Skip to main content
Log in

Advance of Mechanically Controllable Break Junction for Molecular Electronics

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116:4318–4440

    Article  CAS  Google Scholar 

  2. Aviram A, Ratner M (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  3. Liu Y, Offenhäusser A, Mayer D (2010) An electrochemically transduced XOR logic gate at the molecular level. Angew Chem Int Ed Engl 49:2595–2598

    Article  CAS  Google Scholar 

  4. Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25:4845–4867

    Article  CAS  Google Scholar 

  5. Liu SP, Weisbrod SH, Tang Z, Marx A, Scheer E, Erbe A (2010) Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew Chem Int Ed Engl 49:3313–3316

    Article  CAS  Google Scholar 

  6. Prins F, Monrabal-Capilla M, Osorio EA, Coronado E, van der Zant HS (2011) Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv Mater 23:1545–1549

    Article  CAS  Google Scholar 

  7. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462:1039–1043

    Article  CAS  Google Scholar 

  8. Perrin ML, Burzurí E, van der Zant HS (2015) Single-molecule transistors. Chem Soc Rev 44:902–919

    Article  CAS  Google Scholar 

  9. Sun L, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S, Moth-Poulsen K (2014) Single-molecule electronics: from chemical design to functional devices. Chem Soc Rev 43:7378–7411

    Article  CAS  Google Scholar 

  10. Xiang D, Pyatkov F, Schröper F, Offenhäusser A, Zhang Y, Mayer D (2011) Molecular junctions bridged by metal ion complexes. Chemistry 17:13166–13169

    Article  CAS  Google Scholar 

  11. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    Article  CAS  Google Scholar 

  12. Thurmer DJ, Bof Bufon CC, Deneke C, Schmidt OG (2010) Nanomembrane-based mesoscopic superconducting hybrid junctions. Nano Lett 10:3704–3709

    Article  CAS  Google Scholar 

  13. Hoven CV, Wang H, Elbing M, Garner L, Winkelhaus D, Bazan GC (2010) Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. Nat Mater 9:249–252

    CAS  Google Scholar 

  14. Yelin T, Vardimon R, Kuritz N, Korytár R, Bagrets A, Evers F, Kronik L, Tal O (2013) Atomically wired molecular junctions: connecting a single organic molecule by chains of metal atoms. Nano Lett 13:1956–1961

    Article  CAS  Google Scholar 

  15. Moreland J, Ekin JW (1985) Electron tunneling experiments using Nb-Sn “break” junctions. J Appl Phys 58:3888–3895

    Article  CAS  Google Scholar 

  16. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys Rev Lett 69:140–143

    Article  CAS  Google Scholar 

  17. Reed MA (1997) Conductance of a molecular junction. Science 278:252–254

    Article  CAS  Google Scholar 

  18. Kang N, Erbe A, Scheer E (2010) Observation of negative differential resistance in DNA molecular junctions. Appl Phys Lett 96:023701

    Article  CAS  Google Scholar 

  19. Karimi MA, Bahoosh SG, Valášek M, Bürkle M, Mayor M, Pauly F, Scheer E (2016) Identification of the current path for a conductive molecular wire on a tripodal platform. Nanoscale 8:10582–10590

    Article  CAS  Google Scholar 

  20. Hayakawa R, Karimi MA, Wolf J, Huhn T, Zöllner MS, Herrmann C, Scheer E (2016) Large magnetoresistance in single-radical molecular junctions. Nano Lett 16:4960–4967

    Article  CAS  Google Scholar 

  21. Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E (2011) Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett 11:3734–3738

    Article  CAS  Google Scholar 

  22. Li Y, Kaneko S, Fujii S, Kiguchi M (2015) Symmetry of single hydrogen molecular junction with Au, Ag, and Cu electrodes. J Phys Chem C 119:19143–19148

    Article  CAS  Google Scholar 

  23. Fujii S, Kaneko S, Chenyang L, Kiguchi M (2015) Single naphthalene and anthracene molecular junctions using Ag and Cu electrodes in ultra high vacuum. Appl Surf Sci 354:362–366

    Article  CAS  Google Scholar 

  24. Kiguchi M, Tal O, Wohlthat S, Pauly F, Krieger M, Djukic D, Cuevas JC, van Ruitenbeek JM (2008) Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys Rev Lett 101:046801

    Article  CAS  Google Scholar 

  25. Ko CH, Huang MJ, Fu MD, Chen CH (2010) Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J Am Chem Soc 132:756–764

    Article  CAS  Google Scholar 

  26. Hong L, Tanaka H, Ogawa T (2013) Rectification direction inversion in a phosphododecamolybdic acid/single-walled carbon nanotube junction. J Mater Chem C 1:1137–1143

