Skip to main content

Advertisement

Log in

Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The thermoelectric effect encompasses three different effects, i.e. Seebeck effect, Peltier effect, and Thomson effect, which are considered as thermally activated materials that alter directions in smart materials. It is currently considered one of the most challenging green energy harvesting mechanisms among researchers. The ability to utilize waste thermal energy that is generated by different applications promotes the use of thermoelectric harvesters across a wide range of applications. This review illustrates the different attempts to fabricate efficient, robust and sustainable thermoelectric harvesters, considering the material selection, characterization, device fabrication and potential applications. Thermoelectric harvesters with a wide range of output power generated reaching the milliwatt range have been considered in this work, with a special focus on the main advantages and disadvantages in these devices. Additionally, this review presents various studies reported in the literature on the design and fabrication of thermoelectric harvesters and highlights their potential applications. In order to increase the efficiency of equipment and processes, the generation of thermoelectricity via thermoelectric materials is achieved through the harvesting of residual energy. The review discusses the main challenges in the fabrication process associated with thermoelectric harvester implementation, as well as the considerable advantages of the proposed devices. The use of thermoelectric harvesters in a wide range of applications where waste thermal energy is used and the impact of the thermoelectric harvesters is also highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16 
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Abbreviations

ZT:

Thermoelectric materials figure of merit

DFT:

Density-functional theory

S:

Seebeck coefficient (µV/K)

NRd-T:

Titania nanorods

NFs-T:

Titania nanoflowers

PVD:

Physical vapor deposition

FTO:

Fluorine-doped tin oxide

σ:

Electrical conductivity (kS m1)

VTEP:

Thermoelectric voltage

TE:

Flexible thermoelectric

HOPG:

Highly oriented pyrolytic graphite

CNTs:

Carbon nanotubes

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PDINE:

Perylene diimide

NDINE:

Naphthalene diimide

DIPS:

Direct injection pyrolytic combination

PEG:

Polyethylene glycol

SWCNTs:

Single-walled carbon nanotubes

C8BTBT:

2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene

TCNQ:

7,7,8,8-Tetracyanoquinodimethane

PF:

Power factor (µW mK2)

CNTY:

Carbon nanotube yarn

TEGs:

Thermoelectric generators

MBPT:

Many-body perturbation theory

MA:

Methyl ammonium

FA:

Formamidinium

VBM:

Valence band maximum

CBM:

Conduction band minimum

TNA:

Cyclotrimethylene trinitramine

NMCNT:

Multi-walled carbon nanotube

PTFE:

Polytetrafluoroethylene

FTEG:

Flexible thermoelectric generator

HER:

Hydrogen evolution reactions

LSV:

