Skip to main content
Log in

Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) have shown great potential in various applications attributed to their unique structures and outstanding structure-dependent properties. The structure-controlled growth of SWNTs is a crucial issue for their advanced applications and has been a great challenge in this field for two decades. Metal catalyst-mediated SWNT growth is believed to be very efficient. In this review, progresses in diameter and chirality controlled growth of SWNTs with metal catalysts is summarized from several aspects, including growth mechanism and theory, effects of catalysts, and the chemical vapor deposition conditions. The design, preparation, handling and dispersion, and the size evolution of metal catalysts are all discussed. The influences of growth environment including the type, composition, and pressure/concentration of the carbon source as well as the temperature on the selectivity toward the nanotube structure are analyzed. We also discuss some of the challenges and trends in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

AFI:

Zeolite AlPO4-5

AFM:

Atomic force microscope

APTES:

3-Aminopropyltriethoxysilane

CVD:

Chemical vapor deposition

DFT:

Density functional theory

Dps:

DNA-binding proteins

E11 :

First van Hove optical transition energy

E-TEM:

Environmental transmission electron microscopy

EDS:

Energy-dispersive X-ray spectroscopy

FCCVD:

Floating catalyst CVD

FFT:

Fast Fourier transform

FTIR:

Fourier transform infrared spectroscopy

G6OH:

Sixgeneration polyamidoamine dendrimers with 100% hydroxyl termination

HAADF:

High angle annular dark field

HMDS:

1,1,1,3,3,3-Hexamethyldisilazane

PAMAM:

Polyamidoamine

POM:

Polyoxometalate

PS-b-PFEMS:

Polystyrene-block-polyferrocenylethylmethylsilane

PS-b-PVP:

Polystyrene-block-polyvinylpyridine

ptz:

Pyrazine

RBM:

Radial breathing mode

SDBS:

Sodium dodecyl benzene sulfonate

SOG:

Spin-on-glass

STEM:

Scanning transmission electron microscope

SWNTs:

Single-walled carbon nanotubes

TEM:

Transmission electron microscope

UHV:

Ultrahigh vacuum

UV–Vis–NIR:

Ultraviolet/visible/near-infrared

VLS:

Vapor–liquid–solid

VSS:

Vapor–solid–solid

References

  1. Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211

    Article  CAS  Google Scholar 

  2. Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HYY, Takei K, Javey A (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28(22):4397–4414

    Article  CAS  Google Scholar 

  3. Islam AE, Rogers JA, Alam MA (2015) Recent progress in obtaining semiconducting single-walled carbon nanotubes for transistor applications. Adv Mater 27(48):7908–7937

    Article  CAS  Google Scholar 

  4. Nanot S, Haroz EH, Kim JH, Hauge RH, Kono J (2012) Optoelectronic properties of single-wall carbon nanotubes. Adv Mater 24(36):4977–4994

    Article  CAS  Google Scholar 

  5. Meyyappan M (2016) Carbon nanotube-based chemical sensors. Small 12(16):2118–2129

    Article  CAS  Google Scholar 

  6. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21(1):29–53

    Article  CAS  Google Scholar 

  7. Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28(22):4306–4337

    Article  CAS  Google Scholar 

  8. Ni JF, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6(17):1600278

    Article  CAS  Google Scholar 

  9. Liu Y, Wang S, Peng LM (2016) Toward high-performance carbon nanotube photovoltaic devices. Adv Energy Mater 6(17):1600522

    Article  CAS  Google Scholar 

  10. Zhang Z, Wei L, Qin X, Li Y (2015) Carbon nanomaterials for photovoltaic process. Nano Energy 15:490–522

    Article  CAS  Google Scholar 

  11. Mehra NK, Jain NK (2016) Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target 24(4):294–308

    Article  CAS  Google Scholar 

  12. Liang F, Chen B (2010) A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem 17(1):10–24

    Article  CAS  Google Scholar 

  13. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29

    Article  CAS  Google Scholar 

  14. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  CAS  Google Scholar 

  15. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Article  CAS  Google Scholar 

  16. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  17. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60(18):2204–2206

    Article  CAS  Google Scholar 

  18. Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F (2011) Carbon nanotube mass production: principles and processes. ChemSusChem 4(7):864–889

    Article  CAS  Google Scholar 

  19. Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7(8):2272–2275

    Article  CAS  Google Scholar 

  20. Tang DM, Zhang LL, Liu C, Yin LC, Hou PX, Jiang H, Zhu Z, Li F, Liu B, Kauppinen EI, Cheng H (2012) Heteroepitaxial growth of single-walled carbon nanotubes from boron nitride. Sci Rep 2:971

    Google Scholar 

  21. Chen Y, Zhang J (2011) Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon 49(10):3316–3324

    Article  CAS  Google Scholar 

  22. Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132(43):15127–15129

    Article  CAS  Google Scholar 

  23. Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131(6):2082–2083

    Article  CAS  Google Scholar 

  24. Huang S, Cai Q, Chen J, Qian Y, Zhang L (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131(6):2094–2095

    Article  CAS  Google Scholar 

  25. Kang L, Hu Y, Liu L, Wu J, Zhang S, Zhao Q, Ding F, Li Q, Zhang J (2015) Growth of close packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15(1):403–409

    Article  CAS  Google Scholar 

  26. Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131(20):6922–6923

    Article  CAS  Google Scholar 

  27. Li Y, Cui R, Ding L, Liu Y, Zhou W, Zhang Y, Jin Z, Peng F, Liu J (2010) How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv Mater 22(13):1508–1515

    Article  CAS  Google Scholar 

  28. Li P, Zhang X, Liu J (2016) Aligned single-walled carbon nanotube arrays from rhodium catalysts with unexpected diameter uniformity independent of the catalyst size and growth temperature. Chem Mater 28(3):870–875

