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CERTAIN PRODUCT FORMULAS AND VALUES OF GAUSSIAN

HYPERGEOMETRIC SERIES

MOHIT TRIPATHI AND RUPAM BARMAN

Abstract. In this article we find finite field analogues of certain product for-
mulas satisfied by the classical hypergeometric series. We express product of
two 2F1-Gaussian hypergeometric series as 4F3- and 3F2-Gaussian hyperge-
ometric series. We use properties of Gauss and Jacobi sums and our earlier
works on finite field Appell series to deduce these product formulas satisfied
by the Gaussian hypergeometric series. We then use these transformations
to evaluate explicitly some special values of 4F3- and 3F2-Gaussian hyperge-
ometric series. By counting points on CM elliptic curves over finite fields,
Ono found certain special values of 2F1- and 3F2-Gaussian hypergeometric
series containing trivial and quadratic characters as parameters. Later, Evans
and Greene found special values of certain 3F2-Gaussian hypergeometric series
containing arbitrary characters as parameters from where some of the values
obtained by Ono follow as special cases. We show that some of the results
of Evans and Greene follow from our product formulas including a finite field
analogue of the classical Clausen’s identity.

1. Introduction and statement of results

For a complex number a, the rising factorial is defined as (a)0 = 1 and (a)k =
a(a + 1) · · · (a + k − 1), k ≥ 1. For a non-negative integer n, and ai, bi ∈ C with
bi /∈ {. . . ,−3,−2,−1, 0}, the (generalized) hypergeometric series n+1Fn is defined
by

n+1Fn

(
a1, a2, . . . , an+1

b1, . . . , bn
| x
)

:=

∞∑

k=0

(a1)k · · · (an+1)k
(b1)k · · · (bn)k

· x
k

k!
, (1.1)

which converges absolutely for |x| < 1. In 1980s, Greene [12, 13] introduced a
finite field, character sum analogue of classical hypergeometric series that satisfies
summation and transformation properties similar to those satisfied by the classical
hypergeometric series. Let p be an odd prime, and let Fq denote the finite field

with q elements, where q = pr, r ≥ 1. Let F̂
×
q be the group of all multiplicative

characters on F×
q . We extend the domain of each χ ∈ F̂

×
q to Fq by setting χ(0) = 0

including the trivial character ε. For multiplicative characters A and B on Fq, the
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binomial coefficient
(
A
B

)
is defined by

(
A

B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑

x∈Fq

A(x)B(1− x), (1.2)

where J(A,B) denotes the usual Jacobi sum and B is the character inverse of B.
For positive integer n, Greene [13] defined the n+1Fn-hypergeometric series over Fq
by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)

=
q

q − 1

∑

χ∈̂
F
×

q

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x),

(1.3)

where A0, A1, . . . , An and B1, B2, . . . , Bn are multiplicative characters on Fq. Hy-
pergeometric series over finite fields are also known as Gaussian hypergeometric
series.

There are other finite field analogues of the classical hypergeometric series. For
example, see [16, 18, 11]. For a multiplicative character χ, let g(χ) denote the

Gauss sum as defined in Section 2. For A0, A1, . . . An, B1, B2, . . . , Bn ∈ F̂
×
q , the

McCarthy’s finite field hypergeometric function n+1F
∗
n is given by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)∗

=
1

q − 1

∑

χ∈̂
F
×

q

n∏

i=0

g(Aiχ)

g(Ai)

n∏

j=1

g(Bjχ)

g(Bj)
g(χ)χ(−1)n+1χ(x). (1.4)

In [18, Proposition 2.5], McCarthy proved that his finite field hypergeometric series
is closely related to Greene’s hypergeometric series. To be specific, let A0 6= ε and
Ai 6= Bi for 1 ≤ i ≤ n. Then for x ∈ Fq we have

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)∗

=

[
n∏

i=1

(
Ai
Bi

)−1
]
n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x
)
. (1.5)

In a recent paper [11], Fuselier et. al. introduce another version of hyperge-
ometric series over finite fields in a manner that is parallel to that of the classi-
cal hypergeometric series by considering period functions for hypergeometric type
algebraic varieties over finite fields. For multiplicative characters A,B,C, their

2F1-hypergeometric series is given by

2F1

[
A, B

C
| x
]
:=

1

J(B,BC)
2P1

[
A, B

C
| x
]
, (1.6)

where

2P1

[
A, B

C
| x
]
:=

q2

(q − 1)
BC(−1)

∑

χ∈̂
F
×

q

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x) + δ(x)J(B,BC).

Here δ denotes the function defined on Fq by δ(0) = 1 and δ(x) = 0 if x 6= 0. The
relationship between the above finite field hypergeometric series and the Greene’s
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hypergeometric series is the following:

2F1

[
A, B

C
| x
]
=
qBC(−1)

J(B,BC)
2F1

(
A, B

C
| x
)
+ δ(x). (1.7)

We note that, since we have used the definition of the binomial coefficient given by
Greene, the above definition of 2P1 series differs from its original definition given
in [11] by a factor of q2.

Throughout this paper, A,B,C,D,E, F, S, χ, λ, ψ denote multiplicative char-
acters on Fq. Here ε and ϕ always denote the trivial and quadratic characters,
respectively, while χ4 denotes a fixed quartic character when q ≡ 1 (mod 4). Also,
χ3 denotes a fixed cubic character when q ≡ 1 (mod 3). For brevity, if A is a square
we write A = �.

1.1. Product formulas for Gaussian hypergeometric series. Greene [13]
found several transformation formulas satisfied by the Gaussian hypergeometric
series analogous to those satisfied by the classical hypergeometric series. Since
then many mathematicians have obtained finite field analogues of transformation
and summation identities satisfied by the classical hypergeometric series (see for
example [6, 7, 9, 10, 11, 18, 22]). Finite field hypergeometric series are known to be
related to various arithmetic objects. Some of the biggest motivations for studying
finite field hypergeometric functions have been their connections with Fourier coef-
ficients and eigenvalues of modular forms and with counting points on certain kinds
of algebraic varieties. Assuming the conjecture of van Geemen and van Straten,
McCarthy and Papanicolas [19] related the eigenvalue of the Hecke operator of in-

dex p of a Siegel eigenform of degree 2 and level 8 to 4F3

(
ϕ, ϕ, ϕ, ϕ

ε, ε, ε
| −1

)
.

The following identity played a crucial role in their proof:

4F3

(
ϕ, ϕ, ϕ, ϕ

ε, ε, ε
| −1

)
= 2F1

(
ϕ, ϕ

ε
| −1

)
· 3F2

(
χ4, ϕ, ϕ

ε, ε
| 1
)
.

In [7, 8], Evans and Greene expressed 3F2-hypergeometric series as a product of

2F1-hypergeometric series over finite fields from where they deduced certain special
values of 3F2-hypergeometric series including a finite field analogue of the Clausen’s
identity. In this paper, we prove finite field analogues of certain product formulas
satisfied by the classical hypergeometric series. In the following theorem, we express
a 4F3-hypergeometric series as a product of two 2F1-hypergeometric series over finite
fields.

Theorem 1.1. Let A,B,C ∈ F̂
×
q be such that A2, B2 6= ε, A2 6= C, and B2 6= C.

For x 6= 1, we have

2F1

(
A2, B2

C
| x
)

2F1

(
A2, B2

A2B2C
| x
)

=
qAB(4)g(A2)g(ABC)g(ABCϕ)

g(B2)g(B2C)g(A2C)g(ϕ)
4F3

(
A2, B2, AB, ABϕ

A2B2, C, A2B2C
| 4x(1 − x)

)

− (q − 1)AB(4)g(A2)g(ABC)g(ABCϕ)

g(B2)g(B2C)g(A2C)g(ϕ)

[
3F2

(
A2, B2, ABϕ

A2B2, A2B2C
| 4x(1 − x)

)

×δ(ABC) + 3F2

(
A2, B2, AB

A2B2, C
| 4x(1− x)

)
δ(ABCϕ)

]
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+
qCA2(1− x)CB2(x)

g(A2)g(B2)g(B2C)g(A2C)
δ

(
1− 2x

(1− x)2

)
− (q − 1)g(AB)g(AB)AB(x− x2)

q2g(A2)g(B2)g(B2C)g(A2C)

× [(q − 1)δ(AB)δ(ABC)− qAB(−1)δ(ABC)− qABC(−1)δ(AB)]

− (q − 1)g(ABϕ)g(ABϕ)ABϕ(x− x2)

q2g(A2)g(B2)g(B2C)g(A2C)
[(q − 1)δ(ABCϕ)δ(ABϕ)

− qABϕ(−1)δ(ABCϕ) − qABCϕ(−1)δ(ABϕ)].

We show that many interesting results proved by Evans, Greene, and Ono follow
from the above transformation including a finite field analogue of the Clausen’s
classical identity. We have stated Theorem 1.1 with minimum conditions on the
parameters so that certain known results can be deduced, and therefore there are
some extra terms in the formula. The extra terms will disappear if we put some
additional conditions on the parameters. For example, we have the following corol-
lary.

Corollary 1.2. Let A,B,C ∈ F̂
×
q be such that A2, B2, A2B2, A2B2C2 6= ε, A2 6= C,

and B2 6= C. For x 6= 1, 12 , we have

2F1

(
A2, B2

C
| x
)

2F1

(
A2, B2

A2B2C
| x
)

=
qAB(4)g(A2)g(ABC)g(ABCϕ)

g(B2)g(B2C)g(A2C)g(ϕ)
4F3

(
A2, B2, AB, ABϕ

A2B2, C, A2B2C
| 4x(1− x)

)
.

If we apply (1.5) to Corollary 1.2, we obtain the following identity satisfied by
the McCarthy’s finite field hypergeometric series.

2F1

(
A2, B2

C
| x
)∗

2F1

(
A2, B2

A2B2C
| x
)∗

= 4F3

(
A2, B2, AB, ABϕ

A2B2, C, A2B2C
| 4x(1− x)

)∗
.

