Skip to main content

Advertisement

Log in

Burn and Wound Healing Using Radiation Sterilized Human Amniotic Membrane and Centella asiatica Derived Gel: a Review

  • REVIEW
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Burn injury is a common clinical concern that leads to morbidity and mortality, especially in the developing countries. Nowadays, it is a world-wide challenge for the patients due to the long-term hospital stay and undue side effects for microbial contamination of marketed burn dressing materials. So, scientists are trying hard to find out materials with fewer side effects, more cost-effective, and easily available to reduce the sufferings of burn patients. For this, researchers from all over the world are giving great focus on the biomaterials such as human amniotic membrane (AM) and various plant extracts. AM and Centella asiatica (CA), a medicinal plant, are individually used for burn and wound healing. AM heals quicker than any other wound healing components in the case of 1st- and 2nd-degree burn. Furthermore, CA contains various important alkaloids, phenolics, asiatic acid, madecassic acid, asiaticoside, and madecassoside. Among them, asiatic acid and madecassic acid exert anti-inflammatory, apoptotic effect, while asiaticoside and madecassoside stimulate collagen (I, II, III) synthesis, new blood vessel formation that ultimately helps to burn wound healing. Moreover, vimentin and α-SMA produced by CA also help in faster healing. Since burn patients suffer a lot of difficulties and complexities due to the slow rate of epithelization, a time-consuming process and several side effects of the available burn-healing agents, this review focuses on the synergistic and complementary effects of AM and CA for faster burn and wound healing.

Lay Summary

Burn injury is increasing day by day worldwide and this phenomenon is suspected to be persistent. Although treatment exists, it is expensive and takes a longer period to heal and sometimes shows adverse effects. Since AM and CA are available and widely used as burn and wound dressing material, a gel mixed with both of them may be used to boost up burn healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AM :

amniotic membrane

CA :

Centella asiatica

SSD :

silver sulfadiazine

ITBBR :

Institute of Tissue Banking and Biomaterial Research

VEGF :

vascular endothelial growth factor

HGF :

hepatocyte growth factor

TGF :

transforming growth factor

HLA :

human leukocyte antigen

DR :

differential regulation

MSC :

mesenchymal stem cells

SLPI :

secretary leukocyte proteinase inhibitor

AECS :

amniotic epithelial cells

AMCS :

amniotic mesenchymal cells

References

  1. Mohammadi AA, Amini M, Mehrabani D, Kiani Z, Seddigh A. A survey on 30 months electrical burns in Shiraz University of Medical Sciences burn hospital. Burns. 2008;34:111–3.

    Google Scholar 

  2. Pasalar M, Mohammadi A, Rajaeefard A, Neghab M, Tolide-ie HR, Mehrabani D. Epidemiology of burns during pregnancy in southern Iran: effect on maternal and fetal outcomes. World Appl Sci J. 2013;28:153–8.

    Google Scholar 

  3. Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch Dermatol Res. 2013;305:585–94.

    CAS  Google Scholar 

  4. Moghbel A, Ghalambor A, Allipanah S. Wound healing and toxicity evaluation of aloe vera cream on outpatients with second degree burns. Iran J Pharm Sci. 2007;3:157–60.

    Google Scholar 

  5. Shukla A, Rasik AM, Jain GK, Shankar R, Kulshrestha DK, Dhawan BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J Ethnopharmacol. 1999;65:1–11.

    CAS  Google Scholar 

  6. Hosseini SN, Karimian A, Mousavinasab SN, Rahmanpour H, Yamini M, Zahmatkesh SH. Xenoderm versus 1% silver sulfadiazine in partial-thickness burns. Asian J Surg. 2009;32:234–9.

    Google Scholar 

  7. Gomez R, Cancio L. Management of burn wounds in the emergency department. Emerg Med Clin N Am. 2007;25:135–46.

    Google Scholar 

  8. Hosseini SV, Tanideh N, Kohanteb J, Ghodrati Z, Mehrabani D, Yarmohammadi H, et al. Int J Surg (London, England). 2007;5:23–6.

    Google Scholar 

  9. Hussain S, Ferguson C. Best evidence topic report. Silver sulphadiazine cream in burns. Emerg Med J. 2006;23:929–32.

    Google Scholar 

  10. Pollard S, Aye N, Symonds E. Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol. 1976;83:470–7.

    CAS  Google Scholar 

  11. van Herendael B, Oberti C, Brosens I. Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol. 1978;131:872–80.