    Article  CAS  Google Scholar 

  29. Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6(12):2642–2645

    Article  CAS  Google Scholar 

  30. Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579

    Article  CAS  Google Scholar 

  31. Peng F, Liu Y, Cui RL, Gao DL, Yang F, Li Y (2012) Direct growth of single-walled carbon nanotubes on substrates. Chin Sci Bull 57(2–3):225–233

    Article  CAS  Google Scholar 

  32. Cui R, Zhang Y, Wang J, Zhou W, Li Y (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552

    Article  CAS  Google Scholar 

  33. Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Article  CAS  Google Scholar 

  34. Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33(7):979–988

    Article  CAS  Google Scholar 

  35. Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC (2001) Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett 87(27):275504

    Article  CAS  Google Scholar 

  36. Gavillet J, Thibault J, Stephan O, Amara H, Loiseau A, Bichara C, Gaspard J-P, Ducastelle F (2004) Nucleation and growth of single-walled nanotubes: the role of metallic catalysts. J Nanosci Nanotechnol 4(4):346–359

    Article  CAS  Google Scholar 

  37. Harris PJF (2007) Solid state growth mechanisms for carbon nanotubes. Carbon 45(2):229–239

    Article  CAS  Google Scholar 

  38. Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39

    Article  CAS  Google Scholar 

  39. Fiawoo MF, Bonnot AM, Amara H, Bichara C, Thibault-Pénisson J, Loiseau A (2012) Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: a first step towards chirality control. Phys Rev Lett 108(19):195503

    Article  CAS  Google Scholar 

  40. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501(7468):526–530

    Article  CAS  Google Scholar 

  41. Thurakitseree T, Kramberger C, Kumamoto A, Chiashi S, Einarsson E, Maruyama S (2013) Reversible diameter modulation of single-walled carbon nanotubes by acetonitrile-containing feedstock. ACS Nano 7(3):2205–2211

    Article  CAS  Google Scholar 

  42. Fouquet M, Bayer BC, Esconjauregui S, Thomsen C, Hofmann S, Robertson J (2014) Effect of catalyst pretreatment on chirality-selective growth of single-walled carbon nanotubes. J Phys Chem C 118(11):5773–5781

    Article  CAS  Google Scholar 

  43. Yu F, Yang M, Li F, Su C, Ma B, Yuan Z, Chen J, Ma J (2012) The growth mechanism of single-walled carbon nanotubes with a controlled diameter. Physica E 44(10):2032–2040

    Article  CAS  Google Scholar 

  44. Yang F, Wang X, Li M, Liu X, Zhao X, Zhang D, Zhang Y, Yang J, Li Y (2016) Templated synthesis of single-walled carbon nanotubes with specific structure. Acc Chem Res 49(4):606–615

    Article  CAS  Google Scholar 

  45. Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci 106(8):2506–2509

    Article  CAS  Google Scholar 

  46. Gomez-Gualdron DA, Balbuena PB (2008) The role of cap chirality in the mechanism of growth of single-wall carbon nanotubes. Nanotechnology 19:485604

    Article  CAS  Google Scholar 

  47. Li H-B, Page AJ, Irle S, Morokuma K (2012) Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J Am Chem Soc 134(38):15887–15896

    Article  CAS  Google Scholar 

  48. Rao R, Liptak D, Cherukuri T, Yakobson BI, Maruyama B (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11(3):213–216

    Article  CAS  Google Scholar 

  49. Liu B, Liu J, Tu X, Zhang J, Zheng M, Zhou C (2013) Chirality-dependent vapour-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett 13(9):4416–4421

    Article  CAS  Google Scholar 

  50. Artyukhov VI, Penev ES, Yakobson BI (2014) Why nanotubes grow chiral. Nat Commun 5:4892

    Article  CAS  Google Scholar 

  51. Reich S, Li L, Robertson J (2006) Control the chirality of carbon nanotubes by epitaxial growth. Chem Phys Lett 421(4–6):469–472

    Article  CAS  Google Scholar 

  52. Reich S, Li L, Robertson J (2006) Epitaxial growth of carbon caps on Ni for chiral selectivity. Phys Status Solidi (b) 243(13):3494–3499

    Article  CAS  Google Scholar 

  53. Penev ES, Artyukhov VI, Yakobson BI (2014) Extensive energy landscape sampling of nanotube end-caps reveals no chiral-angle bias for their nucleation. ACS Nano 8(2):1899–1906

    Article  CAS  Google Scholar 

  54. Gómez-Gualdrón DA, Zhao J, Balbuena PB (2011) Nanocatalyst structure as a template to define chirality of nascent single-walled carbon nanotubes. J Chem Phys 134(1):014705

    Article  CAS  Google Scholar 

  55. Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13(3):1008–1014

    Article  CAS  Google Scholar 

  56. Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106(10):2429–2433

    Article  CAS  Google Scholar 

  57. Li YM, Kim W, Zhang YG, Rolandi M, Wang DW, Dai HJ (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105(46):11424–11431

    Article  CAS  Google Scholar 

  58. Jeong GH, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y (2005) Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. J Am Chem Soc 127(23):8238–8239

    Article  CAS  Google Scholar 

  59. Takagi D, Yamazaki A, Otsuka Y, Yoshimura H, Kobayashi Y, Homma Y (2007) Gold-filled apo-ferritin for investigation of single-walled carbon nanotube growth on substrate. Chem Phys Lett 445(4–6):213–216

    Article  CAS  Google Scholar 

  60. Lukas D, Jason G, Thomas H, Matthias M, Roland R, Christofer H (2009) Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20(35):355601

    Article  CAS  Google Scholar 

  61. Jeong G-H, Suzuki S, Kobayashi Y, Yamazaki A, Yoshimura H, Homma Y (2005) Effect of nanoparticle density on narrow diameter distribution of carbon nanotubes and particle evolution during chemical vapor deposition growth. J Appl Phys 98(12):124311