Linear sweep voltammetry

References

  1. Zheng XF, Liu CX, Yan YY, Wang Q (2014) Renew Sustain Energy Rev 32:486–503

    CAS  Google Scholar 

  2. Fernandes L, Fernández E, Martins P, Ferreira N, Antunes P, Lanceros-Mendez S (2020) J Mater Sci 55:925–946

    CAS  Google Scholar 

  3. Hung T-C (2001) Energy Convers Manag 42:539–553

    CAS  Google Scholar 

  4. Sliwa T, Rosen MA (2015) Sustainability 7:13104–13125

    CAS  Google Scholar 

  5. Chen H, Goswami Y, Stefanakos EK (2010) Renew Sustain Energy Rev 14:3059–3067

    CAS  Google Scholar 

  6. Snyder GJ, Toberer ES (2008) Nat Mater 7:105–114

    CAS  PubMed  Google Scholar 

  7. He M, Qiu F, Lin ZQ (2013) Energy Environ Sci 6:1352–1361

    Google Scholar 

  8. Yao CJ, Zhang HL, Zhang QC (2019) Polymers 11:107

    PubMed Central  Google Scholar 

  9. William Y (1996) Sens Actuators A52:8–11

    Google Scholar 

  10. Han C, Sun Q, Li Z, Dou SX (2016) Adv Energy Mater. 6:1600498

    Google Scholar 

  11. Riffat SB, Ma X (2003) Appl Therm Eng 23:913–935

    Google Scholar 

  12. Zamir NAH, Norhaliza A-W, Sultan M, Rahim RA, Yunos MA (2015) J Teknol (Sci Eng) 73:139–143

    Google Scholar 

  13. Ahıska R, Mamur H (2014) Int J Renew Energy Res 4:128–136

    Google Scholar 

  14. Ming T, Wu Y, Peng C, Tao Y (2015) Energy 80:388–399

    Google Scholar 

  15. Kutlar OA, Arslan H, Calik AT (2005) Energy Convers Manag 46:3202–3220

    Google Scholar 

  16. Chen YN, Zhao Y, Liang ZQ (2015) Energy Environ Sci 8:401–422

    CAS  Google Scholar 

  17. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Nat Rev Mater 1:16050

    CAS  Google Scholar 

  18. Mengistie DA, Chen C-H, Boopathi KM, Pranoto FW, Li L-J, Chu C-W, Appl ACS (2015) Mater Interfaces 7:94–100

    CAS  Google Scholar 

  19. McGrail BT, Sehirlioglu A, Pentzer E (2015) Angew Chem Int Ed 54:1710–1723

    CAS  Google Scholar 

  20. Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Nat Mater 10:429–433

    CAS  PubMed  Google Scholar 

  21. Kim GH, Shao L, Zhang K, Pipe KP (2013) Nat Mater 12:719–723

    CAS  PubMed  Google Scholar 

  22. Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R, Lin T (2015) Sci Rep 5:6411

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Z, Li J, Wong W-Y (2020) Macromol Chem Phys 20:2000115

    Google Scholar 

  24. Wan T, Yin X, Pan C, Liu D, Zhou X, Gao C, Wong W-Y, Wang L (2019) Polymers 11:593

    PubMed Central  Google Scholar 

  25. Zhou X, Pan C, Liang A, Wang L, Wan T, Yang G, Gao C, Wong W-Y (2018) J Appl Polym Sci 2018:47011

    Google Scholar 

  26. Zhou X, Pan C, Liang A, Wang L, Wong W-Y (2017) Compos Sci Tech 145:40–45

    CAS  Google Scholar 

  27. Yang JH, Yip HL, Jen AKY (2013) Adv Energy Mater 3:549–565

    CAS  Google Scholar 

  28. Zhang Q, Sun Y, Xu W, Zhu D (2014) Adv Mater 26:6829–6851

    CAS  PubMed  Google Scholar 

  29. Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Nano Lett 4:35–39

    Google Scholar 

  30. Zhang L, Wang F (2017) Phys Rev Lett 118:087201

    PubMed  Google Scholar 

  31. Green AA, Hersam MC (2009) Nat Nanotechnol 4:64–70

    CAS  PubMed  Google Scholar 

  32. Avery AD, Zhou BH, Lee J, Lee ES, Miller EM, Ihly R, Wesenberg D, Mistry KS, Guillot SL, Zink BL, Kim YH, Blackburn JL, Ferguson AJ (2016) Nat Energy 1:16033

    CAS  Google Scholar 

  33. Kim SL, Choi K, Tazebay A, Yu C (2014) ACS Nano 8:2377–2386

    CAS  PubMed  Google Scholar 

  34. Seebeck TJ (1826) Ann Phys 82:133–160

    Google Scholar 

  35. Snyder GF, Christensen M, Nishibori E, Caillat T, Iversen BB (2004) Nat Mater 3:458

    CAS  PubMed  Google Scholar 

  36. Benson D, Sankey OF, Häussermann U (2011) Phys Rev B Condens Matter Mater Phys 84:125211

    Google Scholar 

  37. Jund P, Viennois R, Tao X, Niedziolka K, Tédenac J-C (2012) Phys Rev B Condens Matter Mater Phys 85:224105

    Google Scholar 

  38. Bjerg L, Iversen BB, Madsen GKH (2014) Phys Rev B: Condens Matter Mater Phys 89:024304

    Google Scholar 

  39. Amsler M, Goedecker S (2010) J Chem Phys 133:224104

    PubMed  Google Scholar 

  40. Amsler M, Goedecker S, Zeier WG, Snyder GJ, Wolverton C, Chaput L (2016) Chem Mater 28:2912–2920

    CAS  Google Scholar 

  41. Fay B, Justi E, Schneider G (1965) Adv Energy Convers 5:345

    CAS  Google Scholar 

  42. Eklöf D, Fischer A, Wu Y, Scheidt E-W, Scherer W, Häussermann U (2013) J Mater Chem 1:1407.

  43. Böttger PHM, Pomrehn GS, Snyder GJ, Finstad TG (2011) Phys Status Solidi A 208:2753

    Google Scholar 

  44. Shamsudin S, Ahmad MK, Aziz AN, Fakhriah R, Mohamad F, Ahmad N, Nafarizal N, Soon CF, Ameruddin AS, Faridah AB, Shimomura M (1883) AIP Conf Proc 2017:020030-1–20039

