Skip to main content
Log in

Review of Electronics Based on Single-Walled Carbon Nanotubes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Adapted with permission from Ref. [57]. Copyright (2011) American Chemical Society

Fig. 14

Adapted with permission from Ref. [55]. Copyright (2013) Nature Publishing Group

Similar content being viewed by others

References

  1. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London, p 1 (online resource)

    Book  Google Scholar 

  2. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  Google Scholar 

  3. Zhou X, Park JY, Huang S, Liu J, McEuen PL (2005) Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95:146805

    Article  CAS  Google Scholar 

  4. Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotechnol 4:811–819

    Article  CAS  Google Scholar 

  5. Durkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  CAS  Google Scholar 

  6. Li SD, Yu Z, Yen SF, Tang WC, Burke PJ (2004) Carbon nanotube transistor operation at 2.6 GHz. Nano Lett 4:753–756

    Article  CAS  Google Scholar 

  7. Nougaret L, Happy H, Dambrine G, Derycke V, Bourgoin JP, Green AA, Hersam MC (2009) 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl Phys Lett 94:243505

    Article  CAS  Google Scholar 

  8. Wang C, Badmaev A, Jooyaie A, Bao M, Wang KL, Galatsis K, Zhou C (2011) Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 5:4169–4176

    Article  CAS  Google Scholar 

  9. Steiner M, Engel M, Lin YM, Wu YQ, Jenkins K, Farmer DB, Humes JJ, Yoder NL, Seo JWT, Green AA, Hersam MC, Krupke R, Avouris P (2012) High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl Phys Lett 101:053123

    Article  CAS  Google Scholar 

  10. Hu Y, Kang L, Zhao Q, Zhong H, Zhang S, Yang L, Wang Z, Lin J, Li Q, Zhang Z, Peng L, Liu Z, Zhang J (2015) Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat Commun 6:6099

    Article  CAS  Google Scholar 

  11. Cao Y, Brady GJ, Gui H, Rutherglen C, Arnold MS, Zhou C (2016) Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 10:6782–6790

    Article  CAS  Google Scholar 

  12. Le Louarn A, Kapche F, Bethoux JM, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman MF, Bourgoin JP (2007) Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett 90:233108

    Article  CAS  Google Scholar 

  13. Che Y, Badmaev A, Jooyaie A, Wu T, Zhang J, Wang C, Galatsis K, Enaya HA, Zhou C (2012) Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime. ACS Nano 6:6936–6943

    Article  CAS  Google Scholar 

  14. Che Y, Lin YC, Kim P, Zhou C (2013) T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 7:4343–4350

    Article  CAS  Google Scholar 

  15. Kocabas C, Dunham S, Cao Q, Cimino K, Ho X, Kim HS, Dawson D, Payne J, Stuenkel M, Zhang H, Banks T, Feng M, Rotkin SV, Rogers JA (2009) High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett 9:1937–1943

    Article  CAS  Google Scholar 

  16. Wang Z, Liang S, Zhang Z, Liu H, Zhong H, Ye LH, Wang S, Zhou W, Liu J, Chen Y, Zhang J, Peng LM (2014) Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays. Adv Mater 26:645–652

    Article  CAS  Google Scholar 

  17. Cao Y, Che YC, Gui H, Cao X, Zhou CW (2016) Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Res 9:363–371

    Article  CAS  Google Scholar 

  18. Cao Y, Che YC, Seo JWT, Gui H, Hersam MC, Zhou CW (2016) High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Appl Phys Lett 108:233105. doi:10.1063/1.4953074

    Article  CAS  Google Scholar 

  19. Baumgardner JE, Pesetski AA, Murduck JM, Przybysz JX, Adam JD, Zhang H (2007) Inherent linearity in carbon nanotube field-effect transistors. Appl Phys Lett 91:052107. doi:10.1063/1.2760159