    Article  CAS  Google Scholar 

  62. Jeong G-H, Yamazaki A, Suzuki S, Kobayashi Y, Homma Y (2006) Behavior of catalytic nanoparticles during chemical vapor deposition for carbon nanotube growth. Chem Phys Lett 422(1–3):83–88

    Article  CAS  Google Scholar 

  63. Grant R, Filman D, Finkel S, Kolter R, Hogle J (1998) The crystal structure of DPS, a ferritin homolog that binds and protects DNA. Nat Struct Mol Biol 5(4):294–303

    Article  CAS  Google Scholar 

  64. Jeong G-H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y (2007) Production of single-walled carbon nanotubes with narrow diameter distribution using iron nanoparticles derived from DNA-binding proteins from starved cells. Carbon 45(5):978–983

    Article  CAS  Google Scholar 

  65. Kim H-J, Seo SW, Lee J, Jung G, Lee K-H (2014) The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon 69:588–594

    Article  CAS  Google Scholar 

  66. Alvarez NT, Orbaek A, Barron AR, Tour JM, Hauge RH (2010) Dendrimer-assisted self-assembled monolayer of iron nanoparticles for vertical array carbon nanotube growth. ACS Appl Mater Inter 2(1):15–18

    Article  CAS  Google Scholar 

  67. Placidus BA, Baratunde AC, Timothy DS, Xianfan X, Timothy SF (2007) Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology 18(38):385303

    Article  CAS  Google Scholar 

  68. Hirano I, Imaoka T, Yamamoto K (2013) Preparation of carbon nanotubes using iron oxide(III) nanoparticles size-controlled by phenylazomethine dendrimers. J Inorg Organomet Poly Mater 23(1):223–226

    Article  CAS  Google Scholar 

  69. Choi HC, Kim W, Wang D, Dai H (2002) Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J Phys Chem B 106(48):12361–12365

    Article  CAS  Google Scholar 

  70. Fu Q, Huang S, Liu J (2004) Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe2O3 nanoclusters synthesized using diblock copolymer micelles. J Phys Chem B 108(20):6124–6129

    Article  CAS  Google Scholar 

  71. Sreekar B, Alfonso R, Jifa Q, Jing K, Angela MB (2006) Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTS. Nanotechnology 17(20):5080

    Article  CAS  Google Scholar 

  72. Lu J, Yi SS, Kopley T, Qian C, Liu J, Gulari E (2006) Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes. J Phys Chem B 110(13):6655–6660

    Article  CAS  Google Scholar 

  73. Lu J, Kopley T, Dutton D, Liu J, Qian C, Son H, Dresselhaus M, Kong J (2006) Generating suspended single-walled carbon nanotubes across a large surface area via patterning self-assembled catalyst-containing block copolymer thin films. J Phys Chem B 110(22):10585–10589

    Article  CAS  Google Scholar 

  74. Lu JQ, Kopley TE, Moll N, Roitman D, Chamberlin D, Fu Q, Liu J, Russell TP, Rider DA, Manners I (2005) High-quality single-walled carbon nanotubes with small diameter, controlled density, and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor. Chem Mater 17(9):2227–2231

    Article  CAS  Google Scholar 

  75. Hashimoto T, Kimishima K, Hasegawa H (1991) Self-assembly and patterns in binary mixtures of Si block copolymer and PPO. Macromolecules 24(20):5704–5712

    Article  CAS  Google Scholar 

  76. Winey KI, Thomas EL, Fetters LJ (1991) Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. J Chem Phys 95(12):9367–9375

    Article  CAS  Google Scholar 

  77. Coronado E, Gómez-garcía CJ (1995) Polycxometalates: from magnetic clusters to molecular materials. Comments Inorg Chem 17(5):255–281

    Article  CAS  Google Scholar 

  78. Edgar K, Spencer JL (2006) The synthesis of carbon nanotubes from müller clusters. Curr Appl Phys 6(3):419–421

    Article  Google Scholar 

  79. He M, Fedotov PV, Chernov A, Obraztsova ED, Jiang H, Wei N, Cui H, Sainio J, Zhang W, Jin H, Karppinen M, Kauppinen EI, Loiseau A (2016) Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source. Carbon 108:521–528

    Article  CAS  Google Scholar 

  80. An L, Owens JM, McNeil LE, Liu J (2002) Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J Am Chem Soc 124(46):13688–13689

    Article  CAS  Google Scholar 

  81. Anderson RE, Colorado JR, Crouse C, Ogrin D, Maruyama B, Pender MJ, Edwards CL, Whitsitt E, Moore VC, Koveal D, Lupu C, Stewart MP, Smalley RE, Tour JM, Barron AR (2006) A study of the formation, purification and application as a SWNT growth catalyst of the nanocluster [HxPMo12O40 ⊂ H4Mo72Fe30(O2CMe)15O254(H2O)98]. Dalton Trans 25(25):3097–3107

    Article  Google Scholar 

  82. Goss K, Kamra A, Spudat C, Meyer C, Kögerler P, Schneider CM (2009) CVD growth of carbon nanotubes using molecular nanoclusters as catalyst. Phys Status Solidi (b) 246(11–12):2494–2497

    Article  CAS  Google Scholar 

  83. Peng F, Luo D, Sun H, Wang J, Yang F, Li R, Yang J, Li Y (2013) Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors. Chin Sci Bull 58(4–5):433–439

    Article  CAS  Google Scholar 

  84. Li J, Ke C-T, Liu K, Li P, Liang S, Finkelstein G, Wang F, Liu J (2014) Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 8(8):8564–8572

    Article  CAS  Google Scholar 

  85. Müller A, Das SK, Kögerler P, Bögge H, Schmidtmann M, Trautwein AX, Schünemann V, Krickemeyer E, Preetz W (2000) A new type of supramolecular compound: molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew Chem 112(19):3555–3559