    Google Scholar 

  45. Hitosugi T, Yamada N, Hoang NLH, Kasai J, Nakao S, Shimada T, Hasegawa T (2009) Thin Solid Films 517:3106–3109

    CAS  Google Scholar 

  46. Ahmad MK, Murakami K (2015) Appl Mech Mater 773:725–728

    Google Scholar 

  47. Harada S, Tanaka K, Inui H (2010) J Appl Phys 108:08370316

    Google Scholar 

  48. Salleha F, Usop R, Saugi NS, Salih EY, Mohamad M, Ikeda H, Sabri MFM, Ahmad MK, Said SM (2019) Appl Surf Sci 497:143736

    Google Scholar 

  49. Usop R, Hamed NKA, Hasnan MM, Ikeda H, Sabri MFM, Ahmad MK, Said SM, Salleh F (2018) IOP Conf Ser Mater Sci Eng 342:12051–1–12056

    Google Scholar 

  50. Salleh F, Oda T, Suzuki Y, Kamakura Y, Ikeda H (2014) Appl Phys Lett 105:102104

    Google Scholar 

  51. Xiong Z, Cai Y, Ren X, Cao B, Liu J, Huo Z, Tang J, Appl ACS (2017) Mater Interfaces 9:32424–32429

    CAS  Google Scholar 

  52. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang L-W, Alivisatos AP (2007) Science 317:355–358

    CAS  PubMed  Google Scholar 

  53. Sadtler B, Demchenko DO, Zheng H, Hughes SM, Merkle MG, Dahmen U, Wang LW, Alivisatos AP (2009) J Am Chem Soc 131:5285–5293

    CAS  PubMed  Google Scholar 

  54. Beberwyck BJ, Surendranath Y, Alivisatos AP (2013) J Phys Chem C 117:19759–19770

    CAS  Google Scholar 

  55. Zhang D, Wong AB, Yu Y, Brittman S, Sun J, Fu A, Beberwyck B, Alivisatos AP, Yang P (2014) J Am Chem Soc 136:17430–17433