The above identity is a finite field analogue of the following identity [2, (6.1)]
satisfied by the classical hypergeometric series:

2F1

(
α, β

γ
| x
)

2F1

(
α, β

α+ β − γ
| x
)

= 4F3

(
α, β, 1

2 (α+ β), 1
2 (α+ β + 1)

α+ β, γ, α+ β − γ + 1
| 4x(1− x)

)
.

The following transformation satisfied by the classical hypergeometric series is
equivalent to the Clausen’s identity [2].

2F1

(
α, β

α+ β + 1
2

| 4x(1− x)

)2

= 3F2

(
2α, 2β, α+ β

2α+ 2β, α+ β + 1
2

| 4x(1 − x)

)
. (1.8)

From Theorem 1.1, we prove the following result which is a finite field analogue of
(1.8).
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Theorem 1.3. Let A,B ∈ F̂
×
q be such that A2, B2, ABϕ,AB,ABϕ 6= ε. For

x 6= 1, 12 , we have

2F1

(
A, B

ABϕ
| 4x(1− x)

)2

=
AB(4)g(B)2g(Aϕ)2

qg(A2)g(B2)

× 3F2

(
A2, B2, AB

A2B2, ABϕ
| 4x(1− x)

)
+
g(B)2g(Aϕ)2ABϕ(x − x2)

q2g(A2)g(B2)
.

We note that a finite field analogue of the Clausen’s identity was also obtained
by Evans and Greene [7, Thm 1.5]. Theorem 1.3 can also be deduced from [7, Thm
1.5] by taking S = B,C = ABϕ, and then employing Lemma 2.3 and Lemma 2.1.

The following identity expresses a 4F3 classical hypergeometric series as a prod-
uct of two 2F1 classical hypergeometric series [2, (7.4)].

2F1

(
α, β

γ
| x
)

2F1

(
γ − β, 1− β

α− β − 1
| x
)

= (1− x)β−α−γ4F3

(
α, γ − β, 1

2 (α+ γ − β), 1
2 (α+ γ − β + 1)

α+ γ − β, γ, α− β + 1
| −4x

(1− x)2

)
.

(1.9)

In the following theorem, we prove a finite field analogue of (1.9).

Theorem 1.4. Let A,D,E ∈ F̂
×
q be such that A2, E2, A2D2E2, A2D2E2 6= ε,

A2 6= D2, and D2 6= E2. For z 6= 1, we have

2F1

(
A2, E2

D2 | z
)

2F1

(
D2E2, E2

A2E2
| z
)

=
E2(z)

q
δ
(
1− z2

)
+
ADE(4)A2D2E2(1− z)g(AED)g(AEDϕ)

g(ϕ)

× 4F3

(
A2, D2E2, ADE, ADEϕ

A2D2E2, D2, A2E2
| −4z

(1− z)2

)
.

If we assume z2 6= 1 in Theorem 1.4, then (1.5) yields

2F1

(
A2, E2

D2 | z
)∗

2F1

(
D2E2, E2

A2E2
| z
)∗

= A2D2E2(1− z)4F3

(
A2, D2E2, ADE, ADEϕ

A2D2E2, D2, A2E2
| −4z

(1− z)2

)∗

,

which is an exact finite field analogue of (1.9).
The following is another product formula satisfied by the classical hypergeometric

series [2, (6.3)].

2F1

(
α, β

γ
| x
)

2F1

(
α, γ − β

γ
| x
)

= (1− x)−α4F3

(
α, β, γ − α, γ − β

γ, 1
2γ,

γ+1
2

| −x2
4(1− x)

)
. (1.10)

We prove the following result which is a finite field analogue of (1.10).
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Theorem 1.5. Let A,B,C ∈ F̂
×
q be such that A,B,C2 6= ε and A,B 6= C2. For

x 6= 1, we have

2F1

(
A, B

C2 | x
)

2F1

(
A, C2B

C2 | x
)

=
qAB(−1)A2B(1 − x)C2(x)

g(A)g(B)g(AC2)g(BC2)
δ

(
x− 2

x− 1

)

+
qA(1− x)g(AC)g(BCϕ)

ϕ(−1)C(4)g(ϕ)g(AC2)g(B)
4F3

(
A, B, AC2, BC2

C2, C, Cϕ
| −x2
4(1− x)

)

+
(q − 1)A(1− x)g(AC)g(BCϕ)

ϕ(−1)C(4)g(ϕ)g(AC2)g(B)

[
q − 1

q
2F1

(
A, B

C2 | −x2
4(1− x)

)
δ(AC)δ(BCϕ)

−3F2

(
A, B, BC2

C2, Cϕ
| −x2
4(1− x)

)
δ(AC)− 3F2

(
A, B, AC2

C2, C
| −x2
4(1− x)

)
δ(BCϕ)

]

− (q − 1)A(1− x)C(x2)C(1 − x)

qg(A)g(B)g(BC2)g(AC2)
[(q − 1)δ(AC)δ(BC)− qBC(−1)δ(AC)

− qAC(−1)δ(BC) + (q − 1)ϕ(1− x)δ(ACϕ)δ(BCϕ)− qBC(−1)ϕ(x − 1)δ(ACϕ)

− qAC(−1)ϕ(x − 1)δ(BCϕ)].

If we put some additional conditions on the parameters in Theorem 1.5, we
readily obtain the following identity.

Corollary 1.6. Let A,B,C ∈ F̂
×
q be such that A,B,C2, A2C2, B2C2 6= ε and

A,B 6= C2. For x 6= 1, we have

2F1

(
A, B

C2 | x
)

2F1

(
A, C2B

C2 | x
)

=
qAB(−1)A2B(1− x)C2(x)

g(A)g(B)g(AC2)g(BC2)
δ

(
x− 2

x− 1

)

+
qϕ(−1)C(4)A(1− x)g(AC)g(BCϕ)

g(ϕ)g(AC2)g(B)
4F3

(
A, B, AC2, BC2

C2, C, Cϕ
| −x2
4(1− x)

)
.

If we assume x 6= 2 in Corollary 1.6, then (1.5) yields

2F1

(
A, B

C2 | x
)∗

2F1

(
A, C2B

C2 | x
)∗

= A(1 − x)4F3

(
A, B, AC2, BC2

C2, C, Cϕ
| −x2
4(1− x)

)∗
,

which is an exact finite field analogue of (1.10).

1.2. Special values of Gaussian hypergeometric series. Finding special val-
ues of Gaussian hypergeometric series is an important and interesting problem.
Special values of Gaussian hypergeometric series play an important role in solving
many old conjectures and supercongruences. Many special values of 2F1- and 3F2-
Gaussian hypergeometric series are obtained by using different techniques (see for
example [1, 3, 4, 8, 13, 14, 15, 20, 21, 22]). Finding values of Gaussian hypergeo-
metric series containing arbitrary characters at specific values of the argument is a
difficult problem. In this article, we have used our product formulas to find special
values of 4F3- and 3F2-hypergeometric series. In the following theorem, we find
special values of 4F3-hypergeometric series at general values of the argument.
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Theorem 1.7. Let q ≡ 1 (mod 4). Let A ∈ F̂
×
q be such that A2 6∈ {ε, ϕ, χ4, χ4}.

For x 6= 0, 1, we have

(i) 4F3

(
A2, A2ϕ, A2χ4, A2χ4

A4ϕ, A4, ϕ
| 4x(1− x)

)
=

A4ϕ(2)

g(ϕ)g(A2χ4)g(A2χ4)

×
(
1 + ϕ(1− x)

2

)(
1 + ϕ(x)

2

)(
A4(1 +

√
1− x) +A4(1 −

√
1− x)

)

×
(
A4(1 +

√
x) +A4(1−

√
x)
)
− A2ϕ(x)A4ϕ(2)A6(x− 1)g(ϕ)

qg(A2χ4)g(A2χ4)
δ

(
1− 2x

(1− x)2

)
,

(ii) 4F3

(
A2, A2ϕ, A2χ4, A2χ4

A4ϕ, A4, ϕ
| −4x

(1− x)2

)
=

A4ϕ(2)

g(ϕ)g(A2χ4)g(A2χ4)

× (1 + ϕ(1− x))(1 + ϕ(x2 − x))

4

(
A4

(
1 +

1√
1− x

)
+A4

(
1− 1√

1− x

))

×
(
A4

(
1 +

√
x

x− 1

)
+A4

(
1−

√
x

x− 1

))

− A2ϕ(x)A4ϕ(2)A4ϕ(x− 1)g(ϕ)

qg(A2χ4)g(A2χ4)
δ(1− x2).

We note that the above formulas are well-defined. Since q ≡ 1 (mod 4), x−1 is a
square if and only if 1−x is a square. In (i), if x or 1−x is not a square, then the term
containing the product (1+ϕ(x))(1+ϕ(1− x)) will disappear. In (ii), if x or 1− x
is not a square, then the term containing the product (1+ϕ(x2− x))(1+ϕ(1− x))
will disappear.

Putting x = 1
2 in Theorem 1.7 (i) we find the following special value of a 4F3-

Gaussian hypergeometric series.

Corollary 1.8. Let q ≡ 1 (mod 4). Let A ∈ F̂
×
q be such that A2 6∈ {ε, ϕ, χ4, χ4}.

We have

4F3

(
A2, A2ϕ, A2χ4, A2χ4

A4ϕ, A4, ϕ
| 1
)
= − g(ϕ)

qg(A2χ4)g(A2χ4)

+





1

g(ϕ)g(A2χ4)g(A2χ4)

[
2 +A8

(
1 +

√
2
)
+A8

(
1−

√
2
)]
, if q ≡ 1 (mod 8);

0, if q ≡ 5 (mod 8).

In [20], Ono found several special values of 2F1- and 3F2-Gaussian hypergeo-
metric series containing trivial and quadratic characters as parameters by counting
points on CM elliptic curves. We find the following special value which generalizes
a result of Ono.