    Google Scholar 

  12. Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant. 2014;4(2):111–21.

    Google Scholar 

  13. Agarwal A, Shankar S, Singh G, Saxena P, Tahseen A. Pleiotropic properties of amniotic membrane for modulation of periodontal healing. Int J Dent Med Res. 2014;1:110–7.

    Google Scholar 

  14. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26(2):300–11.

    Google Scholar 

  15. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30:2–10.

    CAS  Google Scholar 

  16. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105:215–28.

    CAS  Google Scholar 

  17. Benirschke K, Kaufman P. Pathology of the human placenta. 5th ed. New York: Springer-Verlag; 2000.

    Google Scholar 

  18. Bourne G. The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol. 1960;79:1070–3.

    CAS  Google Scholar 

  19. Benedetto M, De Cicco F, Rossiello F, Nicosia A, Lupi G, Dell AS. Oxytocin receptor in human fetal membranes at term and during labor. J Steroid Biochem. 1990;35:205–8.

    CAS  Google Scholar 

  20. Blackburn S. Maternal, Fetal and Neonatal Physiology: a clinical prospective, 5th edn. An imprint of Elsevier Science, Saunders, Australia; 2013.

  21. King B. Related distribution and characterization of anionic sites in the basal lamina of developing human amniotic epithelium. Anat Rec. 1985;212:57–62.

    CAS  Google Scholar 

  22. Wolf H, Schmidt W, Drenckhahn D. Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res. 1991;266:385–9.

    CAS  Google Scholar 

  23. Akashi T, Miyagi T, Ando N, Suzuki Y, Nemoto T, Eishi Y, et al. Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol. 1999;187:223–8.

    CAS  Google Scholar 

  24. Cirman T, Beltram M, Schollmayer P, Rozman P, Kreft ME. Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank. 2014;15(2):177–92.

    CAS  Google Scholar 

  25. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

    CAS  Google Scholar 

  26. Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg. 1995;48(7):477–8.

    CAS  Google Scholar 

  27. Halim AS, Khoo TL, Yussof SJM. Biologic and synthetic skin substitutes: an overview. Indian J PlastSurg. 2010;43(Suppl):S23–8.

    Google Scholar 

  28. Trelford J, Trelford-Sauder M. The amnion in surgery, past and present. Am J ObstetGynecol. 1979;134(7):833–45.

    CAS  Google Scholar 

  29. Matthews R, Faulk W, Bennett J. A review of the role of amniotic membranes in surgical practice. Obstet Gynecol Ann. 1982;11:31–58.

    CAS  Google Scholar 

  30. Rao TV, Chandrasekharam V. Use of dry human bovine amnion as a biological dressing. Arch Surg. 1981;116(7):891–6.

    CAS  Google Scholar 

  31. Colocho G, Graham WP, Greene AE, Matheson DW, Lynch D. Human amniotic membrane as a physiologic wound dressing. Arch Surg. 1974;109(3):370–3.

    CAS  Google Scholar 

  32. Talmi Y, Finkelstein Y, Zohar Y. Use of human amniotic membrane as a biologic dressing. Eur J PlastSurg. 1990;13(4):160–2.

    Google Scholar 

  33. Burleson R, Eiseman B. Nature of the bond between partial-thickness skin and wound granulations. Surgery. 1972;72(2):315–22.

    CAS  Google Scholar 

  34. Burleson R, Eiseman B. Mechanisms of antibacterial effect of biologic dressings. Ann Surg. 1973;177:181–6.

    CAS  Google Scholar 

  35. Walker AB, Cooney DR, Allen JE. Use of fresh amnion as burn dressing. J PediatrSurg. 1977;12(3):391–5.

    CAS  Google Scholar 

  36. Singh R, Chacharkar M. Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability. 2011;20:49–54.

    Google Scholar 

  37. Sharma SC, Bagree MM, Bhat AL, Banga BB, Singh MP. Amniotic membrane is an effective burn dressing material. Jpn J Surg. 1985;15:140–3.

    CAS  Google Scholar 

  38. Ghalambor A, Pipilzadeh MH, Khodadadi A. The amniotic membrane: a suitable biological dressing to prevent infection in thermal burns. Med J Islam Acad Sci. 2000;13:115–8.

    Google Scholar 

  39. Robson M, Krizek T, Koss N, Samburg J. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet. 1973;136:904–6.

    CAS  Google Scholar 

  40. Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y. Antibacterial properties of human amniotic membranes. Placenta. 1991;12(3):285–8.