    CAS  PubMed  Google Scholar 

  56. Zhang B, Jung Y, Chung H-S, Vugt LV, Agarwal R (2010) Nano Lett 10:149–155

    CAS  PubMed  Google Scholar 

  57. Hicks LD, Dresselhaus MS (1993) Phys Rev B Condens Matter Mater Phys 47:12727–12731

    CAS  Google Scholar 

  58. Whitlow LW, Hirano T (1995) J Appl Phys 78:5460–5466

    CAS  Google Scholar 

  59. Vashaee D, Shakouri A (2004) Phys Rev Lett 92:106103

    PubMed  Google Scholar 

  60. Andrews SC, Fardy MA, Moore MC, Aloni S, Zhang MJ, Radmilovic V, Yang PD (2011) Chem Sci 2:706–714

    CAS  Google Scholar 

  61. Liu G, Schulmeyer T, Brötz J, Klein A, Jaegermann W (2003) Thin Solid Films 431432:477–482

    Google Scholar 

  62. Hmurcik L, Allen L, Serway RA (1982) J Appl Phys 53:9063–9072

    CAS  Google Scholar 

  63. Rivest JB, Fong L-K, Jain PK, Toney MF, Alivisatos AP (2011) J Phys Chem Lett 2:2402–2406

    CAS  Google Scholar 

  64. Park S, Yoon HJ (2018) Nano Lett 18:7715–7718

    CAS  PubMed  Google Scholar 

  65. Ishida T, Mizutani W, Azehara H, Miyake K, Aya Y, Sasaki S, Tokumoto H (2002) Surf Sci 514:187–193

    CAS  Google Scholar 

  66. Malen JA, Doak P, Baheti K, Tilley TD, Majumdar A, Segalman RA (2009) Nano Lett 9:3406–3412

    CAS  PubMed  Google Scholar 

  67. Yoon HJ, Liao K-C, Lockett MR, Kwok SW, Baghbanzadeh M, Whitesides GM (2014) J Am Chem Soc 136:17155–17162

    CAS  PubMed  Google Scholar 

  68. Quek SY, Choi HJ, Louie SG, Neaton JB (2011) ACS Nano 5:551–557

    CAS  PubMed  Google Scholar 

  69. Cadavid D, Ibáñez M, Anselmi-Tamburini U, Durá OJ, Torre MA, Cabot A (2014) Int J Nanotechnol 11:773–784

    CAS  Google Scholar 

  70. Ge ZH, Zhang BP, Yu YQ, Shang PP (2012) J Alloys Compd 514:205–209

    CAS  Google Scholar 

  71. Biswas K, Zhao LD, Kanatzidis MG (2012) Adv Energy Mater 2:634–638

    CAS  Google Scholar 

  72. Zhao LD, Zhang BP, Liu WS, Zhang HL, Li JF (2008) J Solid State Chem 181:3278–3282

    CAS  Google Scholar 

  73. Liufu SC, Chen LD, Yao Q, Wang CF (2007) Appl Phys Lett 90:112106

    Google Scholar 

  74. Ge Z-H, Qin P, He DS, Chong X, Feng D, Ji Y-H, Feng J, He J, Appl ACS (2017) Mater Interfaces 9:4828–4834

    CAS  Google Scholar 

  75. Liu Z, Pei Y, Geng H, Zhou J, Meng X, Cai W, Liu W, Sui J (2015) Nano Energy 13:554–562

    CAS  Google Scholar 

  76. Ge ZH, Zhang BP, Liu Y, Li JF (2012) Phys Chem Chem Phys 14:4475–4481

    CAS  PubMed  Google Scholar 

  77. Ge ZH, Zhang BP, Yu ZX, Jiang BB (2012) CrystEngComm 14:2283–2288

    CAS  Google Scholar 

  78. Ge ZH, Nolas GS (2014) Cryst Growth Des 14:533–536

    CAS  Google Scholar 

  79. Zhang DB, Zhang BP, Ye DS, Liu YC, Li S (2016) J Alloys Compd 656:784–792

    CAS  Google Scholar 

  80. Schewe I, Böttcher P, von Schnering HGZ (1989) Kristallogr 188:287–298

    CAS  Google Scholar 

  81. Bangarigadu-Sanasy S, Sankar CR, Assoud A, Kleinke H (2011) Dalton Trans 40:862–867

    CAS  PubMed  Google Scholar 

  82. Bangarigadu-Sanasy S, Sankar CR, Schlender P, Kleinke H (2013) J Alloys Compd 594:126–134

    Google Scholar 

  83. Guo Q, Chan M, Kuropatwa BA, Kleinke H (2013) Chem Mater 25:4097–4104

    CAS  Google Scholar 

  84. George A, Yanagisawa R, Anufriev R, He J, Yoshie N, Tsujii N, Guo Q, Mori T, Volz S, Nomura M, Appl ACS (2019) Mater Interfaces 11:12027–12031

    CAS  Google Scholar 

  85. Wang H, Hsu J-H, Yi S-I, Kim SL, Choi K, Yang G, Yu C (2015) Adv Mater 27:6855–6861

    CAS  PubMed  Google Scholar 

  86. Li C, Jiang F, Liu C, Wang W, Li X, Wang T, Xu J (2017) Chem Eng J 320:201–210

    CAS  Google Scholar 

  87. Wang X, Wang H, Liu B (2018) Polymers 10:1196

    PubMed Central  Google Scholar 

  88. MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, Hurst KE, Fewox CS, Folmar CN, Holman HK et al (2017) Energy Environ Sci 10:2168–2179