    Article  Google Scholar 

  86. Muller A, Das SK, Bogge H, Schmidtmann M, Botar A, Patrut A (2001) Generation of cluster capsules (I h) from decomposition products of a smaller cluster (Keggin-T d) while surviving ones get encapsulated: species with core-shell topology formed by a fundamental symmetry-driven reaction. Chem Commun 7(7):657–658

    Article  Google Scholar 

  87. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  CAS  Google Scholar 

  88. Lim S, Ciuparu D, Pak C, Dobek F, Chen Y, Harding D, Pfefferle L, Haller G (2003) Synthesis and characterization of highly ordered Co–MCM-41 for production of aligned single walled carbon nanotubes (swnt). J Phys Chem B 107(40):11048–11056

    Article  CAS  Google Scholar 

  89. Chen Y, Ciuparu D, Lim S, Yang Y, Haller GL, Pfefferle L (2004) Synthesis of uniform diameter single-wall carbon nanotubes in Co–MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. J Catal 225(2):453–465

    Article  CAS  Google Scholar 

  90. Ciuparu D, Chen Y, Lim S, Haller GL, Pfefferle L (2004) Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41. J Phys Chem B 108(2):503–507

    Article  CAS  Google Scholar 

  91. Chen Y, Ciuparu D, Lim S, Haller GL, Pfefferle LD (2006) The effect of the cobalt loading on the growth of single wall carbon nanotubes by Co disproportionation on Co–MCM-41 catalysts. Carbon 44(1):67–78

    Article  CAS  Google Scholar 

  92. Loebick CZ, Derrouiche S, Marinkovic N, Wang C, Hennrich F, Kappes MM, Haller GL, Pfefferle LD (2009) Effect of manganese addition to the Co–MCM-41 catalyst in the selective synthesis of single wall carbon nanotubes. J Phys Chem C 113(52):21611–21620

    Article  CAS  Google Scholar 

  93. Zoican Loebick C, Derrouiche S, Fang F, Li N, Haller GL, Pfefferle LD (2009) Effect of chromium addition to the Co–MCM-41 catalyst in the synthesis of single wall carbon nanotubes. Appl Catal A 368(1–2):40–49

    Article  CAS  Google Scholar 

  94. Wei L, Bai S, Peng W, Yuan Y, Si R, Goh K, Jiang R, Chen Y (2014) Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon 66:134–143

    Article  CAS  Google Scholar 

  95. Lim S, Wang C, Yang Y, Ciuparu D, Pfefferle L, Haller GL (2007) Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters. Catal Today 123(1–4):122–132

    Article  CAS  Google Scholar 

  96. Amama PB, Lim S, Ciuparu D, Yang Y, Pfefferle L, Haller GL (2005) Synthesis, characterization, and stability of Fe–MCM-41 for production of carbon nanotubes by acetylene pyrolysis. J Phys Chem B 109(7):2645–2656

    Article  CAS  Google Scholar 

  97. Atchudan R, Pandurangan A, Somanathan T (2009) Bimetallic mesoporous materials for high yield synthesis of carbon nanotubes by chemical vapour deposition techniques. J Mol Catal A: Chem 309(1–2):146–152

    Article  CAS  Google Scholar 

  98. Subashini D, Pandurangan A (2007) Synthesis of mesoporous molecular sieves as catalytic template for the growth of single walled carbon nanotubes. Catal Commun 8(11):1665–1670

    Article  CAS  Google Scholar 

  99. Ago H, Imamura S, Okazaki T, Saitoj T, Yumura M, Tsuji M (2005) CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy. J Phys Chem B 109(20):10035–10041

    Article  CAS  Google Scholar 

  100. Tang ZK, Sun HD, Wang J, Chen J, Li G (1998) Mono-sized single-wall carbon nanotubes formed in channels of ALPO4-5 single crystal. Appl Phys Lett 73(16):2287–2289

    Article  CAS  Google Scholar 

  101. Wang N, Tang ZK, Li GD, Chen JS (2000) Materials science: single-walled 4 Å carbon nanotube arrays. Nature 408(6808):50–51

    CAS  Google Scholar 

  102. Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292(5526):2462–2465

    Article  CAS  Google Scholar 

  103. Wang N, Li GD, Tang ZK (2001) Mono-sized and single-walled 4 Å carbon nanotubes. Chem Phys Lett 339(1–2):47–52

    CAS  Google Scholar 

  104. Li ZM, Tang ZK, Liu HJ, Wang N, Chan CT, Saito R, Okada S, Li GD, Chen JS, Nagasawa N, Tsuda S (2001) Polarized absorption spectra of single-walled 4 angstrom carbon nanotubes aligned in channels of an ALPO4-5 single crystal. Phys Rev Lett 87(12):127401

    Article  CAS  Google Scholar 

  105. Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1(2):131–136

    Article  CAS  Google Scholar 

  106. Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012) Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 6(4):2893–2903

    Article  CAS  Google Scholar 

  107. Chen G, Seki Y, Kimura H, Sakurai S, Yumura M, Hata K, Futaba DN (2014) Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition. Sci Rep 4:3804

    Article  CAS  Google Scholar 

  108. Kim C, Lee H (2009) Change in the catalytic reactivity of Pt nanocubes in the presence of different surface-capping agents. Catal Commun 10(9):1305–1309

    Article  CAS  Google Scholar 

  109. Chandrasekaran P, Viruthagiri G, Srinivasan N (2012) The effect of various capping agents on the surface modifications of sol–gel synthesised zno nanoparticles. J Alloys Compd 540:89–93

    Article  CAS  Google Scholar 

  110. Liu W, Wang H (2016) Influence of surface capping on oxygen reduction catalysis: a case study of 1.7 nm Pt nanoparticles. Surf Sci 648:120–125