    Article  CAS  Google Scholar 

  20. Mothes S, Claus M, Schroter M (2015) Toward linearity in Schottky barrier CNTFETs. IEEE Trans Nanotechnol 14:372–378

    Article  CAS  Google Scholar 

  21. Wang Z, Ding L, Pei T, Zhang Z, Wang S, Yu T, Ye X, Peng F, Li Y, Peng LM (2010) Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler. Nano Lett 10:3648–3655

    Article  CAS  Google Scholar 

  22. Kocabas C, Kim HS, Banks T, Rogers JA, Pesetski AA, Baumgardner JE, Krishnaswamy SV, Zhang H (2008) Radio frequency analog electronics based on carbon nanotube transistors. Proc Natl Acad Sci USA 105:1405–1409

    Article  CAS  Google Scholar 

  23. Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7:3508–3511

    Article  CAS  Google Scholar 

  24. Nikonov DE, Young IA (2012) Uniform methodology for benchmarking beyond-CMOS logic devices. In: 2012 IEEE international electron devices meeting (IEDM), San Francisco, CA, USA

  25. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  26. Qiu C, Zhang Z, Zhong D, Si J, Yang Y, Peng LM (2015) Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9:969–977

    Article  CAS  Google Scholar 

  27. Purewal MS, Hong BH, Ravi A, Chandra B, Hone J, Kim P (2007) Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys Rev Lett 98:186808

    Article  CAS  Google Scholar 

  28. Weitz RT, Zschieschang U, Forment-Aliaga A, Kalblein D, Burghard M, Kern K, Klauk H (2009) Highly reliable carbon nanotube transistors with patterned gates and molecular gate dielectric. Nano Lett 9:1335–1340

    Article  CAS  Google Scholar 

  29. Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5:858–862

    Article  CAS  Google Scholar 

  30. Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762

    Article  CAS  Google Scholar 

  31. Cao Q, Han SJ, Tersoff J, Franklin AD, Zhu Y, Zhang Z, Tulevski GS, Tang J, Haensch W (2015) End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350:68–72

    Article  CAS  Google Scholar 

  32. Liu X, Han S, Zhou C (2006) Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett 6:34–39

    Article  CAS  Google Scholar 

  33. Ryu K, Badmaev A, Wang C, Lin A, Patil N, Gomez L, Kumar A, Mitra S, Wong HS, Zhou C (2009) CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett 9:189–197

    Article  CAS  Google Scholar 

  34. Shulaker MM, Van Rethy J, Wu TF, Liyanage LS, Wei H, Li Z, Pop E, Gielen G, Wong HS, Mitra S (2014) Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 8:3434–3443

    Article  CAS  Google Scholar 

  35. Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HS, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  CAS  Google Scholar 

  36. Kim HS, Jeon EK, Kim JJ, So HM, Chang H, Lee JO, Park N (2008) Air-stable n-type operation of Gd-contacted carbon nanotube field effect transistors. Appl Phys Lett 93:123106. doi:10.1063/1.2990642

    Article  CAS  Google Scholar 

  37. Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R, Li Y, Peng LM (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9:4209–4214

    Article  CAS  Google Scholar 

  38. Zhang ZY, Liang XL, Wang S, Yao K, Hu YF, Zhu YZ, Chen Q, Zhou WW, Li Y, Yao YG, Zhang J, Peng LM (2007) Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett 7:3603–3607

    Article  CAS  Google Scholar 

  39. Shahrjerdi D, Franklin AD, Oida S, Ott JA, Tulevski GS, Haensch W (2013) High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 7:8303–8308

    Article  CAS  Google Scholar 

  40. Wang C, Ryu K, Badmaev A, Zhang J, Zhou C (2011) Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. ACS Nano 5:1147–1153

    Article  CAS  Google Scholar 

  41. Suriyasena Liyanage L, Xu X, Pitner G, Bao Z, Wong HS (2014) VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14:1884–1890

    Article  CAS  Google Scholar 

  42. Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai H (2005) High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 5:345–348