    CAS  Google Scholar 

  89. Zhou W, Fan Q, Zhang Q, Cai L, Li K, Gu X, Yang F, Zhang N, Wang Y, Liu H et al (2017) Nat Commun 8:14886

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Phys Rev Lett 80:1042–1045

    CAS  Google Scholar 

  91. Yanagi K, Kanda S, Oshima Y, Kitamura Y, Kawai H, Yamamoto T, Takenobu T, Nakai Y, Maniwa Y (2014) Nano Lett 14:6437–6442

    CAS  PubMed  Google Scholar 

  92. Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai H (2004) Phys Rev Lett 92:106804

    PubMed  Google Scholar 

  93. Ito M, Koizumi T, Kojima H, Saito T, Nakamura M (2017) J Mater Chem A 5:12068–12072

    CAS  Google Scholar 

  94. Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S (2008) J Nanosci Nanotechnol 8:6153–6157

    CAS  PubMed  Google Scholar 

  95. Wu G, Zhang Z-G, Li Y, Gao C, Wang X, Chen G (2017) ACS Nano 11:5746–5752

    CAS  PubMed  Google Scholar 

  96. Tan J, Chen Z, Wang D, Qin S, Xiao X, Xie D, Liu D, Wang L (2019) J Mater Chem A 7:24982–24991

    CAS  Google Scholar 

  97. Kojima H, Abe R, Fujiwara F, Nakagawa M, Takahashi K, Kuzuhara D, Yamada H, Yakiyama Y, Sakurai H, Yamamoto T, Yakushiji H, Ikeda M, Nakamura M (2018) Mater Chem Front 2:1276

    CAS  Google Scholar 

  98. Guan Y-S, Zhang Z, Pan J, Yan Q, Ren S (2017) J Mater Chem C 5:12338–12342

    CAS  Google Scholar 

  99. Mendez H, Heimel G, Winkler S, Frisch J, Opitz A, Sauer K, Wegner B, Oehzelt M, Rothel C, Duhm S, Tobbens D, Koch N, Salzmann I (2015) Nat Commun 6:8560

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yin X, Peng Y, Luo J, Zhou X, Gao C, Wang L, Yang C (2018) J Mater Chem A 6:8323

    CAS  Google Scholar 

  101. Gao C, Chen G (2018) Small 14:e1703453

    PubMed  Google Scholar 

  102. Kang YH, Lee Y-C, Lee C, Cho SY (2018) Org Electron 57:165

    CAS  Google Scholar 

  103. Nonoguchi Y, Sudo S, Tani A, Murayama T, Nishiyama Y, Uda RM, Kawai T (2017) Chem Commun 53:10259

    CAS  Google Scholar 

  104. Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL (2012) Nano Lett 12:1307–1310

    CAS  PubMed  Google Scholar 

  105. Choi J, Jung Y, Yang SJ, Oh JY, Oh J, Jo K, Son JG, Moon SE, Park CR, Kim H (2017) ACS Nano 11:7608–7614

    CAS  PubMed  Google Scholar 

  106. Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) Science 318:1892–1895

    CAS  PubMed  Google Scholar 

  107. Nonoguchi Y, Tani A, Ikeda T, Goto A, Tanifuji N, Uda RM, Kawai T (2017) Small 13:1603420

    Google Scholar 

  108. Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G (2012) Energy Environ Sci 5:5147–5162

    Google Scholar 

  109. Kim SJ, Lee HE, Choi H, Kim Y, We JH, Shin JS, Lee KJ, Cho BJ (2016) ACS Nano 10:10851–10857

    CAS  PubMed  Google Scholar 

  110. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) J Chem Soc Chem Comm 16:578–580

    Google Scholar 

  111. Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T (2018) Sci Technol Adv Mater 19:837

    Google Scholar 

  112. Pisoni A, Jacimovic J, Barisic O, Spina M, Gaal R, Forrl L, Horvath E (2014) J Phys Chem Lett 5:2488–2492

    CAS  PubMed  Google Scholar 

  113. Mettan X, Pisoni R, Matus P, Pisoni P, Jacim J, Nafradi B, Spina M, Pavuna D, Forrl L, Horvath E (2015) J Phys Chem C 119:11506–11510