    Article  CAS  Google Scholar 

  111. Chen J, Xu X, Zhang L, Huang S (2015) Controlling the diameter of single-walled carbon nanotubes by improving the dispersion of the uniform catalyst nanoparticles on substrate. Nano-Micro Lett 7(4):353–359

    Article  CAS  Google Scholar 

  112. Baliyan A, Fukuda T, Uchida T, Nakajima Y, Hanajiri T, Maekawa T (2012) Synthesis of diameter controlled carbon nanotubes using self-assembled catalyst nanoparticles. Chem Phys Lett 519–520:78–82

    Article  CAS  Google Scholar 

  113. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1–2):231–252

    Article  Google Scholar 

  114. Schweiger M, Schaudig M, Gannott F, Killian MS, Bitzek E, Schmuki P, Zaumseil J (2015) Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time. Carbon 95:452–459

    Article  CAS  Google Scholar 

  115. He M, Duan X, Wang X, Zhang J, Liu Z, Robinson C (2004) Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. J Phys Chem B 108(34):12665–12668

    Article  CAS  Google Scholar 

  116. Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K (2013) Diameter and density control of single-walled carbon nanotube forests by modulating ostwald ripening through decoupling the catalyst formation and growth processes. Small 9(21):3584–3592

    Article  CAS  Google Scholar 

  117. Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT, Hauge RH, Maruyama B (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9(1):44–49

    Article  CAS  Google Scholar 

  118. Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B, Stach EA (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1(6):918–922

    Article  CAS  Google Scholar 

  119. Colaianni ML, Chen PJ, Yates JT (1990) Spectroscopic studies of the thermal modification of the Fe/Al2O3 interface. Surf Sci 238(1):13–24

    Article  CAS  Google Scholar 

  120. Song W, Jeon C, Kim YS, Kwon YT, Jung DS, Jang SW, Choi WC, Park JS, Saito R, Park C-Y (2010) Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. ACS Nano 4(2):1012–1018

    Article  CAS  Google Scholar 

  121. Ago H, Ayagaki T, Ogawa Y, Tsuji M (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253

    Article  CAS  Google Scholar 

  122. Youn SK, Yazdani N, Patscheider J, Park HG (2013) Facile diameter control of vertically aligned, narrow single-walled carbon nanotubes. RSC Adv 3(5):1434-1441

    Article  CAS  Google Scholar 

  123. Wang X, Yue WB, He MS, Liu MH, Zhang J, Liu ZF (2004) Bimetallic catalysts for the efficient growth of SWNTs on surfaces. Chem Mater 16(5):799–805

    Article  CAS  Google Scholar 

  124. Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012) Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6(8):7472–7479

    Article  CAS  Google Scholar 

  125. Wei L, Liu BL, Wang XT, Gui H, Yuan Y, Zhai SL, Ng AK, Zhou CW, Chen Y (2015) (9, 8) single-walled carbon nanotube enrichment via aqueous two-phase separation and their thin-film transistor applications. Adv Elec Mater 1(11):1500151

    Article  CAS  Google Scholar 

  126. He XW, Gao WL, Xie LJ, Li B, Zhang Q, Lei SD, Robinson JM, Haroz EH, Doorn SK, Wang WP, Vajtai R, Ajayan PM, Adams WW, Hauge RH, Kono J (2016) Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat Nanotechnol 11(7):633–639

    Article  CAS  Google Scholar 

  127. Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, McNicholas TP, Gleason KK, Strano MS (2012) Polymer-free near-infrared photovoltaics with single chirality (6, 5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439

    Article  CAS  Google Scholar 

  128. Isborn CM, Tang C, Martini A, Johnson ER, Otero-de-la-Roza A, Tung VC (2013) Carbon nanotube chirality determines efficiency of electron transfer to fullerene in all-carbon photovoltaics. J Phys Chem Lett 4(17):2914–2918

    Article  CAS  Google Scholar 

  129. Diao S, Hong GS, Robinson JT, Jiao LY, Antaris AL, Wu JZ, Choi CL, Dai HJ (2012) Chirality enriched (12, 1) and (11, 3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 134(41):16971–16974

    Article  CAS  Google Scholar 

  130. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056

    Article  CAS  Google Scholar 

  131. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  CAS  Google Scholar 

  132. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J Am Chem Soc 125(37):11186–11187

    Article  CAS  Google Scholar 

  133. Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J Phys Chem B 110(5):2108–2115

    Article  CAS  Google Scholar 

  134. He M, Chernov AI, Fedotov PV, Obraztsova ED, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen EI (2010) Predominant (6, 5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J Am Chem Soc 132(40):13994–13996

    Article  CAS  Google Scholar 

  135. He M, Chernov AI, Obraztsova ED, Jiang H, Kauppinen EI, Lehtonen J (2012) Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon 52:590–594

    Article  CAS  Google Scholar 

  136. He M, Liu B, Chernov AI, Obraztsova ED, Kauppi I, Jiang H, Anoshkin I, Cavalca F, Hansen TW, Wagner JB, Nasibulin AG, Kauppinen EI, Linnekoski J, Niemelä M, Lehtonen J (2012) Growth mechanism of single-walled carbon nanotubes on iron–copper catalyst and chirality studies by electron diffraction. Chem Mater 24(10):1796–1801

    Article  CAS  Google Scholar 

  137. Cui K, Kumamoto A, Xiang R, An H, Wang B, Inoue T, Chiashi S, Ikuhara Y, Maruyama S (2016) Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale 8(3):1608–1617

    Article  CAS  Google Scholar 

  138. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360(3):229–234

    Article  CAS  Google Scholar 

  139. Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S (2004) Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chem Phys Lett 387(1–3):198–203

    Article  CAS  Google Scholar 

  140. He M, Fedotov PV, Obraztsova ED, Viitanen V, Sainio J, Jiang H, Kauppinen EI, Niemelä M, Lehtonen J (2012) Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon 50(11):4294–4297