    Article  CAS  Google Scholar 

  43. Geier ML, Moudgil K, Barlow S, Marder SR, Hersam MC (2016) Controlled n-type doping of carbon nanotube transistors by an organorhodium dimer. Nano Lett 16:4329–4334

    Article  CAS  Google Scholar 

  44. Wei H, Shulaker M, Wong HSP, Mitra S (2013) Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. 2013 IEEE international electron devices meeting (IEDM), San Francisco, CA, USA

  45. Zhang PP, Qiu CG, Zhang ZY, Ding L, Chen BY, Peng LM (2016) Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res 9:1785–1794

    Article  CAS  Google Scholar 

  46. Franklin AD, Koswatta SO, Farmer DB, Smith JT, Gignac L, Breslin CM, Han SJ, Tulevski GS, Miyazoe H, Haensch W, Tersoff J (2013) Carbon nanotube complementary wrap-gate transistors. Nano Lett 13:2490–2495

    Article  CAS  Google Scholar 

  47. Shulaker MM, Saraswat K, Wong HSP, Mitra S (2014) Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In: VLSI technology (VLSI-technology): digest of technical papers, 2014 Symposium on VLSI Technology and Circuits, Honolulu, HI, USA

  48. Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  CAS  Google Scholar 

  49. Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11:5301–5308

    Article  CAS  Google Scholar 

  50. Ha M, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2010) Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395

    Article  CAS  Google Scholar 

  51. Noh J, Jung K, Kim J, Kim S, Cho S, Cho G (2012) Fully gravure-printed flexible full adder using SWNT-based TFTs. IEEE Electron Device Lett 33:1574–1576

    Article  CAS  Google Scholar 

  52. Noh J, Jung M, Jung K, Lee G, Kim J, Lim S, Kim D, Choi Y, Kim Y, Subramanian V, Cho G (2011) Fully gravure-printed D flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs. IEEE Electron Device Lett 32:638–640

    Article  CAS  Google Scholar 

  53. Sun DM, Timmermans MY, Kaskela A, Nasibulin AG, Kishimoto S, Mizutani T, Kauppinen EI, Ohno Y (2013) Mouldable all-carbon integrated circuits. Nat Commun 4:2302

    Google Scholar 

  54. Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161

    Article  CAS  Google Scholar 

  55. Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A (2013) User-interactive electronic skin for instantaneous pressure visualization. Nat Mater 12:899–904

    Article  CAS  Google Scholar 

  56. Wang C, Zhang J, Ryu K, Badmaev A, De Arco LG, Zhou C (2009) Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett 9:4285–4291

    Article  CAS  Google Scholar 

  57. Zhang J, Fu Y, Wang C, Chen PC, Liu Z, Wei W, Wu C, Thompson ME, Zhou C (2011) Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett 11:4852–4858

    Article  CAS  Google Scholar 

  58. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    Article  CAS  Google Scholar 

  59. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  CAS  Google Scholar 

  60. Cong S, Cao Y, Fang X, Wang YF, Liu QZ, Gui H, Shen CF, Cao X, Kim ES, Zhou CW (2016) Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays. ACS Nano 10:10068–10074

    Article  CAS  Google Scholar 

  61. Street R (2000) Introduction. In: Street R (ed) Technology and applications of amorphous silicon. Springer, New York, pp 1–6

  62. Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145–2147

    Article  CAS  Google Scholar 

  63. Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445–2452

    Article  CAS  Google Scholar 

  64. Meitl MA, Zhou YX, Gaur A, Jeon S, Usrey ML, Strano MS, Rogers JA (2004) Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett 4:1643–1647

    Article  CAS  Google Scholar 

  65. LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321:101–104

    Article  CAS  Google Scholar 

  66. Vosgueritchian M, LeMieux MC, Dodge D, Bao Z (2010) Effect of surface chemistry on electronic properties of carbon nanotube network thin film transistors. ACS Nano 4:6137–6145