    CAS  Google Scholar 

  114. He Y, Galli G (2014) Chem Mater 26:5394–5400

    CAS  Google Scholar 

  115. Lee C, Hong J, Stroppa A, Whangbo MH, Shim JH (2015) RSC Adv 5:78701–78707

    CAS  Google Scholar 

  116. Filippetti A, Caddeo C, Delugas P, Mattoni A (2016) J Phys Chem C 120:28472–28479

    CAS  Google Scholar 

  117. Walia S, Weber R, Latham K, Petersen P, Abrahamson JT, Strano MS, Kalantar-Zadeh K (2011) Adv Func Mater 21:2072–2079

    CAS  Google Scholar 

  118. Walia S, Weber R, Sriram S, Bhaskaran M, Latham K, Zhuiykov S, Kalantar-Zadeh K (2011) Energy Environ Sci 4:3558–3564

    CAS  Google Scholar 

  119. Walia S, Weber R, Balendhran S, Yao D, Abrahamson JT, Zhuiykov S, Bhaskaran M, Sriram S, Strano MS, Kalantar-Zadeh K (2012) Chem Commun 48:7462–7464

    CAS  Google Scholar 

  120. Hong S, Kim ES, Kim W, Jeon S-J, Lim SC, Kim KH, Lee H-J, Hyun S, Kim D, Choi J-Y, Lee YH, Baik S (2012) Phys Chem Chem Phys 14:13527–13531

    CAS  PubMed  Google Scholar 

  121. Hong S, Kim W, Jeon S-J, Lim SC, Lee H-J, Hyun S, Lee YH, Baik S (2013) J Phys Chem C 117:913–917

    CAS  Google Scholar 

  122. Choi W, Hong S, Abrahamson JT, Han JH, Song C, Nair N, Baik S, Strano MS (2010) Nat Mater 9:423–426

    CAS  PubMed  Google Scholar 

  123. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  124. Andrews KW, Dyson DJ, Keown SR (1971) Interpretation of electron diffraction patterns, 2nd edn. Adam Hilger, London

    Google Scholar 

  125. Abrahamson JT, Choi W, Schonenbach NS, Park J, Han JH, Walsh MP, Kalantar-zadeh K, Strano MS (2011) ACS Nano 5:367–375

    CAS  PubMed  Google Scholar 

  126. Lyeo HK, Khajetoorians AA, Shi L, Pipe KP, Ram RJ, Shakouri A, Shih CK (2004) Science 303:816–818

    CAS  PubMed  Google Scholar 

  127. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, New York

    Google Scholar 

  128. Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI (2017) Science 356:1376–1379

    CAS  PubMed  Google Scholar 

  129. Kim CS, Lee GS, Choi H, Kim YJ, Yang HM, Lim SH, Lee S-G, Cho BJ (2018) Appl Energy 214:131–138

    Google Scholar 

  130. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Prog Photovolt Res Appl 26:3–12

    Google Scholar 

  131. Xu X, Zuo Y, Cai S, Tao X, Zhang Z, Zhou X, He S, Fang X, Peng H (2018) J Mater Chem C 6:4866–4872

    CAS  Google Scholar 

  132. Jella V, Ippili S, Eom J-H, Kim Y-J, Kim H-J, Yoon S-G (2018) Nano Energy 52:11–21

    CAS  Google Scholar 

  133. Bi M, Wang S, Wang X, Ye X (2017) Nano Energy 41:434–442

    CAS  Google Scholar 

  134. Zhao X, Han W, Zhao C, Wang S, Kong F, Ji X, Li Z, Shen X (2019) ACS Appl Mater Interfaces 11:10301–10309

    CAS  PubMed  Google Scholar 

  135. He X, Wen Q, Sun Y, Wen Z (2017) Nano Energy 40:300–307

    CAS  Google Scholar 

  136. Wu Y, Klein J, Zhou H, Zhang H, Zuo L (2019) Ann Nucl Energy 126:376–388

    CAS  Google Scholar 

  137. Zhang Y, Fang J, He C, Yan H, Wei Z, Li Y (2013) J Phys Chem C 117:24685–24691

    CAS  Google Scholar 

  138. Kim S, Mo JH, Jang KS (2019) ACS Appl Mater Interfaces 11:35675–35682

    CAS  PubMed  Google Scholar 

  139. Chiu DCLPT, Woo RL, Singer SB, Bhusari D, Hong WD, Zakaria A, Boisvert J, Mesropian S, King RR, Karam NH (2014) Direct semiconductor bonded 5J cell for space and terrestrial applications IEEE, (New York 2014)