    Article  CAS  Google Scholar 

  141. Fouquet M, Bayer B, Esconjauregui S, Blume R, Warner J, Hofmann S, Schlögl R, Thomsen C, Robertson J (2012) Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Phys Rev B 85(23):235411

    Article  CAS  Google Scholar 

  142. Liu B, Ren W, Li S, Liu C, Cheng H-M (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48(18):2409–2411

    Article  CAS  Google Scholar 

  143. Wang B, Yang Y, Li L-J, Chen Y (2009) Effect of different catalyst supports on the (n, m) selective growth of single-walled carbon nanotube from Co–Mo catalyst. J Mater Sci 44(12):3285–3295

    Article  CAS  Google Scholar 

  144. He M, Chernov AI, Fedotov PV, Obraztsova ED, Rikkinen E, Zhu Z, Sainio J, Jiang H, Nasibulin AG, Kauppinen EI, Niemelä M, Krause AOI (2011) Selective growth of SWNTs on partially reduced monometallic cobalt catalyst. Chem Commun 47(4):1219–1221

    Article  CAS  Google Scholar 

  145. He M, Jiang H, Liu B, Fedotov PV, Chernov AI, Obraztsova ED, Cavalca F, Wagner JB, Hansen TW, Anoshkin IV, Obraztsova EA, Belkin AV, Sairanen E, Nasibulin AG, Lehtonen J, Kauppinen EI (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460

    Article  CAS  Google Scholar 

  146. Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N (2008) Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J Am Chem Soc 130(30):9918–9924

    Article  CAS  Google Scholar 

  147. Wang H, Wang B, Quek XY, Wei L, Zhao J, Li LJ, Chan-Park MB, Yang Y, Chen Y (2010) Selective synthesis of (9, 8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132(47):16747–16749

    Article  CAS  Google Scholar 

  148. Wang H, Goh K, Xue R, Yu D, Jiang W, Lau R, Chen Y (2013) Sulfur doped Co/SiO2 catalysts for chirally selective synthesis of single walled carbon nanotubes. Chem Commun 49(20):2031–2033

    Article  CAS  Google Scholar 

  149. Wang H, Ren F, Liu C, Si R, Yu D, Pfefferle LD, Haller GL, Chen Y (2013) CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: effect of catalyst calcination. J Catal 300:91–101

    Article  CAS  Google Scholar 

  150. Wang H, Wei L, Ren F, Wang Q, Pfefferle LD, Haller GL, Chen Y (2013) Chiral-selective CoSO4/SiO2 catalyst for (9, 8) single-walled carbon nanotube growth. ACS Nano 7(1):614–626

    Article  CAS  Google Scholar 

  151. Yuan Y, Karahan HE, Yldrm C, Wei L, Birer O, Zhai S, Lau R, Chen Y (2016) “Smart poisoning” of Co/SiO2 catalysts by sulfidation for chirality selective synthesis of (9, 8) single-walled carbon nanotubes. Nanoscale 8(40):17705–17713

    Article  CAS  Google Scholar 

  152. Zhu H, Suenaga K, Wei J, Wang K, Wu D (2008) A strategy to control the chirality of single-walled carbon nanotubes. J Cryst Growth 310(24):5473–5476

    Article  CAS  Google Scholar 

  153. Chiang WH, Sankaran RM (2009) Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat Mater 8(11):882–886

    Article  CAS  Google Scholar 

  154. Dutta D, Chiang W-H, Sankaran RM, Bhethanabotla VR (2012) Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces. Carbon 50(10):3766–3773

    Article  CAS  Google Scholar 

  155. Kang L, Deng S, Zhang S, Li Q, Zhang J (2016) Selective growth of subnanometer diameter single-walled carbon nanotube arrays in hydrogen-free CVD. J Am Chem Soc 138(39):12723–12726

    Article  CAS  Google Scholar 

  156. Ohashi T, Shima T (2015) Synthesis of vertically aligned single-walled carbon nanotubes with metallic chirality through facet control of catalysts. Carbon 87:453–461

    Article  CAS  Google Scholar 

  157. Ohashi T, Iwama H, Shima T (2016) Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt–Au catalysts. J Appl Phys 119(8):084303

    Article  CAS  Google Scholar 

  158. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524

    Article  CAS  Google Scholar 

  159. Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y (2015) Growing zigzag (16, 0) carbon nanotubes with structure-defined catalysts. J Am Chem Soc 137(27):8688–8691

    Article  CAS  Google Scholar 

  160. Yang F, Wang X, Si J, Zhao X, Qi K, Jin C, Zhang Z, Li M, Zhang D, Yang J, Zhang Z, Xu Z, Peng L-M, Bai X, Li Y (2016) Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes. ACS Nano 11(1):186–193

    Article  CAS  Google Scholar 

  161. An H, Kumamoto A, Takezaki H, Ohyama S, Qian Y, Inoue T, Ikuhara Y, Chiashi S, Xiang R, Maruyama S (2016) Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from sputtered Co–W bimetallic catalyst. Nanoscale 8(30):14523–14529

    Article  CAS  Google Scholar 

  162. Zhang D, Yang J, Li Y (2013) Spectroscopic characterization of the chiral structure of individual single-walled carbon nanotubes and the edge structure of isolated graphene nanoribbons. Small 9(8):1284–1304

    Article  CAS  Google Scholar 

  163. Bachilo SM (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Article  CAS  Google Scholar 

  164. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99

    Article  Google Scholar 

  165. Maultzsch J, Telg H, Reich S, Thomsen C (2005) Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys Rev B 72(20):205438

    Article  CAS  Google Scholar 

  166. Araujo PT, Pesce PBC, Dresselhaus MS, Sato K, Saito R, Jorio A (2010) Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Physica E 42(5):1251–1261