    Article  CAS  Google Scholar 

  27. Wu B, Geng D, Guo Y, Huang L, Xue Y, Zheng J, Chen J, Yu G, Liu Y, Jiang L, Hu W (2011) Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv Mater 23:3522–3525

    Article  CAS  Google Scholar 

  28. Jia C, Guo X (2013) Molecule-electrode interfaces in molecular electronic devices. Chem Soc Rev 42:5642–5660

    Article  CAS  Google Scholar 

  29. Zotti LA, Kirchner T, Cuevas JC, Pauly F, Huhn T, Scheer E, Erbe A (2010) Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6:1529–1535

    Article  CAS  Google Scholar 

  30. Wu S, González MT, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M (2008) Molecular junctions based on aromatic coupling. Nat Nanotechnol 3:569–574

    Article  CAS  Google Scholar 

  31. Tsutsui M, Taniguchi M, Kawai T (2009) Quantitative evaluation of metal-molecule contact stability at the single-molecule level. J Am Chem Soc 131:10552–10556

    Article  CAS  Google Scholar 

  32. Chen F, Li X, Hihath J, Huang Z, Tao N (2006) Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc 128:15874–15881

    Article  CAS  Google Scholar 

  33. Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T (2012) Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J Am Chem Soc 134:2292–2304

    Article  CAS  Google Scholar 

  34. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129:15768–15769

    Article  CAS  Google Scholar 

  35. Kiguchi M, Murakoshi K (2009) Highly conductive single molecular junctions by direct binding of pi-conjugated molecule to metal electrodes. Thin Solid Films 518:466–469

    Article  CAS  Google Scholar 

  36. Frei M, Aradhya SV, Hybertsen MS, Venkataraman L (2012) Linker dependent bond rupture force measurements in single-molecule junctions. J Am Chem Soc 134:4003–4006

    Article  CAS  Google Scholar 

  37. Ahn S, Aradhya SV, Klausen RS, Capozzi B, Roy X, Steigerwald ML, Nuckolls C, Venkataraman L (2012) Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Phys Chem Chem Phys 14:13841–13845

    Article  CAS  Google Scholar 

  38. Li ZH, Smeu M, Ratner MA, Borguet E (2013) Effect of anchoring groups on single molecule charge transport through porphyrins. J Phys Chem C 117:14890–14898

    Article  CAS  Google Scholar 

  39. Park YS, Widawsky JR, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2009) Frustrated rotations in single-molecule junctions. J Am Chem Soc 131:10820–10821

    Article  CAS  Google Scholar 

  40. Nakazumi T, Kaneko S, Kiguchi M (2014) Electron transport properties of Au, Ag, and Cu atomic contacts in a hydrogen environment. J Phys Chem C 118:7489–7493

    Article  CAS  Google Scholar 

  41. Tal O, Kiguchi M, Thijssen WHA, Djukic D, Untiedt C, Smit RHM, van Ruitenbeek JM (2009) Molecular signature of highly conductive metal–molecule–metal junctions. Phys Rev B 80:085427

    Article  CAS  Google Scholar 

  42. Nakazumi T, Kaneko S, Matsushita R, Kiguchi M (2012) Electric conductance of single ethylene and acetylene molecules bridging between Pt electrodes. J Phys Chem C 116:18250–18255

    Article  CAS  Google Scholar 

  43. Liu CY, Kaneko S, Komoto Y, Fujii S, Kiguchi M (2015) Highly conductive single naphthalene and anthracene molecular junction with well-defined conductance. Appl Phys Lett 106:103103

    Article  CAS  Google Scholar 

  44. Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L (2011) In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat Nanotechnol 6:353–357

    Article  CAS  Google Scholar 

  45. Hong W, Li H, Liu SX, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T (2012) Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C sigma-bonds. J Am Chem Soc 134:19425–19431

    Article  CAS  Google Scholar 

  46. Chen W, Widawsky JR, Vázquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) Highly conducting pi-conjugated molecular junctions covalently bonded to gold electrodes. J Am Chem Soc 133:17160–17163

    Article  CAS  Google Scholar 

  47. Kaliginedi V, Rudnev AV, Moreno-García P, Baghernejad M, Huang C, Hong W, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539

    Article  CAS  Google Scholar 

  48. Zhang R, Li B, Yang J (2015) A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J Phys Chem C 119:2871–2878

    Article  CAS  Google Scholar 

  49. Lu Q, Liu K, Zhang H, Du Z, Wang X, Wang F (2009) From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3:3861–3868