  140. Yoon S, Kim J, Ji J-H, Kang S, Cho KH, Park S-H, Koh J-H (2019) Electron Mater Lett 15:421–427

    CAS  Google Scholar 

  141. Xu C, Wang ZL (2011) Adv Mater 23:873–877

    CAS  PubMed  Google Scholar 

  142. George A, Yanagisawa R, Anufriev R, He J, Yoshie N, Tsujii N, Guo Q, Mori T, Volz S, Nomura M (2019) ACS Appl Mater Interfaces 11:12027–12031

    CAS  PubMed  Google Scholar 

  143. Oh Y, Kwon DS, Eun Y, Kim W, Kim MO, Ko HJ, Kang SG, Kim J (2019) Int J Precis Eng Manuf Green Technol 6:691–698

    Google Scholar 

  144. Sanad MF, Abdellatif SO, Ghali HA (2019) J Mater Sci Mater Electron 30:20029–20036

    CAS  Google Scholar 

  145. Shalan AE, Oshikiri T, Narra S, Elshanawany MM, Ueno K, Wu H-P, Nakamura K, Shi X, Diau EW-G, Misawa H, Appl ACS (2016) Mater Interfaces 8:33592–33600

    CAS  Google Scholar 

  146. Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Nanosc Adv 1:2654–2662

    CAS  Google Scholar 

  147. Elseman AM, Shalan AE, Rashad MM, Hassan AM (2017) Mater Sci Semicond Process 66:176–185

    CAS  Google Scholar 

  148. Shalan AE, Rashad MM (2013) Appl Surf Sci 283:975–981

    CAS  Google Scholar 

  149. El-Shazly AN, Shalan AE, Rashad MM, Abdel-Aal EA, Ibrahim IA, ElShahat MF (2018) RSC Adv 8:24059–24067

    CAS  Google Scholar 

  150. Shalan AE, Narra S, Oshikiri T, Ueno K, Shi X, Wu H-P, Elshanawany MM, Diau EW-G, Misawa H (2017) Sustain Energy Fuels 1:1533–1540

    CAS  Google Scholar 

  151. Shalan AE, Rasly M, Osama I, Rashad MM, Ibrahim IA (2014) Ceram Int 40:11619–11626

    CAS  Google Scholar 

  152. Shalan AE, Elseman AM, Rasly M, Moharam MM, Cantu ML, Rashad MM (2015) RSC Adv 5:103095–103104

    CAS  Google Scholar 

  153. Shalan AE, Rashad MM, Yu Y, Lira-Cantú M, Abdel-Mottaleb MSA (2013) Electrochim Acta 89:469–478

    CAS  Google Scholar 

  154. Khanbareh H, de Boom K, Schelen B, Scharff RBN, Wang CCL, van der Zwaag S, Groen P (2017) Sens Actuators A 263:554–562

    CAS  Google Scholar 

  155. Reitmaier C, Walther F, Lengfellner H (2011) Appl Phys A 105:347–349

    CAS  Google Scholar 

  156. Park SH, Jo S, Kwon B, Kim F, Ban HW, Lee JE, Gu DH, Lee SH, Hwang Y, Kim JS, Hyun DB, Lee S, Choi KJ, Jo W, Son JS (2016) Nat Commun 7:13403

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim SJ, We JH, Cho BJ (2014) Energy Environ Sci 7:1959–1965

    CAS  Google Scholar 

  158. Zhao X, Han W, Zhao C, Wang S, Kong F, Ji X, Li Z, Shen X, Appl ACS (2019) Mater Interfaces 11:10301–10309

    CAS  Google Scholar 

  159. Bristow JA, Kolseth P (1986) Paper structure and properties. International Fiber Science and Technology. Dekker, New York