Theorem 1.9. Let A ∈ F̂
×
q be such that A2, A6 6= ε. Then we have

3F2

(
A2, A6, A4ϕ

A8, A4 | −8

)
=
A(256)g(A2)2g(A6)

qg(A2)

[(
A3

A2

)
+

(
A3ϕ

A2

)]2

− A(4096)

q
− q − 1

q3
A(4096)ϕ(2)g(A2ϕ)g(A2ϕ)δ(A4ϕ).

Putting A = χ4 in Theorem 1.9 we readily obtain the following special value
obtained by Ono [20] when q ≡ 1 (mod 4).
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Corollary 1.10. Let q ≡ 1 (mod 4). We have

3F2

(
ϕ, ϕ, ϕ

ε, ε
| −8

)
=

[(
χ4

ϕ

)
+

(
χ4

ϕ

)]2
− 1

q
.

Using our product formulas, we next find special values of 3F2-hypergeometric
series at x = −1 and x = 1

4 , respectively. We note that these two results were also
proved by Evans and Greene, see for example [8, Thm 1.3 & 1.4].

Theorem 1.11. Suppose that C is a multiplicative character whose order is not

equal to 1, 2, 4. Then for q ≡ 1 (mod 8) we have

3F2

(
ϕ, C2ϕ, Cϕ

C2, C
| −1

)
=





1

q
, if Cχ4 6= � ;

1

q
+

2

q2
Re(J(D,ϕ)J(Dχ4, ϕ)), if Cχ4 = D2.

Theorem 1.12. Suppose that C is a multiplicative character which is a square and

its order is strictly greater than 4. Then we have

3F2

(
C, C3, C

C2, Cϕ
| 1
4

)
=





−C(4)
q

, if q ≡ 11 (mod 12);

C(4)

q

[
q + 2Re(J(C, χ3)J(C, χ3))

]
, if q ≡ 1 (mod 12).

In the following theorem, we find values of 3F2-hypergeometric series at x = −8.

Theorem 1.13. Let A ∈ F̂
×
q be such that A2, A6 6= ε and A4 6= ϕ. Then we have

3F2

(
A2, A2, ϕ

A4, A4
| −8

)
=

g(ϕ)

g(A4)g(A4ϕ)

(
A2

A4

)−1 [(
A

A2

)
+

(
ϕA

A2

)]

×
[(

A

A2

)
+

(
ϕA

A2

)]
+
q − 1

q

(
A2

A4

)−1

3F2

(
A2, A2, ϕ

ε, A4
| −8

)
δ(A4)

− 1

q2

(
ϕ

A4

)(
A2

A4

)−1

− (q − 1)g(ϕ)

q3g(A4)g(A4ϕ)

(
A2

A4

)−1 [
δ(A4) + q

]
.

We remark that Corollary 1.10 also follows from Theorem 1.13 by taking A = χ4.
We also show that the following result of Evans and Greene [7, Thm 1.9] follows
from Theorem 1.13.

Theorem 1.14. Suppose that A is a multiplicative character whose order is not

equal to 1, 2, 3, 4, 6, 8. Then we have

3F2

(
ϕ, A2, A2

A4, A4
| −8

)
=

1

q
+
A2(4)J(A2, A6)

q2J(A2, A2)

[
J(A2, A)2 + J(A2, Aϕ)2

]
.

In the following theorem we find values of 3F2-hypergeometric series at x = 4.

Theorem 1.15. Suppose that S is a multiplicative character which is a square and

its order is strictly greater than 4. Then we have

3F2

(
S3, S, S2ϕ

S4, S2
| 4
)

= −ϕ(−1)S(16)

q
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+
S(16)S(27)J(S, S)

J(S3, S)





0, if q ≡ 11 mod (12);[(
S

χ3

)
+

(
S

χ2
3

)]2
, if q ≡ 1 mod (12).

We note that the above result was also proved by Kalita and the second author
by counting points on certain algebraic curves over finite fields, see for example [3,
Thm 1.7]. Here we present a different proof using our product formulas.

2. Notation and Preliminaries

We first recall some definitions and results from [13]. Let δ denote the function
on multiplicative characters defined by

δ(A) =

{
1, if A is the trivial character;
0, otherwise.

We also denote by δ the function defined on Fq by

δ(x) =

{
1, if x = 0;
0, if x 6= 0.

The binomial coefficient
(
A
B

)
defined in (1.2) satisfies many interesting properties.

For example, we list the following from [13]:
(
A

ε

)
=

(
A

A

)
=

−1

q
+
q − 1

q
δ(A); (2.1)

(
ε

A

)
= −A(−1)

q
+
q − 1

q
δ(A); (2.2)

and (
A

B

)(
C

A

)
=

(
C

B

)(
CB

AB

)
− q − 1

q2
B(−1)δ(A) +

q − 1

q2
AB(−1)δ(BC). (2.3)

We next recall some properties of Gauss and Jacobi sums. For further details, see
[5]. Let ζp be a fixed primitive p-th root of unity in C. The trace map tr : Fq → Fp

is given by

tr(α) = α+ αp + αp
2

+ · · ·+ αp
r−1

.

Then the additive character θ : Fq → C is defined by

θ(α) = ζtr(α)p .

For χ ∈ F̂
×
q , the Gauss sum is defined by

g(χ) :=
∑

x∈Fq

χ(x)θ(x).

We let T denote a fixed generator of F̂×
q .

Lemma 2.1. ([13, (1.12)]) If k ∈ Z, then

g(T k)g(T−k) = qT k(−1)− (q − 1)δ(T k).

Lemma 2.2. ([11, (17)]) For A ∈ F̂
×
q we have

1

g(A)
=
A(−1)g(A)

q
− (q − 1)

q
δ(A).
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Lemma 2.3. ([13, (1.14)]) For A,B ∈ F̂
×
q we have

J(A,B) =
g(A)g(B)

g(AB)
+ (q − 1)B(−1)δ(AB).

Using Lemma 2.3, we can re-write the binomial coefficient in terms of Gauss
sums as follows.

Lemma 2.4. If A,B ∈ F̂
×
q then we have

(
A

B

)
=
B(−1)g(A)g(B)

qg(AB)
+
q − 1

q
δ(AB).

The orthogonality relation for multiplicative characters is given in the following
lemma.

Lemma 2.5. ([13, (1.16)]) If x ∈ F×
q then we have

∑

χ∈̂
F
×

q

χ(x) = (q − 1)δ(1− x).

Another important product formula for Gauss sums is the Davenport-Hasse re-
lation.

Lemma 2.6 (Davenport-Hasse relation [17]). Let χ be a character of order m on

F×
q , for some positive integer m. For character A on F×

q we have

m−1∏

i=0

g(χiA) = g(Am)Am(m)

m−1∏

i=1

g(χi).

We use Davenport-Hasse relation for m = 2, 3, 4. When m = 2, we have the
following identity.

Lemma 2.7. For A ∈ F̂
×
q , we have

g(A)g(ϕA) = g(A2)g(ϕ)A(4).

For m = 3, we have the following lemma.

Lemma 2.8. Let χ3 be character of order 3. Then for A ∈ F̂
×
q , we have

g(A)g(χ3A)g(χ
2
3A) = g(A3)g(χ3)g(χ

2
3)A(27).

For m = 4, we have the following lemma.

Lemma 2.9. Let χ4 be character of order 4. Then for A ∈ F̂
×
q , we have

g(A)g(χ4A)g(ϕA)g(χ
3
4A) = g(A4)g(χ4)g(ϕ)g(χ

3
4)A(256).

Lemma 2.10. ([13, (1.8)], [18, Thm 2.2]). For A,B,C,D ∈ F̂
×
q we have

1

q − 1

∑

χ∈̂
F
×

q

g(Aχ)g(Bχ)g(Cχ)g(Dχ)

=
g(AC)g(AD)g(BC)g(BD)

g(ABCD)
+ q(q − 1)AB(−1)δ(ABCD).
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Lemma 2.11. [11, Thm 8.11] Let A ∈ F̂
×
q be such that A 6= ε, ϕ. For x ∈ F×

q , we

have

2F1

[
A, Aϕ

ϕ
| x
]
=

(
1 + ϕ(x)

2

)(
A2(1 +

√
x) +A2(1−

√
x)
)
. (2.4)

We remark that the formula (2.4) is well-defined and the value of the hypergeo-
metric series will be equal to 0 if x is not a square. We now recall three transfor-
mation formulas of Greene.

Theorem 2.12. [13, Thm. 4.4 (i), (ii), and (iii)] For A,B,C ∈ F̂
×
q and x ∈ Fq,

(i) 2F1

(
A, B

C
| x
)

= A(−1)2F1

(
A, B

ABC
| 1− x

)

+A(−1)

(
B

AC

)
δ(1 − x)−

(
B

C

)
δ(x),

(ii) 2F1

(
A, B

C
| x
)

= C(−1)A(1− x)2F1

(
A, CB

C
| x

x− 1

)

+A(−1)

(
B

AC

)
δ(1 − x),

(iii) 2F1

(
A, B

C
| x
)

= B(1− x)2F1

(
CA, B

C
| x

x− 1

)

+A(−1)

(
B

AC

)
δ(1 − x).

Lemma 2.13. For A,B,C ∈ F̂
×
q and x ∈ Fq such that x 6= 0, 1, we have

2F1

(
A, B

C
| x
)

= BC(−1)A(x)2F1

(
A, AC

AB
| 1
x

)
.

Proof. Using Theorem 2.12 (i) and (ii) we have

2F1

(
A, B

C
| x
)

= ABC(−1)A(x)2F1

(
A, B

C
| x− 1

x

)
. (2.5)

Again using Theorem 2.12 (i) in (2.5) we complete the proof. �

The following lemma gives values of McCarthy’s finite field hypergeometric series
at x = 1.

Lemma 2.14. For A,B,C ∈ F̂
×
q we have

2F1

(
A, B

C
| 1
)∗

=
g(AC)g(BC)

g(C)g(ABC)
+
q(q − 1)AB(−1)

g(A)g(B)g(C)
δ(ABC).

Proof. The proof follows directly by using (1.4) and Lemma 2.10. �

To deduce the special values obtained by Evans and Greene from our product
formulas, we need to use the fact that A(−1) = −1 if A is a non-square character.
In the following two lemmas, we prove this fact. We do not know if the result
already exists in the literature.