    Article  CAS  Google Scholar 

  50. Chen F, Tao NJ (2009) Electron transport in single molecules: from benzene to graphene. Accounts Chem Res 42:573

    Article  CAS  Google Scholar 

  51. Hines T, Diez-Perez I, Hihath J, Liu H, Wang ZS, Zhao J, Zhou G, Müllen K, Tao N (2010) Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J Am Chem Soc 132:11658–11664

    Article  CAS  Google Scholar 

  52. Choi SH, Risko C, Delgado MC, Kim B, Brédas JL, Frisbie CD (2010) Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals. J Am Chem Soc 132:4358–4368

    Article  CAS  Google Scholar 

  53. Taherinia D, Smith CE, Ghosh S, Odoh SO, Balhorn L, Gagliardi L, Cramer CJ, Frisbie CD (2016) Charge transport in 4 nm molecular wires with interrupted conjugation: combined experimental and computational evidence for thermally assisted polaron tunneling. ACS Nano 10:4372–4383

    Article  CAS  Google Scholar 

  54. Sedghi G, García-Suárez VM, Esdaile LJ, Anderson HL, Lambert CJ, Martin S, Bethell D, Higgins SJ, Elliott M, Bennett N, Macdonald JE, Nichols RJ (2011) Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat Nanotechnol 6:517–523

    Article  CAS  Google Scholar 

  55. Xiang L, Palma JL, Bruot C, Mujica V, Ratner MA, Tao N (2015) Intermediate tunnelling-hopping regime in DNA charge transport. Nat Chem 7:221–226

    Article  CAS  Google Scholar 

  56. Manrique DZ, Huang C, Baghernejad M, Zhao X, Al-Owaedi OA, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce MR, Lambert CJ (2015) A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat Commun 6:6389

    Article  CAS  Google Scholar 

  57. Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) Transport properties of a single-molecule diode. ACS Nano 6:4931–4939

    Article  CAS  Google Scholar 

  58. Kim Y, Hellmuth TJ, Sysoiev D, Pauly F, Pietsch T, Wolf J, Erbe A, Huhn T, Groth U, Steiner UE, Scheer E (2012) Charge transport characteristics of diarylethene photoswitching single-molecule junctions. Nano Lett 12:3736–3742

    Article  CAS  Google Scholar 

  59. Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald ML, Wu X, Liu Z, Guo X (2012) Building high-throughput molecular junctions using indented graphene point contacts. Angew Chem Int Ed Engl 51:12228–12232

    Article  CAS  Google Scholar 

  60. Jia C, Ma B, Xin N, Guo X (2015) Carbon electrode-molecule junctions: a reliable platform for molecular electronics. Acc Chem Res 48:2565–2575

    Article  CAS  Google Scholar 

  61. Liu S, Zhang X, Luo W, Wang Z, Guo X, Steigerwald ML, Fang X (2011) Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. Angew Chem Int Ed Engl 50:2496–2502

    Article  CAS  Google Scholar 

  62. Liu S, Shen Q, Cao Y, Gan L, Wang ZX, Steigerwald ML, Guo XF (2010) Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coordin Chem Rev 254:1101–1116

    Article  CAS  Google Scholar 

  63. Guédon CM, Zonneveld J, Valkenier H, Hummelen JC, van der Molen SJ (2011) Controlling the interparticle distance in a 2D molecule-nanoparticle network. Nanotechnology 22:125205

    Article  CAS  Google Scholar 

  64. Sabater C, Untiedt C, van Ruitenbeek JM (2015) Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains. Beilstein J Nanotechnol 6:2338–2344

    Article  CAS  Google Scholar 

  65. Agrait N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279

    Article  CAS  Google Scholar 

  66. Yan H, Bergren AJ, McCreery RL (2011) All-carbon molecular tunnel junctions. J Am Chem Soc 133:19168–19177

    Article  CAS  Google Scholar 

  67. Zhu J, McMorrow J, Crespo-Otero R, Ao G, Zheng M, Gillin WP, Palma M (2016) Solution-processable carbon nanoelectrodes for single-molecule investigations. J Am Chem Soc 138:2905–2908

    Article  CAS  Google Scholar 

  68. Wang B, Li J, Yu Y, Wei Y, Wang J, Guo H (2016) Giant tunnel magneto-resistance in graphene based molecular tunneling junction. Nanoscale 8:3432–3438