    Article  CAS  Google Scholar 

  167. Qin L-C (2006) Electron diffraction from carbon nanotubes. Rep Prog Phys 69(10):2761–2821

    Article  CAS  Google Scholar 

  168. Liu K, Hong X, Zhou Q, Jin C, Li J, Zhou W, Liu J, Wang E, Zettl A, Wang F (2013) High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat Nanotechnol 8(12):917–922

    Article  CAS  Google Scholar 

  169. Wu W, Yue J, Lin X, Li D, Zhu F, Yin X, Zhu J, Wang J, Zhang J, Chen Y (2015) True-color real-time imaging and spectroscopy of carbon nanotubes on substrates by enhanced Rayleigh scattering. Nano Res 8(8):2721–2732

    Article  CAS  Google Scholar 

  170. Naumov AV, Kuznetsov OA, Harutyunyan AR, Green AA, Hersam MC, Resasco DE, Nikolaev PN, Weisman RB (2009) Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett 9(9):3203–3208

    Article  CAS  Google Scholar 

  171. Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Article  CAS  Google Scholar 

  172. Pattinson SW, Ranganathan V, Murakami HK, Koziol KKK, Windle AH (2012) Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes. ACS Nano 6(9):7723–7730

    Article  CAS  Google Scholar 

  173. Haynes WM (2015–2016) CRC handbook of chemistry and physics. CRC Press, Hammond

  174. Geurts FWAH, Sacco A (1992) The relative rates of the boudouard reaction and hydrogenation of CO over Fe and Co foils. Carbon 30(3):415–418

    Article  CAS  Google Scholar 

  175. Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805

    Article  CAS  Google Scholar 

  176. Che Y, Wang C, Liu J, Liu B, Lin X, Parker J, Beasley C, Wong HSP, Zhou C (2012) Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropanol as feedstock. ACS Nano 6(8):7454–7462

    Article  CAS  Google Scholar 

  177. Li W-S, Hou P-X, Liu C, Sun D-M, Yuan J, Zhao S-Y, Yin L-C, Cong H, Cheng H-M (2013) High quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 7(8):6831–6839

    Article  CAS  Google Scholar 

  178. Hou P-X, Li W-S, Zhao S-Y, Li G-X, Shi C, Liu C, Cheng H-M (2014) Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8(7):7156–7162

    Article  CAS  Google Scholar 

  179. Ibrahim I, Kalbacova J, Engemaier V, Pang J, Rodriguez RD, Grimm D, Gemming T, Zahn DRT, Schmidt OG, Eckert J, Rümmeli MH (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater 27(17):5964–5973

    Article  CAS  Google Scholar 

  180. Futaba DN, Goto J, Yasuda S, Yamada T, Yumura M, Hata K (2009) General rules governing the highly efficient growth of carbon nanotubes. Adv Mater 21(47):4811–4815

    Article  CAS  Google Scholar 

  181. Resasco DE, Herrera JE, Balzano L (2004) Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production. J Nanosci Nanotechnol 4(4):398–407

    Article  CAS  Google Scholar 

  182. Barnard JS, Paukner C, Koziol KK (2016) The role of carbon precursor on carbon nanotube chirality in floating catalytic chemical vapour deposition. Nanoscale 8(39):17262–17270

    Article  CAS  Google Scholar 

  183. Boudart M (1989) Virtual pressure and virtual fugacity in catalysis and electrocatalysis. Catal Lett 3(2):111–115

    Article  CAS  Google Scholar 

  184. Iglesia E, Baumgartner JE, Price GL (1992) Kinetic coupling and hydrogen surface fugacities in heterogeneous catalysis: I. Alkane reactions on Te/NaX, H-ZSM5, and Ga/H-ZSM5. J Catal 134(2):549–571

    Article  CAS  Google Scholar 

  185. Wang B, Poa CHP, Wei L, Li LJ, Yang Y, Chen Y (2007) (n, m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co–Mo catalysts. J Am Chem Soc 129(29):9014–9019

    Article  CAS  Google Scholar 

  186. He M, Jiang H, Kauppinen EI, Lehtonen J (2012) Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale 4(23):7394–7398

    Article  CAS  Google Scholar 

  187. Qi H, Yuan DN, Liu J (2007) Two-stage growth of single-walled carbon nanotubes. J Phys Chem C 111(17):6158–6160

    Article  CAS  Google Scholar 

  188. Lu C, Liu J (2006) Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J Phys Chem B 110(41):20254–20257

    Article  CAS  Google Scholar 

  189. Zhou W, Zhan S, Ding L, Liu J (2012) General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J Am Chem Soc 134(34):14019–14026

    Article  CAS  Google Scholar 

  190. Wang Y, Liu Y, Li X, Cao L, Wei D, Zhang H, Shi D, Yu G, Kajiura H, Li Y (2007) Direct enrichment of metallic single-walled carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3(9):1486–1490

    Article  CAS  Google Scholar 

  191. Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46(6):923–930

    Article  CAS  Google Scholar 

  192. Navas H, Maruyama B, Weaver K, Paillet M, Zahab A-A, Fossard F, Loiseau A, Quesnel E, Anglaret E, Jourdain V (2014) Interplay of interfacial compounds, catalyst thickness and carbon precursor supply in the selectivity of single-walled carbon nanotube growth. Carbon 80:599–609

    Article  CAS  Google Scholar 

  193. Wang B, Wei L, Yao L, Li LJ, Yang Y, Chen Y (2007) Pressure-induced single-walled carbon nanotube (n, m) selectivity on Co–Mo catalysts. J Phys Chem C 111(40):14612–14616

    Article  CAS  Google Scholar 

  194. Inoue T, Hasegawa D, Badar S, Aikawa S, Chiashi S, Maruyama S (2013) Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J Phys Chem C 117(22):11804–11810