    Article  CAS  Google Scholar 

  67. Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl Phys Lett 86:033105

    Article  CAS  Google Scholar 

  68. Wang C, Zhang J, Zhou C (2010) Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4:7123–7132

    Article  CAS  Google Scholar 

  69. Rouhi N, Jain D, Zand K, Burke PJ (2011) Fundamental limits on the mobility of nanotube-based semiconducting inks. Adv Mater 23:94–99

    Article  CAS  Google Scholar 

  70. Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413

    Article  CAS  Google Scholar 

  71. Wang C, Chien JC, Takei K, Takahashi T, Nah J, Niknejad AM, Javey A (2012) Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett 12:1527–1533

    Article  CAS  Google Scholar 

  72. Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57:571–580

    Article  CAS  Google Scholar 

  73. Noh J, Kim S, Jung K, Kim J, Cho S, Cho G (2011) Fully gravure printed half adder on plastic foils. IEEE Electron Device Lett 32:1555–1557

    Article  CAS  Google Scholar 

  74. Zou J, Zhang K, Li J, Zhao Y, Wang Y, Pillai SK, Volkan Demir H, Sun X, Chan-Park MB, Zhang Q (2015) Carbon nanotube driver circuit for 6 × 6 organic light emitting diode display. Sci Rep 5:11755

    Article  CAS  Google Scholar 

  75. Takahashi T, Yu Z, Chen K, Kiriya D, Wang C, Takei K, Shiraki H, Chen T, Ma B, Javey A (2013) Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett 13:5425–5430

    Article  CAS  Google Scholar 

  76. Yeom C, Chen K, Kiriya D, Yu Z, Cho G, Javey A (2015) Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater 27:1561–1566

    Article  CAS  Google Scholar 

  77. Chen B, Zhang P, Ding L, Han J, Qiu S, Li Q, Zhang Z, Peng LM (2016) Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett 16:5120–5128

    Article  CAS  Google Scholar 

  78. Ha TJ, Kiriya D, Chen K, Javey A (2014) Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. ACS Appl Mater Interfaces 6:8441–8446

    Article  CAS  Google Scholar 

  79. Zhang J, Wang C, Fu Y, Che Y, Zhou C (2011) Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-kappa oxide and its application in CMOS logic circuits. ACS Nano 5:3284–3292

    Article  CAS  Google Scholar 

  80. Ha TJ, Chen K, Chuang S, Yu KM, Kiriya D, Javey A (2015) Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett 15:392–397

    Article  CAS  Google Scholar 

  81. Geier ML, McMorrow JJ, Xu W, Zhu J, Kim CH, Marks TJ, Hersam MC (2015) Solution-processed carbon nanotube thin-film complementary static random access memory. Nat Nanotechnol 10:944–948

    Article  CAS  Google Scholar 

  82. Chen H, Cao Y, Zhang J, Zhou C (2014) Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat Commun 5:4097

    CAS  Google Scholar 

  83. Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HY, Takei K, Javey A (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28:4397–4414

    Article  CAS  Google Scholar 

  84. Cai L, Zhang SM, Miao JS, Yu ZB, Wang C (2015) Fully printed foldable integrated logic gates with tunable performance using semiconducting carbon nanotubes. Adv Funct Mater 25:5698–5705

    Article  CAS  Google Scholar 

  85. Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A (2014) High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett 14:3683–3687

    Article  CAS  Google Scholar 

  86. Cao X, Chen H, Gu X, Liu B, Wang W, Cao Y, Wu F, Zhou C (2014) Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 8:12769–12776

    Article  CAS  Google Scholar 

  87. Xu W, Dou J, Zhao J, Tan H, Ye J, Tange M, Gao W, Xu W, Zhang X, Guo W, Ma C, Okazaki T, Zhang K, Cui Z (2016) Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer. Nanoscale 8:4588–4598

    Article  CAS  Google Scholar 

  88. Ha M, Seo JW, Prabhumirashi PL, Zhang W, Geier ML, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2013) Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 mus stage delays. Nano Lett 13:954–960