    Article  CAS  Google Scholar 

  69. Fan ZQ, Xie F, Jiang XW, Wei ZM, Li SS (2016) Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes. Carbon 110:200–206

    Article  CAS  Google Scholar 

  70. Wickenburg S, Lu J, Lischner J, Tsai HZ, Omrani AA, Riss A, Karrasch C, Bradley A, Jung HS, Khajeh R, Wong D, Watanabe K, Taniguchi T, Zettl A, Neto AHC, Louie SG, Crommie MF (2016) Tuning charge and correlation effects for a single molecule on a graphene device. Nat Commun 7:13553

    Article  CAS  Google Scholar 

  71. Yu R, García de Abajo FJ (2016) Electrical detection of single graphene plasmons. ACS Nano 10:8045–8053

    Article  CAS  Google Scholar 

  72. Ashwell GJ, Phillips LJ, Robinson BJ, Urasinska-Wojcik B, Lambert CJ, Grace IM, Bryce MR, Jitchati R, Tavasli M, Cox TI, Sage IC, Tuffin RP, Ray S (2010) Molecular bridging of silicon nanogaps. ACS Nano 4:7401–7406

    Article  CAS  Google Scholar 

  73. Mangin A, Anthore A, Della Rocca ML, Boulat E, Lafarge P (2009) Transport through metallic nanogaps in an in-plane three-terminal geometry. J Appl Phys 105:014313

    Article  CAS  Google Scholar 

  74. Tsutsui M, Taniguchi M (2012) Single molecule electronics and devices. Sensors (Basel) 12:7259–7298

    Article  CAS  Google Scholar 

  75. Yi ZW, Banzet M, Offenhäusser A, Mayer D (2010) Fabrication of nanogaps with modified morphology by potential-controlled gold deposition. Phys Status Solidi-R 4:73–75

    Article  CAS  Google Scholar 

  76. Yi Z, Trellenkamp S, Offenhäusser A, Mayer D (2010) Molecular junctions based on intermolecular electrostatic coupling. Chem Commun (Camb) 46:8014–8016

    Article  CAS  Google Scholar 

  77. Karimi MA, Bahoosh SG, Herz M, Hayakawa R, Pauly F, Scheer E (2016) Shot noise of 1,4-Benzenedithiol single-molecule junctions. Nano Lett 16:1803–1807

    Article  CAS  Google Scholar 

  78. Alwan M, Candoni N, Dumas P, Klein HR (2013) Statistical evidence of strain induced breaking of metallic point contacts. Eur Phys J B 86:1–5

    Article  CAS  Google Scholar 

  79. Ienaga K, Nakashima N, Inagaki Y, Tsujii H, Kimura T, Kawae T (2012) Study of ferromagnetic transition in Pd nanometer-scale constrictions using a mechanically controllable break junction technique. Appl Phys Lett 101:123114

    Article  CAS  Google Scholar 

  80. Perrin ML, Martin CA, Prins F, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, van der Zant HS, Dulić D (2011) Charge transport in a zinc-porphyrin single-molecule junction. Beilstein J Nanotechnol 2:714–719

    Article  Google Scholar 

  81. Ruben M, Landa A, Lörtscher E, Riel H, Mayor M, Gorls H, Weber HB, Arnold A, Evers F (2008) Charge transport through a cardan-joint molecule. Small 4:2229–2235

    Article  CAS  Google Scholar 

  82. Xiang D, Lee T, Kim Y, Mei T, Wang Q (2014) Origin of discrete current fluctuations in a single molecule junction. Nanoscale 6:13396–13401

    Article  CAS  Google Scholar 

  83. Frisenda R, Parlato L, Barra M, van der Zant HS, Cassinese A (2015) Single-molecule break junctions based on a perylene-diimide cyano-functionalized (PDI8-CN2) derivative. Nanoscale Res Lett 10:1011

    Article  CAS  Google Scholar 

  84. Huang C, Rudnev AV, Hong W, Wandlowski T (2015) Break junction under electrochemical gating: testbed for single-molecule electronics. Chem Soc Rev 44:889–901

    Article  CAS  Google Scholar 

  85. Nedelcu M, Saifullah MSM, Hasko DG, Jang A, Anderson D, Huck WTS, Jones GAC, Welland ME, Kang DJ, Steiner U (2010) Fabrication of sub-10 nm metallic lines of low line-width roughness by hydrogen reduction of patterned metal-organic materials. Adv Funct Mater 20:2317–2323