Lemma 2.15. Let A ∈ F̂
×
q be of order m > 1. Then A(−1) = −1 if and only if m

is even and q−1
m

is odd.
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Proof. Let g be a generator of the cyclic group F×
q . Since m is the order of the

character A, therefore A(g) = ζ, a primitive m-th root of unity. We have A(−1) =

A(g
q−1

2 ) = ζ
q−1

2 . Suppose that A(−1) = −1. Then (−1)m = Am(−1) = 1, and

hence m is even. Also, ζ
q−1

2 = A(−1) = −1 = ζ
m

2 . This gives q−1
2 ≡ m

2 (mod m),

and hence q−1
m

≡ 1 (mod 2) or equivalently q−1
m

is odd. Conversely, if m is even

and q−1
m

is odd then q−1
2 ≡ m

2 (mod m). Hence, −1 = ζ
m

2 = ζ
q−1

2 . This implies
that A(−1) = −1. �

Lemma 2.16. If A ∈ F̂
×
q is not a square, then A(−1) = −1.

Proof. Let m be the order of the character A. Then G = 〈A〉 is a cyclic subgroup

of F̂×
q of order m. Since A is not a square character, so A2 is not a generator of

G. This implies that gcd(2,m) = 2, that is m is even. We next prove that q−1
m

is

odd. Otherwise, F̂×
q will have an element of order 2m, say B. Then we must have

〈A〉 = 〈B2〉. This is a contradiction to the fact that A is not a square. Hence q−1
m

is odd. Using Lemma 2.15 we complete the proof of the lemma. �

3. Proofs of the product formulas

In this section we prove the product formulas satisfied by the Gaussian hyperge-
ometric series. In [23] we defined a finite field analogue of the classical Appell series
F4, and proved several identities satisfied by F4 over finite fields. Our work on
Appell series F4 plays a crucial role in the proofs of the main results of this article.

For A,B,C ∈ F̂
×
q and x, y ∈ Fq, we define the finite field analogue of Appell series

F4 by

F4(A;B;C,C′;x, y)∗

=
1

(q − 1)2

∑

χ,λ∈̂
F
×

q

g(Aχλ)g(Bχλ)g(Cχ)g(C′λ)g(λ)g(χ)

g(A)g(B)g(C)g(C′)
χ(x)λ(y). (3.1)

In [23, Theorem 1.2], we expressed finite field Appell series F4 as a product of
McCarthy’s 2F1-hypergeometric series under the condition that A,B,C 6= ε. To
deduce some interesting special values of Gaussian hypergeometric series from our
product formulas, we need to allow C = ε. In the following theorem, we restate
Theorem 1.2 of [23] and present a brief proof.

Theorem 3.1. Let A,B,C ∈ F̂
×
q be such that A,B 6= ε, B 6= C, and A 6= C. For

x, y ∈ Fq with x, y 6= 1, we have

F4

(
A;B;C,ABC;

−x
(1− x)(1 − y)

,
−y

(1− x)(1 − y)

)∗

= 2F1

(
A, B

C
| − x

1− x

)∗

2F1

(
A, B

ABC
| − y

1− y

)∗

− q2AC(−1)BC(y)A(1 − x)B(1 − y)

g(A)g(B)g(C)g(ABC)
δ(1− xy).
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Proof. The result holds trivially if xy = 0. Therefore, we assume that both x and
y are nonzero. From [23, Thm 1.1] we have

L :=A(1− x)B(1− y)F4

(
A;B;C,ABC;

−x
(1− x)(1 − y)

,
−y

(1− x)(1 − y)

)∗

=
1

(q − 1)2

∑

ψ,χ∈̂
F
×

q

2F1

(
χ, Aψ

ABC
| 1
)∗

2F1

(
ψ, Bχ

C
| 1
)∗

× g(Aψ)g(Bχ)g(χ)g(ψ)

g(A)g(B)
ψ(−x)χ(−y).

Lemma 2.14 yields

L =
1

(q − 1)2

∑

ψ,χ

(
g(ABCχ)g(BCψ)

g(ABC)g(CψBχ)
+
q(q − 1)Aψχ(−1)δ(CψBχ)

g(χ)g(Aψ)g(ABC)

)

×
(
g(Cψ)g(BCχ)

g(C)g(BχCψ)
+
q(q − 1)Bψχ(−1)δ(BχCψ)

g(ψ)g(Bχ)g(C)

)

× g(Aψ)g(Bχ)g(χ)g(ψ)ψ(−x)χ(−y)
g(A)g(B)

=
1

(q − 1)2

∑

ψ,χ

g(ABCχ)g(BCψ)g(Cψ)g(BCχ)g(Aψ)g(Bχ)

g(A)g(B)g(C)g(ABC)g(CψBχ)g(BχCψ)
(3.2)

× g(χ)g(ψ)ψ(−x)χ(−y) + α1 + α2 + α3,

where

α1 = A(−1)
q

q − 1

∑

ψ,χ

g(Cψ)g(BCχ)g(Bχ)g(ψ)

g(A)g(B)g(C)g(ABC)g(BCψχ)
χ(y)ψ(x)δ(BCχψ),

α2 = B(−1)
q

q − 1

∑

ψ,χ

g(ABCχ)g(BCψ)g(Aψ)g(χ)

g(A)g(B)g(ABC)g(BCχψ)g(C)
χ(y)ψ(x)δ(BCψχ),

α3 = q2AB(−1)
∑

ψ,χ

ψ(−x)χ(−y)δ(BCχψ)δ(BCψχ)
g(A)g(B)g(ABC)g(C)

.

The above terms are nonzero only when χψ = BC. So, after putting χ = BCψ
and using the fact that g(ε) = −1, we obtain

α1 = −A(−1)
q

q − 1

∑

ψ

g(Cψ)g(Cψ)g(ψ)g(ψ)

g(A)g(B)g(C)g(ABC)
BC(y)ψ(xy), (3.3)

α2 = −B(−1)
q

q − 1

∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)

g(A)g(B)g(C)g(ABC)
BC(y)ψ(xy), (3.4)

α3 =
q2AB(−1)BC(−y)

g(A)g(B)g(ABC)g(C)

∑

ψ

ψ(xy).

In case of α3, Lemma 2.5 yields

α3 =
q2(q − 1)AC(−1)BC(y)

g(A)g(B)g(ABC)g(C)
δ(1 − xy). (3.5)
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Using Lemma 2.1 and Lemma 2.5 we have

α1 = −q
3AC(−1)BC(y)δ(1 − xy)

g(A)g(B)g(C)g(ABC)
+
q2AC(−1)BC(y)C(xy)

g(A)g(B)g(C)g(ABC)

+
q2AC(−1)BC(y)

g(A)g(B)g(C)g(ABC)
− q(q − 1)A(−1)BC(y)

g(A)g(B)g(C)g(ABC)
δ(C). (3.6)

From (3.2) we have

L =
1

(q − 1)2

∑

ψ,χ

χψ 6=BC

g(ABCχ)g(BCψ)g(Cψ)g(BCχ)g(Aψ)g(Bχ)

g(A)g(B)g(C)g(ABC)g(CψBχ)g(BχCψ)

× g(χ)g(ψ)ψ(−x)χ(−y) + β + α1 + α2 + α3,

where

β =
BC(−1)

(q − 1)2

∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)g(Cψ)g(Cψ)g(ψ)g(ψ)

g(A)g(B)g(C)g(ABC)
BC(y)ψ(xy).

Using Lemma 2.1 on g(CψBχ)g(BχCψ) we have

L =
BC(−1)

q(q − 1)2

∑

ψ,χ

χψ 6=BC

g(ABCχ)g(BCψ)g(Cψ)g(BCχ)g(Aψ)g(Bχ)

g(A)g(B)g(C)g(ABC)

× g(χ)g(ψ)ψ(x)χ(y) + β + α1 + α2 + α3

=
BC(−1)

q(q − 1)2

∑

ψ,χ

g(ABCχ)g(BCψ)g(Cψ)g(BCχ)g(Aψ)g(Bχ)

g(A)g(B)g(C)g(ABC)
(3.7)

× g(χ)g(ψ)ψ(x)χ(y) +
q − 1

q
β + α1 + α2 + α3.

Employing Lemma 2.1 on g(Cψ)g(Cψ) and g(ψ)g(ψ) we have

β =
q2B(−1)

(q − 1)2

∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)

g(A)g(B)g(C)g(ABC)
BC(y)ψ(xy) − β1 − β2 + β3,

(3.8)

where

β1 =
qBC(−1)

q − 1

∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)BC(y)ψ(xy)

g(A)g(B)g(C)g(ABC)
ψ(−1)δ(Cψ),

β2 =
qBC(−1)

q − 1

∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)BC(y)ψ(xy)

g(A)g(B)g(C)g(ABC)
Cψ(−1)δ(ψ),

β3 = BC(−1)
∑

ψ

g(Aψ)g(Aψ)g(BCψ)g(BCψ)BC(y)ψ(xy)

g(A)g(B)g(C)g(ABC)
δ(Cψ)δ(ψ).