    CAS  Google Scholar 

  41. King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28(2–3):161–9.

    CAS  Google Scholar 

  42. Bose B. Burn wound dressing with human amniotic membrane. Ann R Coll Surg Engl. 1979;61(6):444–7.

    CAS  Google Scholar 

  43. Ravishanker R, Bath A, Roy R. Amnion Bank -the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns. 2003;29(4):369–74.

    CAS  Google Scholar 

  44. Pigeon J. Treatment of second-degree burns with amniotic membranes. Can Med Assoc J. 1960;83:844–5.

    CAS  Google Scholar 

  45. Mohammadi AA, Sabet B, Riazi H. Human amniotic membrane dressing: an excellent method for outpatient management of burn wounds. Iran J Med Sci. 2009;34:61–4.

    Google Scholar 

  46. Mostaque A, Rahman K. Comparisons of the effects of biological membrane (amnion) and silver sulfadiazine in the management of burn wounds in children. J Burn Care Res. 2011;32:200–9.

    Google Scholar 

  47. Fraser JF, Cuttle L, Kempf M, Phillips GE, Hayes MT, Kimble RM. A randomised controlled trial of amniotic membrane in the treatment of a standardised burn injury in the merino lamb. Burns. 2009;35(7):998–1003.

    Google Scholar 

  48. Kirschbaum S, Hernandez H. Use of amnion in extensive burns. In: 3rd International Congress in Plastic Surgery. Excerpta Medica, Amsterdam; 1963.

  49. Chopra A, Thomas BS. Amniotic membrane: a novel material for regeneration and repair. J BiomimBiomater Tissue Eng. 2013;18:106–13.

    Google Scholar 

  50. Mishra S, Singh S. Human amniotic membrane: can it be a ray of hope in periodontal regeneration? Indian J Res. 2014;3(9):118–21.

    Google Scholar 

  51. Bapat C, Kothary P. Preliminary report on acceleration of wound healing by amnion membrane graft. Indian J Med Res. 1974;62(9):1342–6.

    CAS  Google Scholar 

  52. Faulk WP, Matthews R, Stevens PJ, Bennet JP, Burgos H, Hsi BL. Human amnion as an adjunct in wound healing. Lancet. 1980;1(8179):1156–8.

    CAS  Google Scholar 

  53. Burgos H, Sergeant R. Lyophilized human amniotic membranes used in reconstruction of the ear. J R Soc Med. 1983;76:433.

    CAS  Google Scholar 

  54. Mamedov N, Gardner Z, Craker L. Medicinal plants of Russia and Central Asia used in the treatment of selected skin conditions. J Herbs Spices Med Plants. 2005;11:191–222.

    Google Scholar 

  55. Cheng C, Koo M. Effects of Centella asiatica on ethanol induced gastric mucosal lesions in rats. Life Sci. 2000;67:2647–53.

    CAS  Google Scholar 

  56. Shrestha P, Dhillion S. Medicinal plant diversity and use in the highlands of Dolakha district. Nepal J Ethnopharmacol. 2003;86:81–96.

    Google Scholar 

  57. Somchit M, Sulaiman M, Zuraini A, Samsuddin L, Somchit N, Israf D, et al. Antinociceptive and anti-inflammatory effects of Centella asiatica. Indian J Pharmacol. 2004;36:377–80.

    Google Scholar 

  58. Maquart F, Chastang F, Simeon A, et al. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9:289–96.

    CAS  Google Scholar 

  59. Liu M, Dai Y, Li Y, Luo Y, Huang F, Gong Z, et al. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med. 2008;74:809–15.

    CAS  Google Scholar 

  60. Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement Altern Med. 2012;12(1):103.

    Google Scholar 

  61. Kosalwatna S, Shaipanich C, Bhanganada K. The effect of one percent Centella asiatica cream on chronic ulcers. Siriraj Hosp Gaz. 1988;40:455–60.

    Google Scholar 

  62. Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on Asiatic acid and its derivatives: a potential compound. SLAS Technol. 2018;23(2):111–27.

    CAS  Google Scholar 

  63. Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72(5):546–56.

    Google Scholar 

  64. Abdulla MA, AL-Bayaty FH, Younis LT, Abu Hassan MI. Anti-ulcer activity of Centella asiatica leaf extract against ethanol-induced gastric mucosal injury in rats. 4(13):1253–1259. 4 July 2010.