    Article  CAS  Google Scholar 

  86. Schirm C, Matt M, Pauly F, Cuevas JC, Nielaba P, Scheer E (2013) A current-driven single-atom memory. Nat Nanotechnol 8:645–648

    Article  CAS  Google Scholar 

  87. Sydoruk VA, Xiang D, Vitusevich SA, Petrychuk MV, Vladyka A, Zhang Y, Offenhäusser A, Kochelap VA, Belyaev AE, Mayer D (2012) Noise and transport characterization of single molecular break junctions with individual molecule. J Appl Phys 112:014908

    Article  CAS  Google Scholar 

  88. Yang Y, Chen ZB, Liu JY, Lu M, Yang DZ, Yang FZ, Tian ZQ (2011) An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Research 4:1199–1207

    Article  CAS  Google Scholar 

  89. Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ (2013) Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(II) complexes within single molecule break junctions. Chem Sci 4:2471–2477

    Article  CAS  Google Scholar 

  90. Yang Y, Liu J, Feng S, Wen H, Tian J, Zheng J, Schöllhorn B, Amatore C, Chen Z, Tian Z (2015) Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ. Nano Research 9:560–570

    Article  CAS  Google Scholar 

  91. Arima A, Tsutsui M, Morikawa T, Yokota K, Taniguchi M (2014) Fabrications of insulator-protected nanometer-sized electrode gaps. J Appl Phys 115:114310

    Article  CAS  Google Scholar 

  92. Morikawa T, Arima A, Tsutsui M, Taniguchi M (2014) Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. Nanoscale 6:8235–8241

    Article  CAS  Google Scholar 

  93. Tsutsui M, Morikawa T, He Y, Arima A, Taniguchi M (2015) High thermopower of mechanically stretched single-molecule junctions. Sci Rep 5:11519

    Article  CAS  Google Scholar 

  94. Doi K, Tsutsui M, Ohshiro T, Chien CC, Zwolak M, Taniguchi M, Kawai T, Kawano S, Di Ventra M (2014) Nonequilibrium ionic response of biased mechanically controllable break junction (MCBJ) electrodes. J Phys Chem C Nanomater Interfaces 118:3758–3765

  95. Waitz R, Schecker O, Scheer E (2008) Nanofabricated adjustable multicontact devices on membranes. Rev Sci Instrum 79:093901

    Article  CAS  Google Scholar 

  96. Benner D, Boneberg J, Nurnberger P, Waitz R, Leiderer P, Scheer E (2014) Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons. Nano Lett 14:5218–5223

    Article  CAS  Google Scholar 

  97. Bahn SR, Jacobsen KW (2001) Chain formation of metal atoms. Phys Rev Lett 87:266101

    Article  CAS  Google Scholar 

  98. Frisenda R, Harzmann GD, Celis Gil JA, Thijssen JM, Mayor M, van der Zant HS (2016) Stretching-induced conductance increase in a spin-crossover molecule. Nano Lett 16:4733–4737

    Article  CAS  Google Scholar 

  99. Martin CA, Ding D, Sorensen JK, Bjornholm T, van Ruitenbeek JM, van der Zant HSJ (2008) Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc 130:13198–13199

    Article  CAS  Google Scholar 

  100. Moreno-García P, Gulcur M, Manrique DZ, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov AS, Bryce MR, Lambert C, Wandlowski T (2013) Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. J Am Chem Soc 135:12228–12240

    Article  CAS  Google Scholar 

  101. Tao NJ (2006) Electron transport in molecular junctions. Nat Nanotechnol 1:173–181

    Article  CAS  Google Scholar 

  102. Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett 13:2809–2813

    Article  CAS  Google Scholar 

  103. Champagne AR, Pasupathy AN, Ralph DC (2005) Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett 5:305–308

    Article  CAS  Google Scholar 

  104. Martin CA, Smit RH, van der Zant HS, van Ruitenbeek JM (2009) A nanoelectromechanical single-atom switch. Nano Lett 9:2940–2945

    Article  CAS  Google Scholar 

  105. Ballmann S, Weber HB (2012) An electrostatic gate for mechanically controlled single-molecule junctions. New J Phys 14:123028

    Article  CAS  Google Scholar 

  106. Martin CA, van Ruitenbeek JM, van der Zant HS (2010) Sandwich-type gated mechanical break junctions. Nanotechnology 21:265201

    Article  Google Scholar 

  107. Perrin ML, Verzijl CJ, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, Thijssen JM, van der Zant HS, Dulić D (2013) Large tunable image-charge effects in single-molecule junctions. Nat Nanotechnol 8:282–287