Since β1 is nonzero only when ψ = C, so after putting ψ = C and then using
Lemma 2.1 and the fact that B,AC 6= ε, we obtain

β1 =
q3AC(−1)BC(y)C(xy)

(q − 1)g(A)g(B)g(C)g(ABC)
. (3.9)
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Similarly,

β2 =
q3AC(−1)BC(y)

(q − 1)g(A)g(B)g(C)g(ABC)
(3.10)

and

β3 =
q2A(−1)BC(y)

g(A)g(B)g(C)g(ABC)
δ(C). (3.11)

Putting (3.8) and (3.4) into (3.7) we obtain

L =
BC(−1)

q(q − 1)2

∑

ψ,χ

g(ABCχ)g(BCψ)g(Cψ)g(BCχ)g(Aψ)g(Bχ)

g(A)g(B)g(C)g(ABC)

× g(χ)g(ψ)ψ(x)χ(y) − q − 1

q
β1 −

q − 1

q
β2 +

q − 1

q
β3 + α1 + α3. (3.12)

Multiplying both numerator and denominator by g(BC)g(BC), and then using
Lemma 2.1 and (1.4) we have

L = 2F1

(
A, BC

C
| x
)∗

2F1

(
B, BC

ABC
| y
)∗

− q − 1

q
β1 −

q − 1

q
β2 +

q − 1

q
β3 + α1 + α3. (3.13)

Using Theorem 2.12 (ii) in (3.13), and then combining (3.5), (3.6), (3.9), (3.10) and
(3.11) we find that

L = A(1− x)B(1− y)2F1

(
A, B

C
| −x
1− x

)∗

2F1

(
B, A

ABC
| −y
1− y

)∗

− q2AC(−1)BC(y)δ(1 − xy)

g(A)g(B)g(C)g(ABC)
.

Finally, multiplying both sides by A(1 − x)B(1 − y) we complete the proof of the
theorem. �

In the following lemma, we re-write Theorem 3.1 in terms of Greene’s finite field
hypergeometric series.

Lemma 3.2. Let A,B,C ∈ F̂
×
q be such that A,B 6= ε, B 6= C, and A 6= C. For

z, w ∈ Fq such that z, w 6= 1 we have

2F1

(
A, B

C
| z
)

2F1

(
A, B

ABC
| w
)

=
A(−1)g(B)g(C)g(ABC)

qg(B)g(BC)g(AC)
F4

(
A;B;C,ABC ; z(1− w), w(1 − z)

)∗

+
qB(−1)A(1− z)BC(w)C(1− w)

g(A)g(B)g(BC)g(AC)
δ

(
1− w − z

(1− z)(1− w)

)
.

Proof. Using (1.5) in Theorem 3.1 we have

2F1

(
A, B

C
| − x

1− x

)
2F1

(
A, B

ABC
| − y

1− y

)
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=

(
B

C

)(
B

ABC

)
×
[
F4

(
A;B;C,ABC;

−x
(1− x)(1 − y)

,
−y

(1− x)(1 − y)

)∗

+
q2AC(−1)BC(y)A(1 − x)B(1 − y)

g(A)g(B)g(C)g(ABC)
δ(1− xy)

]
. (3.14)

Applying Lemma 2.4 and Lemma 2.1, and then putting z = −x
1−x and w = −y

1−y in

(3.14), we complete the proof. �

We now present a proof of our main product formula Theorem 1.1.

Proof of Theorem 1.1. The result is trivially true if x = 0. So, we assume that
x 6= 0. Let

L : = 2F1

(
A2, B2

C
| x
)

2F1

(
A2, B2

A2B2C
| x
)
.

Using Lemma 3.2, we have

L =
g(B2)g(C)g(A2B2C)

qg(B2)g(B2C)g(A2C)
F4

(
A2;B2;C,A2B2C;x(1− x), x(1 − x)

)∗
+ I1,

(3.15)

where

I1 =
qCA2(1− x)CB2(x)

g(A2)g(B2)g(B2C)g(A2C)
δ

(
1− 2x

(1− x)2

)
. (3.16)

Now employing (3.1) into (3.15) we have

L =
1

q(q − 1)2

∑

χ,λ∈̂
F
×

q

g(A2χλ)g(B2χλ)g(Cχ)g(A2B2Cλ)g(λ)g(χ)

g(A2)g(B2)g(B2C)g(A2C)
χλ(x− x2) + I1.

The change of variables χ 7→ χλ yield

L =
1

q(q − 1)2

∑

χ,λ∈̂
F
×

q

g(A2χ)g(B2χ)g(Cχλ)g(A2B2Cλ)g(λ)g(χλ)

g(A2)g(B2)g(B2C)g(A2C)
χ(x− x2) + I1.

Using Lemma 2.10, we have

L =
1

q(q − 1)

∑

χ∈̂
F
×

q

g(A2χ)g(B2χ)g(A2B2χ)g(A2B2Cχ)g(Cχ)g(χ)

g(A2)g(B2)g(B2C)g(A2C)g(A2B2χ2)
χ(x− x2) + I1 + I2,

(3.17)

where

I2 = C(−1)
∑

χ∈̂
F
×

q

g(A2χ)g(B2χ)χ(x− x2)

g(A2)g(B2)g(B2C)g(A2C)
δ(A2B2χ2)

= C(−1)

[
g(AB)g(AB)AB(x− x2) + g(ABϕ)g(ABϕ)ABϕ(x− x2)

g(A2)g(B2)g(B2C)g(A2C)

]
. (3.18)
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The last equality is obtained by putting χ = AB,ABϕ. Now using Lemma 2.2 in
(3.17), we have

L =
1

q2(q − 1)

∑

χ∈̂
F
×

q

g(A2χ)g(B2χ)g(Cχ)g(A2B2χ)g(A2B2Cχ)

g(A2)g(B2)g(B2C)g(A2C)

× g(A2B2χ2)g(χ)χ(x − x2) + I1 + I2 − I3, (3.19)

where

I3 =
1

q2

∑

χ∈̂
F
×

q

g(A2χ)g(B2χ)g(Cχ)g(A2B2χ)g(A2B2Cχ)g(χ)χ(x− x2)

g(A2)g(B2)g(B2C)g(A2C)
δ(A2B2χ2)

= I2 +
(q − 1)g(AB)g(AB)AB(x− x2)

q2g(A2)g(B2)g(B2C)g(A2C)

[
{(q − 1)δ(AB)− qAB(−1)}δ(ABC)

−qABC(−1)δ(AB)] +
(q − 1)g(ABϕ)g(ABϕ)ABϕ(x− x2)

q2g(A2)g(B2)g(B2C)g(A2C)

×
[
(q − 1)δ(ABCϕ)δ(ABϕ) − qABϕ(−1)δ(ABCϕ)− qABCϕ(−1)δ(ABϕ)

]
.

(3.20)

The last equality is obtained by putting χ = AB,ABϕ and using Lemma 2.1
on g(AB)g(AB), g(ABC)g(ABC), g(ABϕ)g(ABϕ) and g(ABCϕ)g(ABCϕ). Now
using Lemma 2.7 on g(A2B2χ2), (3.19) reduces to

L =
AB(4)

q2(q − 1)

∑

χ∈̂
F
×

q

g(A2χ)g(B2χ)g(Cχ)g(A2B2χ)g(A2B2Cχ)g(ABχ)

g(A2)g(B2)g(B2C)g(A2C)g(ϕ)

× g(ABϕχ)g(χ)χ(4x− 4x2) + I1 + I2 − I3.

Multiplying both numerator and denominator by q4g(A2)g(ABC)g(ABCϕ) and
then rearranging the terms we have

L =
q2AB(4)g(A2)g(ABC)g(ABCϕ)

(q − 1)g(B2)g(B2C)g(A2C)g(ϕ)

×
∑

χ∈̂
F
×

q

(
g(A2χ)g(χ)χ(−1)

qg(A2)
× g(B2χ)g(A2B2χ)χ(−1)

qg(A2)
× g(ABχ)g(Cχ)Cχ(−1)

qg(ABC)

×g(ABϕχ)g(A
2B2Cχ)Cχ(−1)

qg(ABCϕ)
χ(4x− 4x2)

)
+ I1 + I2 − I3.

Lemma 2.4 yields

L =
q2AB(4)g(A2)g(ABC)g(ABCϕ)

(q − 1)g(B2)g(B2C)g(A2C)g(ϕ)

∑

χ∈̂
F
×

q

(
A2χ

χ

)((
ABχ

Cχ

)
− q − 1

q
δ(ABC)

)

×
(

B2χ

A2B2χ

)((
ABϕχ

A2B2Cχ

)
− q − 1

q
δ(ABCϕ)

)
χ(4x− 4x2) + I1 + I2 − I3.

Using (1.3) we have

L =
qAB(4)g(A2)g(ABC)g(ABCϕ)

g(B2)g(B2C)g(A2C)g(ϕ)
4F3

(
A2, B2, AB, ABϕ

A2B2, C, A2B2C
| 4x(1− x)

)
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− (q − 1)AB(4)g(A2)g(ABC)g(ABCϕ)

g(B2)g(B2C)g(A2C)g(ϕ)

×
[
3F2

(
A2, B2, ABϕ

A2B2, A2B2C
| 4x(1− x)

)
δ(ABC)

+ 3F2

(
A2, B2, AB

A2B2, C
| 4x(1− x)

)
δ(ABCϕ)

]
+ I1 + I2 − I3.

(3.21)

Finally employing (3.16), (3.18), and (3.20) into (3.21), we complete the proof of
the theorem. �

We now state a special case of Theorem 1.1 which will be used to prove Theorem
1.3 and to derive certain special values.

Corollary 3.3. Let A,B ∈ F̂
×
q be such that A2, B2, ABϕ 6= ε. For x 6= 1 we have

2F1

(
A2, B2

ABϕ
| x
)2

=
qAB(4)g(A2)

g(B2)g(ABϕ)2
3F2

(
A2, B2, AB

A2B2, ABϕ
| 4x(1 − x)

)

+
g(ABϕ)g(ABϕ)g(ABϕ)

q2g(B2)g(A2)g(ABϕ)
ABϕ(x− x2) +

qA3Bϕ(1− x)ABϕ(x)

g(A2)g(B2)g(ABϕ)2
δ

(
1− 2x

(x− 1)2

)

+
(q − 1)ϕ(−1)g(AB)g(AB)AB(x− x2)

qg(A2)g(B2)g(ABϕ)2
δ(AB)

+
(q − 1)g(ABϕ)ABϕ(x− x2)

q2g(A2)g(B2)g(ABϕ)
[δ(ABϕ) + qABϕ(−1)] .

