Scholar 

  24. Galindo B, Alcolea SG, Gómez J, Navas A, Murguialday AO, Fernandez MP, Puelles RC (2014) Effect of the number of layers of graphene on the electrical properties of TPU polymers. IOP Conf Ser Mater Sci Eng 64:12008. https://doi.org/10.1088/1757-899X/64/1/012008

    Article  CAS  Google Scholar 

  25. Eigler S, Grimm S, Enzelberger-Heim M, Müller P, Hirsch A (2013) Graphene oxide: efficiency of reducing agents. Chem Commun 49(67):7391

    Article  CAS  Google Scholar 

  26. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  28. Gómez J, Villaro E, Navas A, Recio I (2017) Testing the influence of the temperature, RH and filler type and content on the universal power law for new reduced graphene oxide TPU composites. Mater Res Express 4(10):105020

    Article  Google Scholar 

  29. Gomez J, Recio I, Navas A, Villaro E, Galindo B, Ortega Murguialday A (2019) Processing influence on dielectric, mechanical and electrical properties of reduced graphene oxide-TPU nanocomposites. J. Appl. Polym. Sci. 136:47220

    Article  Google Scholar 

  30. Chee SY, Poh HL, Chua CK, Sanek F, Sofer Z, Pumera M (2012) Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Phys Chem Chem Phys 14(37):12794–12799

    Article  CAS  Google Scholar 

  31. Pan S, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5(5):4073–4083

    Article  CAS  Google Scholar 

  32. Ambrosetti G, Grimaldi C, Balberg I, Maeder T, Danani A, Ryser P (2010) Solution of the tunneling-percolation problem in the nanocomposite regime. Phys Rev B Condens Matter Mater Phys 81(15):1–12

    Article  Google Scholar 

  33. Zhang R, Zhang B, Sun S (2015) Preparation of high-quality graphene with a large-size by sonication-free liquid-phase exfoliation of graphite with a new mechanism. RSC Adv 5(56):44783–44791

    Article  CAS  Google Scholar 

  34. JabariSeresht R, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl Surf Sci 276:672–681

    Article  CAS  Google Scholar 

  35. Cui P, Lee J, Hwang E, Lee H (2011) One-pot reduction of graphene oxide at subzero temperatures. Chem Commun 47(45):12370–12372

    Article  CAS  Google Scholar 

  36. Joya MR, Gonzalez JD, Barba-Ortega J (2014) Raman spectroscopy as a versatile tool for studying of explicit contribution of anharmonicity. J Nonlinear Opt Phys Mater 23(4):235

    Article  Google Scholar 

  37. King AAK et al (2016) A new raman metric for the characterisation of graphene oxide and its derivatives. Sci Rep 6:1–6

    Article  CAS  Google Scholar 

  38. Bokobza L (2017) Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers (Basel) 10(1):7

    Article  Google Scholar 

  39. Kister G, Cassanas G, Vert M, Pauvert B, Tbol A (1995) Vibrational analysis of poly(L-lactic acid). J Raman Spectrosc 26:307–311

    Article  CAS  Google Scholar 

  40. Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108. https://doi.org/10.1063/1.2818692

    Article  CAS  Google Scholar 

  41. Tong XZ, Song F, Li MQ, Wang XL, Chin IJ, Wang YZ (2013) Fabrication of graphene/polylactide nanocomposites with improved properties. Compos Sci Technol 88:33–38

    Article  CAS  Google Scholar 

  42. Yang JH, Lin SH, Der Lee Y (2012) Preparation and characterization of poly(l-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22(21):10805–10815

    Article  CAS  Google Scholar 

  43. Sabzi M, Jiang L, Liu F, Ghasemi I, Atai M (2013) Graphene nanoplatelets as poly(lactic acid) modifier: linear rheological behavior and electrical conductivity. J Mater Chem A 1(28):8253–8261

    Article  CAS  Google Scholar 

  44. Ivanov E et al (2019) PLA/graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl Sci 9(6):1209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EV was preparing and characterizing PLA-rGO composites and originally writing the paper. JP is responsible for device preparation and characterization. JG is responsible for the conceptualization, supervision, methodology and reviewing the article. BAH project management, reviewing, and proofreading the paper.

Corresponding author

Correspondence to Julio Gomez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, J., Villaro, E., Perez, J. et al. Preparation of electrically conductive PLA/rGO nanocomposite filaments. Graphene Technol 5, 41–48 (2020). https://doi.org/10.1007/s41127-020-00031-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-020-00031-3

Keywords

Navigation