    Article  CAS  Google Scholar 

  108. Perrin ML, Galán E, Eelkema R, Thijssen JM, Grozema F, van der Zant HSJ (2016) A gate-tunable single-molecule diode. Nanoscale 8:8919–8923

    Article  CAS  Google Scholar 

  109. Kim Y, Jeong W, Kim K, Lee W, Reddy P (2014) Electrostatic control of thermoelectricity in molecular junctions. Nat Nanotechnol 9:881–885

    Article  CAS  Google Scholar 

  110. Galperin M, Ratner MA, Nitzan A, Troisi A (2008) Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319:1056–1060

    Article  CAS  Google Scholar 

  111. Song H, Lee T, Reed M (2014) Inelastic electron tunneling spectroscopy of molecular transport junctions. J Korean Phys Soc 64:1539–1544

    Article  Google Scholar 

  112. Jaklevic RC, Lambe J (1966) Molecular vibration spectra by electron tunneling. Phys Rev Lett 17:1139–1140

    Article  CAS  Google Scholar 

  113. Ségerie A, Liégeois V, Champagne B (2015) Inelastic electron tunneling of C60 on gold surfaces from first-principles calculations. J Phys Chem C 119:803–818

    Article  CAS  Google Scholar 

  114. Reed MA (2008) Inelastic electron tunneling spectroscopy. Mater Today 11:46–50

    Article  CAS  Google Scholar 

  115. Frisenda R, Perrin ML, van der Zant HS (2015) Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy. Beilstein J Nanotechnol 6:2477–2484

    Article  CAS  Google Scholar 

  116. Lykkebo J, Gagliardi A, Pecchia A, Solomon GC (2013) Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules: a prediction from theory. ACS Nano 7:9183–9194

    Article  CAS  Google Scholar 

  117. Deng MS, Ye G, Cai SH, Sun GY, Jiang J (2015) Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy. AIP Adv 5:017144

    Article  CAS  Google Scholar 

  118. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl 53:4756–4795

    Article  CAS  Google Scholar 

  119. Wang X, Wang C, Cheng L, Lee ST, Liu Z (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422

    Article  CAS  Google Scholar 

  120. Li JF, Tian XD, Li SB, Anema JR, Yang ZL, Ding Y, Wu YF, Zeng YM, Chen QZ, Ren B, Wang ZL, Tian ZQ (2013) Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc 8:52–65

    Article  CAS  Google Scholar 

  121. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  122. Tian JH, Liu B, Li X, Yang ZL, Ren B, Wu ST, Tao N, Tian ZQ (2006) Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J Am Chem Soc 128:14748–14749

    Article  CAS  Google Scholar 

  123. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett 8:919–924

    Article  CAS  Google Scholar 

  124. Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K (2013) Single molecule dynamics at a mechanically controllable break junction in solution at room temperature. J Am Chem Soc 135:1009–1014

    Article  CAS  Google Scholar 

  125. Matsushita R, Kiguchi M (2015) Surface enhanced Raman scattering of a single molecular junction. Phys Chem Chem Phys 17:21254–21260

    Article  CAS  Google Scholar 

  126. Yamamoto YS, Ozaki Y, Itoh T (2014) Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J Photoch Photobio C 21:81–104

    Article  CAS  Google Scholar 

  127. Huang YF, Wu DY, Zhu HP, Zhao LB, Liu GK, Ren B, Tian ZQ (2012) Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys Chem Chem Phys 14:8485–8497

    Article  CAS  Google Scholar 

  128. Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742

    Article  CAS  Google Scholar 

  129. Urumese A, Jenjeti RN, Sampath S, Jagirdar BR (2016) Colloidal europium nanoparticles via a solvated metal atom dispersion approach and their surface enhanced Raman scattering studies. J Colloid Interface Sci 476:177–183

    Article  CAS  Google Scholar 

  130. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  CAS  Google Scholar 

  131. Xiang D, Sydoruk V, Vitusevich S, Petrychuk MV, Offenhäusser A, Kochelap VA, Belyaev AE, Mayer D (2015) Noise characterization of metal-single molecule contacts. Appl Phys Lett 106:063702

    Article  CAS  Google Scholar 

  132. Kim Y, Song H, Kim D, Lee T, Jeong H (2010) Noise characteristics of charge tunneling via localized states in metal–molecule–metal junctions. ACS Nano 4:4426–4430