Proof. The result is trivially true if x = 0. So, let x 6= 0. Putting C = ABϕ in
Theorem 1.1 and using the fact that g(ε) = −1 we have

2F1

(
A2, B2

ABϕ
| x
)2

= − qAB(4)g(A2)

g(B2)g(ABϕ)2
4F3

(
A2, B2, AB, ABϕ

A2B2, ABϕ, ABϕ
| 4x(1 − x)

)

+
(q − 1)AB(4)g(A2)

g(B2)g(ABϕ)2
3F2

(
A2, B2, AB

A2B2, ABϕ
| 4x(1− x)

)

+
qA3Bϕ(1− x)ABϕ(x)

g(A2)g(B2)g(ABϕ)2
δ

(
1− 2x

(1− x)2

)
+

(q − 1)g(AB)g(AB)AB(x − x2)

qϕ(−1)g(A2)g(B2)g(ABϕ)2
δ(AB)

+
(q − 1)g(ABϕ)ABϕ(x− x2)

q2g(A2)g(B2)g(ABϕ)
[δ(ABϕ) + qABϕ(−1)] . (3.22)

Using (1.3) and (2.1) we have

− qAB(4)g(A2)

g(B2)g(ABϕ)2
4F3

(
A2, B2, AB, ABϕ

A2B2, ABϕ, ABϕ
| 4x(1− x)

)

=
AB(4)g(A2)

g(B2)g(ABϕ)2
3F2

(
A2, B2, AB

A2B2, ABϕ
| 4x(1− x)

)
− I1, (3.23)
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where

I1 =
qAB(4)g(A2)

g(B2)g(ABϕ)2

∑

χ∈̂
F
×

q

(
A2χ

χ

)(
B2χ

A2B2χ

)(
ABχ

ABϕχ

)
χ(4x− 4x2)δ(ABϕχ)

= −g(ABϕ)g(ABϕ)g(ABϕ)
q2g(B2)g(A2)g(ABϕ)

ABϕ(x − x2). (3.24)

The last equality is obtained by putting χ = ABϕ, and then using Lemma 2.4 and
g(ε) = −1. Finally, combining (3.22), (3.23) and (3.24), we complete the proof. �

Proof of Theorem 1.3. From [12, (4.33)], we have

2F1

(
A2, B2

ABϕ
| x
)

=
B(−1)g(B2)g(ABϕ)

g(B)g(Aϕ)
2F1

(
A, B

ABϕ
| 4x(1 − x)

)
.

(3.25)

Using the given conditions x 6= 1, 12 and AB,ABϕ 6= ε, Corollary 3.3 yields

2F1

(
A2, B2

ABϕ
| x
)2

=
qAB(4)g(A2)

g(B2)g(ABϕ)2
3F2

(
A2, B2, AB

A2B2, ABϕ
| 4x(1 − x)

)

+
g(ABϕ)g(ABϕ)g(ABϕ)

q2g(B2)g(A2)g(ABϕ)
ABϕ(x− x2) +

(q − 1)g(ABϕ)ABϕ(x− x2)

qg(A2)g(B2)g(ABϕ)
ABϕ(−1).

(3.26)

Combining (3.25) and (3.26), and then employing Lemma 2.1 we complete the
proof. �

Proof of Theorem 1.4. The result is trivially true if z = 0. Let x 6= 0. Putting
C = D2 and B = DE in Theorem 1.1, we have

2F1

(
A2, D2E2

D2 | x
)

2F1

(
A2, D2E2

A2E2
| x
)

= 4F3

(
A2, D2E2, ADE, ADEϕ

A2D2E2, D2, A2E2
| 4x(1− x)

)

× qADE(4)g(A2)g(AED)g(AEDϕ)

g(D2E2)g(E2)g(A2D2)g(ϕ)
+

qA2D2(1− x)E2(x)

g(A2)g(D2E2)g(E2)g(A2D2)
δ

(
1− 2x

(x− 1)2

)
.

(3.27)

Using (1.5) we find that

2F1

(
A2, D2E2

D2 | x
)

2F1

(
A2, D2E2

A2E2
| x
)

=

(
D2E2

A2E2

)(
A2

A2E2

)−1

2F1

(
A2, D2E2

D2 | x
)

2F1

(
D2E2, A2

A2E2
| x
)

=
g(D2E2)g(E2)

g(A2)g(A2D2)
A2D2E2(1− x) 2F1

(
A2, E2

D2 | x

x− 1

)

× 2F1

(
D2E2, E2

A2E2
| x

x− 1

)
. (3.28)
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The last equality is obtained by using Lemma 2.4 and Theorem 2.12 (ii). Now using
(3.28) in (3.27) and Lemma 2.1 we have

2F1

(
A2, E2

D2 | x

x− 1

)
2F1

(
D2E2, E2

A2E2
| x

x− 1

)

=
ADE(4)A2D2E2(1− x)g(AED)g(AEDϕ)

g(ϕ)

× 4F3

(
A2, D2E2, ADE, ADEϕ

A2D2E2, D2, A2E2
| 4x(1− x)

)

+
E2(1− x)E2(x)

q
δ

(
1− 2x

(x − 1)2

)
.

Finally, putting z = x
x−1 , we complete the proof of the theorem. �

Proof of Theorem 1.5. The result is trivially true if x = 0. So, let x 6= 0. Let

L := 2F1

(
A, B

C2 | x
)

2F1

(
A, C2B

C2 | x
)
.

Using Theorem 2.12 (i) and (ii) we have

L = A(−1)A(1− x)2F1

(
A, B

C2 | x
)

2F1

(
A, B

ABC2 | 1

1− x

)
. (3.29)

Employing Lemma 3.2 into (3.29) yields

L =
A(1− x)g(B)g(C2)g(ABC2)

qg(B)g(BC2)g(AC2)
F4

(
A;B;C2, ABC2;

x2

x− 1
, 1

)∗
+ I1, (3.30)

where

I1 =
qAB(−1)A2B(1− x)C2(x)

g(A)g(B)g(AC2)g(BC2)
δ

(
x− 2

x− 1

)
. (3.31)

Using (3.1) in (3.30) we obtain

L =
A(1− x)

q(q − 1)2

∑

χ,λ∈̂
F
×

q

g(Aχλ)g(Bχλ)g(C2χ)g(ABC2λ)g(λ)g(χ)

g(A)g(B)g(BC2)g(AC2)
χ

(
x2

x− 1

)
+ I1.

Using Lemma 2.10 yields

L =
A(1− x)

q(q − 1)

∑

χ∈̂
F
×

q

g(Aχ)g(Bχ)g(C2χ)g(AC2χ)g(BC2χ)g(χ)

g(A)g(B)g(BC2)g(AC2)g(C2χ2)
χ

(
x2

x− 1

)
+ I1 + I2,

(3.32)

where

I2 = AB(−1)A(1− x)
∑

χ∈̂
F
×

q

g(C2χ)g(χ)

g(A)g(B)g(BC2)g(AC2)
χ

(
x2

x− 1

)
δ(C2χ2)

=
qAB(−1)A(1− x)C2(x)C(1 − x)

g(A)g(B)g(BC2)g(AC2)
[ϕ(1− x) + 1] . (3.33)
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The last equality is obtained by putting χ = C,Cϕ, and then using Lemma 2.1 and
the fact that C2 6= ε. Now using Lemma 2.2 in (3.32) we have

L =
A(1− x)

q2(q − 1)

∑

χ∈̂
F
×

q

g(Aχ)g(Bχ)g(C2χ)g(AC2χ)g(BC2χ)g(C2χ2)g(χ)

g(A)g(B)g(BC2)g(AC2)
χ

(
x2

x− 1

)

+ I1 + I2 − I3, (3.34)

where

I3 =
A(1− x)

q2

∑

χ∈̂
F
×

q

g(Aχ)g(Bχ)g(C2χ)g(AC2χ)g(BC2χ)g(χ)

g(A)g(B)g(BC2)g(AC2)
χ

(
x2

x− 1

)
δ(C2χ2)

=
A(1− x)C(x2)C(x − 1)

q2g(A)g(B)g(BC2)g(AC2)

[
g(AC)g(BC)g(C)g(AC)g(BC)g(C)

+g(ACϕ)g(BCϕ)g(Cϕ)g(ACϕ)g(BCϕ)g(Cϕ)ϕ(x − 1)
]
.

The last equality is obtained by putting χ = C,Cϕ. Using Lemma 2.1 on g(AC)g(AC),
g(BC)g(BC), g(ACϕ)g(ACϕ), g(BCϕ)g(BCϕ), g(C)g(C) and g(Cϕ)g(Cϕ) with
the fact that C2 6= ε, we have

I3 = I2 +
(q − 1)A(1− x)C(x2)C(1 − x)

qg(A)g(B)g(BC2)g(AC2)

[
(q − 1)δ(AC)δ(BC)− qBC(−1)δ(AC)

−qBC(−1)ϕ(x− 1)δ(ACϕ) + (q − 1)ϕ(1− x)δ(ACϕ)δ(BCϕ)

−qAC(−1)δ(BC)− qAC(−1)ϕ(x − 1)δ(BCϕ)
]
. (3.35)

Now using Lemma 2.7 in (3.34) we have

L =
A(1 − x)C(4)

q2(q − 1)

∑

χ∈̂
F
×

q

g(Aχ)g(Bχ)g(C2χ)g(AC2χ)g(BC2χ)g(Cχ)g(ϕCχ)g(χ)

g(A)g(B)g(BC2)g(AC2)g(ϕ)

× χ

(
x2

4(x− 1)

)
+ I1 + I2 − I3.