    Article  CAS  Google Scholar 

  89. Vuttipittayamongkol P, Wu FQ, Chen HT, Cao X, Liu BL, Zhou CW (2015) Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Res 8:1159–1168

    Article  CAS  Google Scholar 

  90. Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong HS, Zhou C (2012) Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 6:7454–7462

    Article  CAS  Google Scholar 

  91. Kocabas C, Hur SH, Gaur A, Meitl MA, Shim M, Rogers JA (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1:1110–1116

    Article  CAS  Google Scholar 

  92. Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J (2014) Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano 8:554–562

    Article  CAS  Google Scholar 

  93. Ding L, Wang Z, Pei T, Zhang Z, Wang S, Xu H, Peng F, Li Y, Peng LM (2011) Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 5:2512–2519

    Article  CAS  Google Scholar 

  94. Chen YF, Fuhrer MS (2005) Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys Rev Lett 95:236803

    Article  CAS  Google Scholar 

  95. Clifford JP, John DL, Castro LC, Pulfrey DL (2004) Electrostatics of partially gated carbon nanotube FETs. IEEE Trans Nanotechnol 3:281–286

    Article  Google Scholar 

  96. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 89:106801

    Article  CAS  Google Scholar 

  97. Qiu CG, Zhang ZY, Xiao MM, Yang YJ, Zhong DL, Peng LM (2017) Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355:271–276

    Article  CAS  Google Scholar 

  98. Kang D, Park N, Ko JH, Bae E, Park W (2005) Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 16:1048–1052

    Article  CAS  Google Scholar 

  99. Joo Y, Brady GJ, Arnold MS, Gopalan P (2014) Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir ACS J Surf Colloids 30:3460–3466

    Article  CAS  Google Scholar 

  100. Brady GJ, Joo Y, Wu MY, Shea MJ, Gopalan P, Arnold MS (2014) Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8:11614–11621

    Article  CAS  Google Scholar 

  101. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai HJ (2002) High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241–246

    Article  CAS  Google Scholar 

  102. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter- and intramolecular logic gates. Nano Lett 1:453–456

    Article  CAS  Google Scholar 

  103. Chen ZH, Appenzeller J, Lin YM, Sippel-Oakley J, Rinzler AG, Tang JY, Wind SJ, Solomon PM, Avouris P (2006) An integrated logic circuit assembled on a single carbon nanotube. Science 311:1735

    Article  CAS  Google Scholar 

  104. Pei T, Zhang PP, Zhang ZY, Qiu CG, Liang SB, Yang YJ, Wang S, Peng LM (2014) Modularized construction of general integrated circuits on individual carbon nanotubes. Nano Lett 14:3102–3109

    Article  CAS  Google Scholar 

  105. Javey A, Kong J (2009) Carbon nanotube electronics. Springer Science & Business Media, New York

    Google Scholar 

  106. Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  107. Zou Y, Li Q, Liu J, Jin Y, Qian Q, Jiang K, Fan S (2013) Fabrication of all-carbon nanotube electronic devices on flexible substrates through CVD and transfer methods. Adv Mater 25:6050–6056

    Article  CAS  Google Scholar 

  108. Moisala A, Nasibulin AG, Brown DP, Jiang H, Khriachtchev L, Kauppinen EI (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61:4393–4402

    Article  CAS  Google Scholar 

  109. Zhang JL, Wang C, Zhou CW (2012) Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 6:7412–7419

    Article  CAS  Google Scholar 

  110. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  CAS  Google Scholar 

  111. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53

    Article  CAS  Google Scholar 

  112. Rouhi N, Jain D, Burke PJ (2011) High-performance semiconducting nanotube inks: progress and prospects. ACS Nano 5:8471–8487

    Article  CAS  Google Scholar 

  113. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718

    Article  CAS  Google Scholar 

  114. Green AA, Hersam MC (2011) Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater 23:2185–2190

    Article  CAS  Google Scholar 

  115. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309

    Article  CAS  Google Scholar 

  116. Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  CAS  Google Scholar 

  117. Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ, Lauhon LJ, Marks TJ, Hersam MC (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488