    Article  CAS  Google Scholar 

  133. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys Rev Lett 97:026801

    Article  CAS  Google Scholar 

  134. Rodríguez JCCSE (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, Hardcover

    Google Scholar 

  135. Nose D, Dote K, Sato T, Yamamoto M, Ishii H, Noguchi Y (2015) Effects of interface electronic structures on transition voltage spectroscopy of alkanethiol molecular junctions. J Phys Chem C 119:12765–12771

    Article  CAS  Google Scholar 

  136. Huisman EH, Guedon CM, van Wees BJ, van der Molen SJ (2009) Interpretation of transition voltage spectroscopy. Nano Lett 9:3909–3913

    Article  CAS  Google Scholar 

  137. Trouwborst ML, Martin CA, Smit RH, Guedon CM, Baart TA, van der Molen SJ, van Ruitenbeek JM (2011) Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett 11:614–617

    Article  CAS  Google Scholar 

  138. Xiang D, Zhang Y, Pyatkov F, Offenhäusser A, Mayer D (2011) Gap size dependent transition from direct tunneling to field emission in single molecule junctions. Chem Commun 47:4760–4762

    Article  CAS  Google Scholar 

  139. Xiang A, Li H, Chen S, Liu SX, Decurtins S, Bai M, Hou S, Liao J (2015) Electronic transport in benzodifuran single-molecule transistors. Nanoscale 7:7665–7673

    Article  CAS  Google Scholar 

  140. Pennelli G (2014) Review of nanostructured devices for thermoelectric applications. Beilstein J Nanotechnol 5:1268–1284

    Article  CAS  Google Scholar 

  141. Tsutsui M, Morikawa T, Arima A, Taniguchi M (2013) Thermoelectricity in atom-sized junctions at room temperatures. Sci Rep 3:3326

    Article  Google Scholar 

  142. Ludoph B, van Ruitenbeek JM (1999) Thermopower of atomic-size metallic contacts. Phys Rev B 59:12290

    Article  CAS  Google Scholar 

  143. Zimbovskaya NA (2016) Seebeck effect in molecular junctions. J Phys: Condens Matter 28:183002

    Google Scholar 

  144. Paulsson M, Datta S (2003) Thermoelectric effect in molecular electronics. Phys Rev B 67:241403

    Article  CAS  Google Scholar 

  145. Aradhya SV, Venkataraman L (2013) Single-molecule junctions beyond electronic transport. Nature Nanotech 8:399–410

    Article  CAS  Google Scholar 

  146. Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) A single-molecule diode. Proc Natl Acad Sci USA 102:8815–8820

    Article  CAS  Google Scholar 

  147. Yuan L, Nerngchamnong N, Cao L, Hamoudi H, del Barco E, Roemer M, Sriramula RK, Thompson D, Nijhuis CA (2015) Controlling the direction of rectification in a molecular diode. Nat Commun 6:6324

    Article  CAS  Google Scholar 

  148. Kornilovitch PE, Bratkovsky AM, Williams RS (2002) Current rectification by molecules with asymmetric tunneling barriers. Phys Rev B 66:165436

    Article  CAS  Google Scholar 

  149. Zahid F, Ghosh AW, Paulsson M, Polizzi E, Datta S (2004) Charging-induced asymmetry in molecular conductors. Phys Rev B 70:35–40

    Article  CAS  Google Scholar 

  150. Damle P, Rakshit T, Paulsson M, Datta S (2002) Current-voltage characteristics of molecular conductors: two versus three terminal. Ieee T Nanotechnol 1:145–153

    Article  Google Scholar 

  151. Batra A, Meisner JS, Darancet P, Chen Q, Steigerwald ML, Nuckolls C, Venkataraman L (2014) Molecular diodes enabled by quantum interference. Faraday Discuss 174:79–89

    CAS  Google Scholar 

  152. Zimbovskaya NA, Pederson MR (2011) Electron transport through molecular junctions. Phys Rep 509:1–87

    Article  CAS  Google Scholar 

  153. Lörtscher E, Riel H (2010) Molecular electronics—resonant transport through single molecules. Chimia 64:376–382

    Article  CAS  Google Scholar 

  154. Perrin ML, Frisenda R, Koole M, Seldenthuis JS, Gil JA, Valkenier H, Hummelen JC, Renaud N, Grozema FC, Thijssen JM, Dulić D, van der Zant HS (2014) Large negative differential conductance in single-molecule break junctions. Nat Nanotechnol 9:830–834

    Article  CAS  Google Scholar 

  155. Zu FX, Liu ZL, Yao KL, Fu HH, Gao GY, Yao W (2013) Large negative differential resistance and rectifying behaviors in isolated thiophene nanowire devices. J Chem Phys 138:154707