Multiplying both numerator and denominator by q4g(AC)g(BCϕ)ϕ(−1) and then
rearranging the terms we have

L =
q2ϕ(−1)C(4)A(1− x)g(AC)g(BCϕ)

(q − 1)g(ϕ)g(AC2)g(B)

×
∑

χ∈̂
F
×

q

(
g(Aχ)g(χ)χ(−1)

qg(A)

)(
g(Bχ)g(C2χ)χ(−1)

qg(BC2)

)(
g(AC2χ)g(Cχ)Cχ(−1)

qg(AC)

)

×
(
g(BC2χ)g(ϕCχ)ϕCχ(−1)

qg(BCϕ)

)
χ

(
x2

4x− 4

)
+ I1 + I2 − I3. (3.36)

Using Lemma 2.4 and the fact that A,BC2 6= ε in (3.36) we have

L =
q2ϕ(−1)C(4)A(1− x)g(AC)g(BCϕ)

(q − 1)g(ϕ)g(AC2)g(B)

∑

χ∈̂
F
×

q

(
Aχ

χ

)[(
AC2χ

Cχ

)
− q − 1

q
δ(AC)

]

×
(
Bχ

C2χ

)[(
BC2χ

Cϕχ

)
− q − 1

q
δ(BCϕ)

]
χ

(
x2

4x− 4

)
+ I1 + I2 − I3.
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Employing (1.3) yields

L =
qϕ(−1)C(4)A(1− x)g(AC)g(BCϕ)

g(ϕ)g(AC2)g(B)
4F3

(
A, B, AC2, BC2

C2, C, Cϕ
| −x2
4(1− x)

)

+
(q − 1)ϕ(−1)C(4)A(1 − x)g(AC)g(BCϕ)

g(ϕ)g(AC2)g(B)

[
q − 1

q
2F1

(
A, B

C2 | −x2
4(1− x)

)

×δ(AC)δ(BCϕ)− 3F2

(
A, B, BC2

C2, Cϕ
| −x2
4(1− x)

)
δ(AC)

−3F2

(
A, B, AC2

C2, C
| −x2
4(1− x)

)
δ(BCϕ)

]
+ I1 + I2 − I3. (3.37)

Finally combining (3.31), (3.33), (3.35) and (3.37), we complete the proof. �

4. Values of Gaussian Hypergeometric Series

In this section, we will deduce the special values of Gaussian hypergeometric
series. We first state two results of Greene on special values of Gaussian hypergeo-
metric series.

Lemma 4.1. ([13, (4.11)]) Let A,B ∈ F̂
×
q . Then we have

2F1

(
A, B

AB
| −1

)
=

{
0, if B 6= � ;(
C
A

)
+
(
ϕC
A

)
, if B = C2.

Lemma 4.2. ([13, (4.14)]) Let A,B ∈ F̂
×
q . Then we have

2F1

(
A, B

A2 | 2
)

= A(−1)

{
0, if B 6= � ;(
C
A

)
+
(
ϕC
A

)
, if B = C2.

Proof of Theorem 1.7. Putting B = Aχ4, C = A4 in Theorem 1.1 and then using
Lemma 2.1 we have

4F3

(
A2, A2ϕ, A2χ4, A2χ4

A4ϕ, A4, ϕ
| 4x(1− x)

)

=
A2χ4(4)g(A

2)g(ϕ)g(A2ϕ)2

qg(A2)g(A2χ4)g(A2χ4)
2F1

(
A2, A2ϕ

A4 | x
)

2F1

(
A2, A2ϕ

ϕ
| x
)

− A2ϕ(x)A2χ4(4)A6(1− x)g(ϕ)

qg(A2χ4)g(A2χ4)
δ

(
1− 2x

(1− x)2

)
. (4.1)

Using Theorem 2.12 (i) we have

2F1

(
A2, A2ϕ

A4 | x
)

2F1

(
A2, A2ϕ

ϕ
| x
)

= 2F1

(
A2, A2ϕ

ϕ
| (1− x)

)
2F1

(
A2, A2ϕ

ϕ
| x
)

=
J(A2ϕ,A2)2

q2

(
1 + ϕ(1 − x)

2

)

×
(
1 + ϕ(x)

2

)(
A4(1 +

√
1− x) +A4(1−

√
1− x)

)(
A4(1 +

√
x) +A4(1 −

√
x)
)
.

(4.2)
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The last equality obtained by using (1.7) and Lemma 2.11. Finally, using (4.2),
(4.1), Lemma 2.3 and Lemma 2.1 we complete the proof of (i). Replacing x by x

x−1

in Theorem 1.7 (i), we complete the proof of (ii). �

Proof of Theorem 1.9. Putting x = −1, B = A3ϕ in Corollary 3.3 and then using
Lemma 2.1 on g(A2)g(A2) and g(A4)g(A4) we have

3F2

(
A2, A6, A4ϕ

A8, A4 | −8

)
=
A(256)g(A2)2g(A6)

qg(A2)
2F1

(
A2, A6

A4 | −1

)2

− A(4096)

q
− (q − 1)

q3
ϕ(2)A(4096)g(A2ϕ)g(A2ϕ)δ(A4ϕ). (4.3)

We complete the proof by combining Lemma 4.1 and (4.3). �

Proof of Theorem 1.11. Putting A = χ4 and x = 1+
√
2

2 in Corollary 3.3 and then
using Lemma 2.1 we have

3F2

(
ϕ, B2, Bχ4

B2ϕ, Bχ4
| −1

)

=
Bχ4(4)g(B2)g(Bχ4)

2

qg(ϕ)
2F1

(
ϕ, B2

χ4B
| 1 +

√
2

2

)2

− Bχ4(−1)

q
, (4.4)

where B 6= ε, ϕ, χ4, χ4. From [22, Thm. 1.11], we have

2F1

(
ϕ, B2

χ4B
| 1±

√
2

2

)

=
χ4(4)B(−4)g(χ4B)g(χ4)g(Bϕ)

qg(ϕ)





0, if B 6= � ;(
D

χ4

)
+

(
Dϕ

χ4

)
, if B = D2.

(4.5)

Since q ≡ 1 (mod 8), we have χ4(4) = ϕ(2) = 1. Now, combining (4.5), (4.4), and
Lemma 2.1 we find that

M := 3F2

(
ϕ, B2, Bχ4

B2ϕ, Bχ4
| −1

)

= −B(−1)

q
+

B(4)

q2g(ϕ)
g(χ4)

2g(Bϕ)2g(B2)





0, if B 6= � ;[(
D

χ4

)
+

(
Dϕ

χ4

)]2
, if B = D2.

(4.6)

When B = D2 we have

M = −1

q
+
D2(4)

q2g(ϕ)
g(χ4)

2g(D2ϕ)2g(D4)

[(
D

χ4

)
+

(
Dϕ

χ4

)]2

= −1

q
+
g(χ4)g(Dχ4)g(Dχ4)g(D)g(Dϕ)

q2g(χ4)

[(
D

χ4

)
+

(
Dϕ

χ4

)]2
.

The last equality is obtained by using Lemma 2.7 on g(D2ϕ) and Lemma 2.9 on

g(D4). Employing Lemma 2.4 and Lemma 2.1 we find that

M =
D(−1)g(D)g(Dϕ)g(Dχ4)

q2g(Dχ4)
+
D(−1)g(D)g(Dϕ)g(Dχ4)

q2g(Dχ4)
+

1

q
. (4.7)
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Now using Lemma 2.3 and Lemma 2.1 we have

J(D,ϕ)J(Dχ4, ϕ) =
qg(D)g(Dχ4)

g(Dϕ)g(Dχ4)
. (4.8)

Using g(A) = A(−1)g(A), (4.8) yields

J(D,ϕ)J(Dχ4, ϕ) =
qg(D)g(Dχ4)

g(Dϕ)g(Dχ4)
. (4.9)

Combining (4.9), (4.8), (4.7) and Lemma 2.1 we find that

M =
1

q
+

2

q2
Re(J(D,ϕ)J(Dχ4, ϕ)), (4.10)

where B = D2. By Lemma 2.16 we have B(−1) = −1 if B is not a square. Now,
using (4.10) in (4.6) we have

3F2

(
ϕ, B2, Bχ4

B2ϕ, Bχ4
| −1

)
=





1

q
, if B 6= � ;

1

q
+

2

q2
Re(J(D,ϕ)J(Dχ4, ϕ)), if B = D2.

Clearly, B 6= ε, ϕ, χ4, χ4 if and only if Bχ4 6= ε, ϕ, χ4, χ4. We complete the proof
of the theorem by putting B = Cχ4. �

Proof of Theorem 1.12. Let S be a multiplicative character which is a square, and

let its order be strictly greater than 4. Putting A =
√
S3, B =

√
S and x = 2+

√
3

4
in Corollary 3.3 and then using Lemma 2.1 we have

3F2

(
S3, S, S

S2, Sϕ
| 1
4

)
=
S(4)g(S)g(S2ϕ)2

qg(S3)
2F1

(
S3, S

Sϕ
| 2 +

√
3

4

)2

− S(4)

q
.

(4.11)

From [22, Thm. 1.10], we have

2F1

(
S3, S2ϕ

S4
| 4

2±
√
3

)
=
S3(

√
3)S(16)g(S2ϕ)g(

√
S)

S3(
√
3± 2)g(ϕ)g(

√
S3)

×





0, if q ≡ 11 (mod 12);

S(8)S(27)J(
√
S,

√
S3ϕ)

J(ϕ, S)

[(
S

χ3

)
+

(
S

χ2
3

)]
, if q ≡ 1 (mod 12).

(4.12)

Employing Lemma 2.13 into (4.12), and then using Lemma 2.1, we deduce from
(4.11) that

M := 3F2

(
S3, S, S

S2, Sϕ
| 1
4

)
= −S(4)

q
+

ϕ(−1)g(S)g(
√
S)2J(

√
S,

√
S3ϕ)2

S(27)S(16)g(S3)g(
√
S3)2J(ϕ, S)2

×





0, if q ≡ 11 (mod 12);[(
S

χ3

)
+

(
S

χ2
3

)]2
, if q ≡ 1 (mod 12).

(4.13)
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Using Lemma 2.3 and Lemma 2.1 in (4.13), for q ≡ 1 (mod 12), we have

M = −S(4)
q

+
qS(16)S(27)g(S)g(

√
S3ϕ)2

g(S3)g(
√
S3)2g(S)2

[(
S

χ3

)
+

(
S

χ2
3

)]2
.

Using Lemma 2.7 on g(
√
S3), and then employing Lemma 2.1 we find that

M = −S(4)
q

+
qS(4)S(27)g(S)

g(S3)g(S)2

[(
S

χ3

)
+

(
S

χ2
3

)]2
.