    Google Scholar 

  160. Orrill M, LeBlanc S (2017) J Appl Polym Sci 134:5147

    Google Scholar 

  161. Zeng W, Tao XM, Lin S, Lee C, Shi D, Lam KH, Zhao Y et al (2018) Nano Energy 54:163–174

    CAS  Google Scholar 

  162. Kim M-K, Kim M-S, Lee S, Kim C, Kim Y-J (2014) Smart Mater Struct 23:105002

    Google Scholar 

  163. Gnanaseelan M, Chen Y, Luo J, Krause B, Pionteck J, Pötschke P, Qi H (2018) Sci Technol 163:133–140

    CAS  Google Scholar 

  164. Zhu H, Fang Z, Wang Z, Dai J, Yao Y, Shen F, Preston C, Wu W, Peng P, Jang N, Yu Q, Yu Z, Hu L (2016) ACS Nano 10:1369–1377

    CAS  PubMed  Google Scholar 

  165. Zhou P, Zhu P, Chen G, Liu Y, Kuang Y, Liu Y, Fang Z (2018) Cellulose 25:2051–2061

    CAS  Google Scholar 

  166. Bandodkar AJ, You JM, Kim NH, Gu Y, Kumar R, Mohan AMV, Kurniawan J, Imani S, Nakagawa T, Parish B, Parthasarathy M, Mercier PP, Xu S, Wang J (2017) Energy Environ Sci 10:1581–1589

    Google Scholar 

  167. Jia WZ, Valdes-Ramirez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Angew Chem Int Exd 52:7233–7236

    CAS  Google Scholar 

  168. Jia WZ, Wang X, Imani S, Bandodkar AJ, Ramirez J, Mercier PP, Wang J (2014) J Mater Chem A 2:18184–18189

    CAS  Google Scholar 

  169. Rojas JP, Conchouso D, Arevalo A, Singh D, Foulds IG, Hussain MM (2017) Nano Energy 31:296–301

    CAS  Google Scholar 

  170. Feng R, Tang F, Zhang N, Wang X, Appl ACS (2019) Mater Interfaces 11:38616–38624

    CAS  Google Scholar 

  171. Yang Y, Lin ZH, Hou T, Zhang F, Wang ZL (2012) Nano Res 5:888–895

    CAS  Google Scholar 

  172. Wu Y, Kuang SY, Li HY, Wang HL, Yang RS, Zhai Y, Zhu G, Wang ZL (2018) Adv Mater Technol 3:1800166

    Google Scholar 

  173. Zhang HL, Zhang SJ, Yao G, Huang ZL, Xie YH, Su YJ, Yang WQ, Zheng CH, Lin Y, Appl ACS (2015) Mater Interfaces 7:28142–28147

    CAS  Google Scholar 

  174. Lee S, Bae SH, Lin L, Ahn S, Park C, Kim SW, Cha SN, Park YJ, Wang ZL (2013) Nano Energy 2:817–825

    CAS  Google Scholar 

  175. Bell LE (2008) Science 321:1457–1461

    CAS  PubMed  Google Scholar 

  176. Lin TY, Liao CN, Wu AT (2012) J Electron Mater 41:153–158

    CAS  Google Scholar 

  177. He Y, Day T, Zhang TS, Liu HL, Shi X, Chen LD, Snyder GJ (2014) Adv Mater 26:3974–3978

    CAS  PubMed  Google Scholar 

  178. Sharifi T, Zhang X, Costin G, Yazdi S, Woellner CF, Liu Y, Tiwary CS, Ajayan P (2017) Nano Lett 17:7908–7913

    CAS  PubMed  Google Scholar 

  179. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Nat Nanotechnol 11:218–230

    CAS  PubMed  Google Scholar 

  180. Turky AO, Shalan AE, Ewais EMM, Zhao H, Bechelany M, Rashad MM (2020) Measurements 150:106888

    Google Scholar 

  181. Chen Z, Leng K, Zhao X, Malkhandi S, Tang W, Tian B, Dong L, Zheng L, Lin M, Yeo BS, Loh KP (2017) Nat Commun 8:14548

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham T-K, Liu L-M, Botton GA, Sun X (2016) Nat Commun 7:13638

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AES is currently on leave from CMRDI. The authors are grateful to the British University in Egypt and BCMaterials in Spain for their support in conducting this study. AES is grateful for the National Research grants from MINECO “Juan de la Cierva” [FJCI-2018-037717].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Esmail Shalan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.F., Shalan, A.E., Abdellatif, S.O. et al. Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications. Top Curr Chem (Z) 378, 48 (2020). https://doi.org/10.1007/s41061-020-00310-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00310-w

Keywords

Navigation