    Article  CAS  Google Scholar 

  118. Choi SJ, Wang C, Lo CC, Bennett P, Javey A, Bokor J (2012) Comparative study of solution-processed carbon nanotube network transistors. Appl Phys Lett 101:112104

    Article  CAS  Google Scholar 

  119. Miyata Y, Shiozawa K, Asada Y, Ohno Y, Kitaura R, Mizutani T, Shinohara H (2011) Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res 4:963–970

    Article  CAS  Google Scholar 

  120. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken

    Book  Google Scholar 

  121. Che YC, Chen HT, Gui H, Liu J, Liu BL, Zhou CW (2014) Review of carbon nanotube nanoelectronics and macroelectronics. Semicond Sci Technol 29:073001

    Article  CAS  Google Scholar 

  122. Ding J, Li Z, Lefebvre J, Cheng F, Dubey G, Zou S, Finnie P, Hrdina A, Scoles L, Lopinski GP, Kingston CT, Simard B, Malenfant PR (2014) Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 6:2328–2339

    Article  CAS  Google Scholar 

  123. Xu W, Zhao J, Qian L, Han X, Wu L, Wu W, Song M, Zhou L, Su W, Wang C, Nie S, Cui Z (2014) Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 6:1589–1595

    Article  CAS  Google Scholar 

  124. Cao C, Andrews JB, Kumar A, Franklin AD (2016) Improving contact interfaces in fully printed carbon nanotube thin-film transistors. ACS Nano 10:5221–5229

    Article  CAS  Google Scholar 

  125. Lau PH, Takei K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G, Javey A (2013) Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett 13:3864–3869

    Article  CAS  Google Scholar 

  126. Sajed F, Rutherglen C (2013) All-printed and transparent single walled carbon nanotube thin film transistor devices. Appl Phys Lett 103:143303. doi:10.1063/1.4824475

    Article  CAS  Google Scholar 

  127. Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP, Frisbie CD (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846

    Article  CAS  Google Scholar 

  128. Kim B, Park J, Geier ML, Hersam MC, Dodabalapur A (2015) Voltage-controlled ring oscillators based on inkjet printed carbon nanotubes and zinc tin oxide. ACS Appl Mater Interfaces 7:12009–12014

    Article  CAS  Google Scholar 

  129. Kim B, Geier ML, Hersam MC, Dodabalapur A (2014) Complementary D flip-flops based on inkjet printed single-walled carbon nanotubes and zinc tin oxide. IEEE Electron Device Lett 35:1245–1247

    Article  CAS  Google Scholar 

  130. Higuchi K, Kishimoto S, Nakajima Y, Tomura T, Takesue M, Hata K, Kauppinen EI, Ohno Y (2013) High-mobility, flexible carbon nanotube thin-film transistors fabricated by transfer and high-speed flexographic printing techniques. Appl Phys Express 6:085101

    Article  CAS  Google Scholar 

  131. Cao X, Cao Y, Zhou C (2016) Imperceptible and ultraflexible p-type transistors and macroelectronics based on carbon nanotubes. ACS Nano 10:199–206

    Article  CAS  Google Scholar 

  132. Yang YJ, Ding L, Han J, Zhang ZY, Peng LM (2017) High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11:4124–4132

    Article  CAS  Google Scholar 

  133. Cao Q, Hur SH, Zhu ZT, Sun YG, Wang CJ, Meitl MA, Shim M, Rogers JA (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309

    Article  CAS  Google Scholar 

  134. Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan X, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12:403–409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Additional information

This article is part of the Topical Collection “Single-Walled Carbon Nanotubes: Preparation, Property and Application”; edited by Yan Li, Shigeo Maruyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cong, S., Cao, X. et al. Review of Electronics Based on Single-Walled Carbon Nanotubes. Top Curr Chem (Z) 375, 75 (2017). https://doi.org/10.1007/s41061-017-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0160-5

Keywords

Navigation