Lemma 2.4, Lemma 2.8, and Lemma 2.1 yield

M =
S(4)

q2

[
q +

qg(χ2
3)

2

g(Sχ2
3)g(Sχ

2
3)

+
qg(χ3)

2

g(Sχ3)g(Sχ3)

]
. (4.14)

Using Lemma 2.3 and Lemma 2.7 we have

J(S, χ3)J(S, χ3) =
qg(χ3)

2

g(Sχ3)g(Sχ3)
. (4.15)

Using g(A) = A(−1)g(A), (4.15) yields

J(S, χ3)J(S, χ3) =
qg(χ2

3)
2

g(Sχ2
3)g(Sχ

2
3)
. (4.16)

Now, employing (4.16), (4.15) and (4.14) into (4.13) we have

3F2

(
S3, S, S

S2, Sϕ
| 1
4

)

=





−S(4)
q
, if q ≡ 11 (mod 12);

S(4)

q

[
q + 2Re(J(S, χ3)J(S, χ3))

]
, if q ≡ 1 (mod 12).

(4.17)

Using (1.3), Lemma 2.4, and Lemma 2.1 we find that

3F2

(
S3, S, S

S2, Sϕ
| 1
4

)
= 3F2

(
S, S3, S

S2, Sϕ
| 1
4

)
. (4.18)

Combining (4.17) and (4.18), and then putting S = C we complete the proof of the
theorem. �

Remark 4.3. By Lemma 2.15 we have ϕ(−1) = −1 if q ≡ 11 (mod 12) and
ϕ(−1) = 1 if q ≡ 1 (mod 12). To deduce Theorem 1.12 from [8, Theorem 1.3], we
need to use the values of ϕ(−1) accordingly.

Proof of Theorem 1.13. Putting B = A,C = A4 and x = 2 in Theorem 1.1 we have

2F1

(
A2, A2

A4 | 2
)

2F1

(
A2, A2

A4
| 2
)

=
qg(A2)g(A4)g(A4ϕ)

g(A2)2g(A6)g(ϕ)
4F3

(
A2, A2, ε, ϕ

ε, A4, A4
| −8

)

− (q − 1)g(A2)g(A4)g(A4ϕ)

g(A2)2g(A6)g(ϕ)
3F2

(
A2, A2, ϕ

ε, A4
| −8

)
δ(A4)

+
(q − 1)g(A2)

q2g(A2)2g(A6)

[
δ(A4) + q

]
. (4.19)
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From (1.3), (2.1) and using (2.3) on
(
A2χ
χ

)(
χ
A4χ

)
with the fact that A2 6= ε, we

obtain

4F3

(
A2, A2, ε, ϕ

ε, A4, A4
| −8

)
=

q

q − 1

∑

χ∈̂
F
×

q

(
A2χ

χ

)(
A2χ

χ

)(
χ

A4χ

)(
ϕχ

A4χ

)
χ(−8)

=

(
A2

A4

)
3F2

(
A2, A2, ϕ

A4, A4
| −8

)
+

1

q2

(
ϕ

A4

)
.

(4.20)

Using (1.5) and the fact that A2 6= ε we have

2F1

(
A2, A2

A4
| 2
)
=

(
A2

A4

)(
A2

A4

)−1

2F1

(
A2, A2

A4
| 2
)

=
g(A2)g(A6)

g(A2)2
2F1

(
A2, A2

A4
| 2
)
. (4.21)

The last equality is obtained by using Lemma 2.4. Finally, employing (4.21), (4.20),
Lemma 2.1 and Lemma 4.2 into (4.19) we complete the proof. �

Proof of Theorem 1.14. Using Lemma 2.4 and Lemma 2.1 in Theorem 1.13 we have

3F2

(
A2, A2, ϕ

A4, A4
| −8

)

=
g(ϕ)g(A2)

qg(A2)g(A4ϕ)
+

g(A)g(A2)g(ϕ)g(Aϕ)

qg(A2)g(A3)g(ϕA3)g(A4ϕ)
+

g(A)g(A2)g(Aϕ)g(ϕ)

qg(A2)g(A3)g(ϕA3)g(A4ϕ)
.

(4.22)

Now (1.3) and Lemma 2.4 yield

3F2

(
A2, A2, ϕ

A4, A4
| −8

)
=

g(ϕ)g(A2)

g(A2)g(A4ϕ)
3F2

(
ϕ, A2, A2

A4, A4
| −8

)
. (4.23)

Combining (4.23) and (4.22) we have

3F2

(
ϕ, A2, A2

A4, A4
| −8

)
=

1

q
+

g(A)g(Aϕ)

qg(A3)g(ϕA3)
+

g(A)g(Aϕ)

qg(A3)g(ϕA3)
. (4.24)

Using Lemma 2.3 we find that

A2(4)J(A2, A6)

q2J(A2, A2)

[
J(A2, A)2 + J(A2, Aϕ)2

]

=
A2(4)

q2

[
g(A)2g(A6)g(A2)

g(A3)2
+
g(Aϕ)2g(A6)g(A2)

g(A3ϕ)2

]

=
g(A)g(Aϕ)

qg(A3)g(ϕA3)
+

g(A)g(Aϕ)

qg(A3)g(ϕA3)
. (4.25)

The last equality is obtained by using Lemma 2.7 on g(A2) and g(A6), and then we
use Lemma 2.1. We now complete the proof by combining (4.25) and (4.24). �
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Proof of Theorem 1.15. Given that S is a character which is a square and its order
is strictly greater than 4. Putting A = S3, B = S2ϕ, C = S2 and x = 4

2+
√
3
in

Theorem 1.5 and using the fact that g(ε) = −1 we have

2F1

(
S3, S2ϕ

S4
| 4

2 +
√
3

)2

=
(q − 1)S(256)S(

√
3− 2)S5(2 +

√
3)

g(S3)g(S2ϕ)2g(S)

+
(q − 1)ϕ(−1)S(16)S3(

√
3− 2)S3(

√
3 + 2)g(S)

g(ϕ)g(S)g(S2ϕ)
3F2

(
S3, S2ϕ, S

S4, S2
| 4
)

− qϕ(−1)S(16)S3(
√
3− 2)S3(

√
3 + 2)g(S)

g(ϕ)g(S)g(S2ϕ)
4F3

(
S3, S2ϕ, S, S2ϕ

S4, S2, S2ϕ
| 4
)
.

(4.26)

Now using (1.3) and (2.1) we have

4F3

(
S3, S2ϕ, S, S2ϕ

S4, S2, S2ϕ
| 4
)
= −1

q
3F2

(
S3, S2ϕ, S

S4, S2
| 4
)
+ I1,

(4.27)

where

I1 =
∑

χ

(
S3χ

χ

)(
S2ϕχ

S4χ

)(
Sχ

S2χ

)
χ(4)δ(S2ϕχ)

= −ϕ(−1)S(16)

q

(
Sϕ

S2ϕ

)(
Sϕ

ϕ

)
= −S(16)g(ϕ)g(S

2ϕ)

q2g(S)g(S3)
= − ϕ(−1)S(16)g(ϕ)

qg(S)g(S3)g(S2ϕ)
.

(4.28)

The above equality is obtained by putting χ = S2ϕ and then using (2.2), Lemma
2.4, and Lemma 2.1. By combining (4.26), (4.12), (4.27), (4.28) and Lemma 2.1,
we have

3F2

(
S3, S2ϕ, S

S4, S2
| 4
)

= − ϕ(−1)S(16)g(ϕ)

g(S3)g(S2ϕ)g(S)
+
ϕ(−1)g(S)g(ϕ)g(S2ϕ)g(

√
S)2J(

√
S,

√
S3ϕ)2

qS(1024)S(27)g(S)g(
√
S3)2J(ϕ, S)2

×





0, if q ≡ 11 mod (12);[(
S

χ3

)
+

(
S

χ2
3

)]2
, if q ≡ 1 mod (12).

(4.29)

Lemma 2.3 and Lemma 2.1 yield

ϕ(−1)S(1024)S(27)g(S)g(ϕ)g(S2ϕ)g(
√
S)2J(

√
S,

√
S3ϕ)2

qg(S)g(
√
S3)2J(ϕ, S)2

=
qϕ(−1)S(1024)S(27)g(S)g(S2ϕ)g(

√
S3ϕ)2

g(S)3g(
√
S3)2g(ϕ)

=
ϕ(−1)S(16)S(27)g(S)g(S2ϕ)g(S3)2g(ϕ)

qg(S)3
. (4.30)
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The last equality is obtained by using Lemma 2.7 on g(
√
S3ϕ) and then using

Lemma 2.1. Combining (4.30) and (4.29) we have

3F2

(
S3, S2ϕ, S

S4, S2
| 4
)

= − ϕ(−1)S(16)g(ϕ)

g(S3)g(S2ϕ)g(S)
+
ϕ(−1)g(S)g(S2ϕ)g(S3)2g(ϕ)

qS(27)S(16)g(S)3

×





0, if q ≡ 11 mod (12);[(
S

χ3

)
+

(
S

χ2
3

)]2
, if q ≡ 1 mod (12).

(4.31)

Lemma 2.4 and (1.3) yield

3F2

(
S3, S2ϕ, S

S4, S2
| 4
)

=
g(S3)g(ϕ)

g(S2ϕ)g(S)
3F2

(
S3, S, S2ϕ

S4, S2
| 4
)
. (4.32)

Using (4.32) in (4.31) and then using Lemma 2.1 we have

3F2

(
S3, S, S2ϕ

S4, S2
| 4
)
= −ϕ(−1)S(16)

q

+
S(16)S(27)g(S)g(S3)

g(S)2





0, if q ≡ 11 mod (12);[(
S

χ3

)
+

(
S

χ2
3

)]2
, if q ≡ 1 mod (12).

(4.33)

Using Lemma 2.3 and Lemma 2.1 we have

J(S, S)

J(S3, S)
=
g(S)g(S3)

g(S)2
. (4.34)

Finally, combining (4.34) and (4.33) we complete the proof. �
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