    Article  CAS  Google Scholar 

  195. Shibuta Y, Maruyama S (2003) Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem Phys Lett 382(3–4):381–386

    Article  CAS  Google Scholar 

  196. Balbuena PB, Zhao J, Huang S, Wang Y, Sakulchaicharoen N, Resasco DE (2006) Role of the catalyst in the growth of single-wall carbon nanotubes. J Nanosci Nanotechnol 6(5):1247–1258

    Article  CAS  Google Scholar 

  197. Li N, Wang X, Ren F, Haller GL, Pfefferle LD (2009) Diameter tuning of single-walled carbon nanotubes with reaction temperature using a Co monometallic catalyst. J Phys Chem C 113(23):10070–10078

    Article  CAS  Google Scholar 

  198. Zoican Loebick C, Podila R, Reppert J, Chudow J, Ren F, Haller GL, Rao AM, Pfefferle LD (2010) Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. J Am Chem Soc 132(32):11125–11131

    Article  CAS  Google Scholar 

  199. Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat Mater 6(4):293–296

    Article  CAS  Google Scholar 

  200. Zhao Q, Xu Z, Hu Y, Ding F, Zhang J (2016) Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci Adv 2(5):1501729

    Article  CAS  Google Scholar 

  201. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72(25):3282–3284

    Article  CAS  Google Scholar 

  202. Li J, Otsuka K, Zhang X, Maruyama S, Liu J (2016) Selective synthesis of large diameter, highly conductive and high density single-walled carbon nanotubes by thiophene-assisted chemical vapor deposition method on transparent substrates. Nanoscale 8(29):14156–14162

    Article  CAS  Google Scholar 

  203. Yu B, Liu C, Hou P-X, Tian Y, Li S, Liu B, Li F, Kauppinen EI, Cheng H-M (2011) Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J Am Chem Soc 133(14):5232–5235

    Article  CAS  Google Scholar 

  204. Zhang L, Hou P-X, Li S, Shi C, Cong H-T, Liu C, Cheng H-M (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5(8):1427–1432

    Article  CAS  Google Scholar 

  205. Koziol KKK, Ducati C, Windle AH (2010) Carbon nanotubes with catalyst controlled chiral angle. Chem Mater 22(17):4904–4911

    Article  CAS  Google Scholar 

  206. Yuan Y, Wei L, Jiang W, Goh K, Jiang R, Lau R, Chen Y (2015) Sulfur-induced chirality changes in single-walled carbon nanotube synthesis by ethanol chemical vapor deposition on a Co/SiO2 catalyst. J Mater Chem A 3(7):3310–3319

    Article  CAS  Google Scholar 

  207. Thurakitseree T, Kramberger C, Zhao P, Aikawa S, Harish S, Chiashi S, Einarsson E, Maruyama S (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50(7):2635–2640

    Article  CAS  Google Scholar 

  208. Zhang G, Qi P, Wang X, Lu Y, Mann D, Li X, Dai H (2006) Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J Am Chem Soc 128(18):6026–6027

    Article  CAS  Google Scholar 

  209. Liu Q, Ren W, Chen Z-G, Wang D-W, Liu B, Yu B, Li F, Cong H, Cheng H-M (2008) Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. ACS Nano 2(8):1722–1728

    Article  CAS  Google Scholar 

  210. Tian Y, Timmermans MY, Kivistö S, Nasibulin AG, Zhu Z, Jiang H, Okhotnikov OG, Kauppinen EI (2011) Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Res 4(8):807–815

    Article  CAS  Google Scholar 

  211. Susi T, Nasibulin AG, Ayala P, Tian Y, Zhu Z, Jiang H, Roquelet C, Garrot D, Lauret J-S, Kauppinen EI (2009) High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Phys Status Solidi (b) 246(11–12):2507–2510

    Article  CAS  Google Scholar 

  212. Zhu Z, Jiang H, Susi T, Nasibulin AG, Kauppinen EI (2011) The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J Am Chem Soc 133(5):1224–1227

    Article  CAS  Google Scholar 

  213. Borštnik U, Hodošček M, Janežič D, Lukovits I (2005) Electronic structure properties of carbon nanotubes obtained by density functional calculations. Chem Phys Lett 411(4–6):384–388

    Article  CAS  Google Scholar 

  214. Gülseren O, Yildirim T, Ciraci S (2002) Systematic ab initio study of curvature effects in carbon nanotubes. Phys Rev B 65(15):153405

    Article  CAS  Google Scholar 

  215. Li J, Liu K, Liang S, Zhou W, Pierce M, Wang F, Peng L, Liu J (2014) Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano 8(1):554–562

    Article  CAS  Google Scholar 

  216. Yu B, Hou P-X, Li F, Liu B, Liu C, Cheng H-M (2010) Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon 48(10):2941–2947

    Article  CAS  Google Scholar 

  217. Zhou W, Ooi YH, Russo R, Papanek P, Luzzi DE, Fischer JE, Bronikowski MJ, Willis PA, Smalley RE (2001) Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of Co. Chem Phys Lett 350(1–2):6–14

    Article  CAS  Google Scholar 

  218. Lu J, Nagase S, Zhang X, Wang D, Ni M, Maeda Y, Wakahara T, Nakahodo T, Tsuchiya T, Akasaka T, Gao Z, Yu D, Ye H, Mei WN, Zhou Y (2006) Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. J Am Chem Soc 128(15):5114–5118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Ministry of Science and Technology of the People’s Republic China (2016YFA0201904), National Natural Science Foundation of China (21631002, U1632119, and 91333105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Yan Li.

Additional information

M. Li, X. Liu and X. Zhao contributed equally to this work.

This article is part of the Topical Collection “Single-Walled Carbon Nanotubes: Preparation, Property and Application”; edited by Yan Li, Shigeo Maruyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, X., Zhao, X. et al. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Top Curr Chem (Z) 375, 29 (2017). https://doi.org/10.1007/s41061-017-0116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0116-9

Keywords

Navigation