    Article  CAS  Google Scholar 

  156. Li XF, Qiu Q, Luo Y (2014) Tuning electron transport through a single molecular junction by bridge modification. J Appl Phys 116:013701

    Article  CAS  Google Scholar 

  157. Moth-Poulsen K, Bjørnholm T (2009) Molecular electronics with single molecules in solid-state devices. Nat Nanotechnol 4:551–556

    Article  CAS  Google Scholar 

  158. Rakhmilevitch D, Korytár R, Bagrets A, Evers F, Tal O (2014) Electron-vibration interaction in the presence of a switchable Kondo resonance realized in a molecular junction. Phys Rev Lett 113:236603

    Article  CAS  Google Scholar 

  159. Wagner S, Kisslinger F, Ballmann S, Schramm F, Chandrasekar R, Bodenstein T, Fuhr O, Secker D, Fink K, Ruben M, Weber HB (2013) Switching of a coupled spin pair in a single-molecule junction. Nat Nanotechnol 8:575–579

    Article  CAS  Google Scholar 

  160. Frisenda R, Gaudenzi R, Franco C, Mas-Torrent M, Rovira C, Veciana J, Alcon I, Bromley ST, Burzurí E, van der Zant HS (2015) Kondo effect in a neutral and stable all organic radical single molecule break junction. Nano Lett 15:3109–3114

    Article  CAS  Google Scholar 

  161. Li H, Wang L, Liu QH, Zheng JX, Mei WN, Gao ZX, Shi JJ, Lu J (2012) High performance silicene nanoribbon field effect transistors with current saturation. Eur Phys J B 85:274

    Article  CAS  Google Scholar 

  162. Riel H, Wernersson L, Hong M, del Alamo J (2014) III–V compound semiconductor transistors—from planar to nanowire structures. MRS Bull 39:668–677

    Article  CAS  Google Scholar 

  163. Fan D, Kang N, Ghalamestani SG, Dick KA, Xu HQ (2016) Schottky barrier and contact resistance of InSb nanowire field-effect transistors. Nanotechnology 27:275204

    Article  CAS  Google Scholar 

  164. Guerfi Y, Larrieu G (2016) Vertical silicon nanowire field effect transistors with nanoscale gate-all-around. Nanoscale Res Lett 11:210

    Article  CAS  Google Scholar 

  165. Pathem BK, Claridge SA, Zheng YB, Weiss PS (2013) Molecular switches and motors on surfaces. Annu Rev Phys Chem 64:605–630

    Article  CAS  Google Scholar 

  166. Sendler T, Luka-Guth K, Wieser M, Lokamani Wolf J, Helm M, Gemming S, Kerbusch J, Scheer E, Huhn T, Erbe A (2015) Light-induced switching of tunable single-molecule junctions. Adv Sci 2:1500017

    Article  CAS  Google Scholar 

  167. Wu R, Chen R, Qin C, Gao Y, Qiao Z, Zhang G, Xiao L, Jia S (2015) An electric field induced reversible single-molecule fluorescence switch. Chem Commun (Camb) 51:7368–7371

    Article  CAS  Google Scholar 

  168. Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee AT, Chen W (2015) Towards single molecule switches. Chem Soc Rev 44:2998–3022

    Article  CAS  Google Scholar 

  169. Craig NC, Chen A, Suh KH, Klee S, Mellau GC, Winnewisser BP, Winnewisser M (1997) Contribution to the study of the gauche effect. The complete structure of the anti rotamer of 1,2-Difluoroethane. J Am Chem Soc 119:4789–4790

    Article  CAS  Google Scholar 

  170. van der Molen SJ, Naaman R, Scheer E, Neaton JB, Nitzan A, Natelson D, Tao NJ, van der Zant H, Mayor M, Ruben M, Reed M, Calame M (2013) Visions for a molecular future. Nat Nanotechnol 8:385–389

    Article  CAS  Google Scholar 

  171. Trasobares J, Vuillaume D, Theron D, Clement N (2016) A 17 GHz molecular rectifier. Nat Commun 7:12850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (21303171, 61571242), Tianjin Municipal Science and Technology Commission (No. 14JCQNJC03000), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xiang.

Additional information

This article is part of the Topical Collection “Molecular-Scale Electronics: Current Status and Perspective”; edited by Xuefeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, L., Zhang, L. et al. Advance of Mechanically Controllable Break Junction for Molecular Electronics. Top Curr Chem (Z) 375, 61 (2017). https://doi.org/10.1007/s41061-017-0149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0149-0

Keywords

Navigation