  65. Devkota A, Dall’Acqua S, Comai S, Innocenti G, Jha PK. Centella asiatica (L.) urban from Nepal: quali-quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochem Sys Ecol. 2010;38:12–22.

    CAS  Google Scholar 

  66. Brinkhaus B, Lindner M, Schuppan D. Hahn EG chemical, pharmacological and clinical profile of the east Asian medical plant Centella Asiatica. Phytomedicine. 2000;7:427–48.

    CAS  Google Scholar 

  67. Heidari M, Heidari-Vala H, Sadeghi M, Akhondi M. The inductive effects of Centella asiatica on rat spermatogenic cell apoptosis in vivo. J Nat Med. 2012;66:271–8.

    Google Scholar 

  68. Coldren C, Hashim P, Ali J, Oh S, Sinskey A, Rha C. Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med. 2003;69:725–32.

    CAS  Google Scholar 

  69. Jeong B. Structure-activity relationship study of Asiatic acid derivatives for new wound healing agent. Arch Pharm Res. 2006;29:556–62.

    CAS  Google Scholar 

  70. Lu L, Ying K, Wei S, Liu Y, Lin H, Mao Y. Dermal fibroblast-associated gene induction by asiaticoside shown in vitro by DNA microarray analysis. Br J Dermatol. 2004;151:571–8.

    CAS  Google Scholar 

  71. Lu L, Ying K, Wei S, Fang Y, Liu Y, Lin H, et al. Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Intern J Dermatol. 2004;43:801–7.

    CAS  Google Scholar 

  72. Barnes J, Anderson LA, Philipson JD. Herbal medicines. 3rd ed. London: Pharmaceutical Press; 2007.

    Google Scholar 

  73. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. Centella asiatica in cosmetology. Postep Derm Alergol. 2013;XXX(1):46–9.

    Google Scholar 

  74. Hamid IS, Widjaja NMR, Damayanti R. Anticancer activity of Centella asiatica leaves extract in benzo(a)pyrene-induced mice. Int J Pharmacogn Phytochem Res. 2016;8(1):80–4.

    Google Scholar 

  75. Chen Y, Han T, Qin L, Rui Y, Zheng H. Effect of total triterpenes from Centella asiatica on the depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai. 2003;26:870–3.

    Google Scholar 

  76. Chen Y, Han T, Rui Y, Yin M, Qin L, Zheng H. Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai. 2005;28:492–6.

    Google Scholar 

  77. Basile A, Ferrara L, Del Pozzo M, Mele G, Sorbo S, Bassi P, et al. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana. Mart J Ethnopharmacol. 2005;102:32–6.

    Google Scholar 

  78. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Rad Biol Med. 1997;22:749–60.

    CAS  Google Scholar 

  79. Sari DCR, Aswin S, Susilowati R, Ar-Rochmah M, Prakosa D, Romi M, et al. Ethanol extracts of Centella asiatica leaf improves memory performance in rats after chronic stress via reducing nitric oxide and increasing brain-derived neurotrophic factor (BDNF) concentration. GSTF Int J Psychol (JPsych). 2014;1(1):61–7.

    Google Scholar 

  80. Oyedeji OA, Afolayan AJ. Chemical composition and antibacterial activity of the essential oil of Centella asiatica. Growing in South Africa. Pharma Biol. 2005;43(3):249–52.

    CAS  Google Scholar 

  81. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed. 2005;22(2):165–70.

    CAS  Google Scholar 

  82. Pitinidhipat N. Antibacterial activity of Chrysanthemum indicum, Centella asiatica and Andrographis paniculata against Bacillus cereus and listeria monocytogenes under osmotic stress. AUJT. 2015;15(4):239–45.

    Google Scholar 

  83. Sekar T, Ayyanar M, Pillai YJ. Phytochemical screening and antibacterial activity of leaf and callus extracts of Centella asiatica. Bangladesh J Pharmacol. 2011;6(1):55–60.

    Google Scholar 

  84. Dash BK, Faruquee HM, Biswas SK, Alam MK, Sisir SM, Prodhan UK. Antibacterial and antifungal activities of several extracts of Centella asiatica L against some human pathogenic microbes. Life Sci Med Res. 2011;2011:1–5.

    Google Scholar 

  85. Dhiman R, Aggarwal N, Aneja KR, Kaur M. In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int J Microbiol. 2016;2016:9015802.

    Google Scholar 

  86. Idris NA, Nadzir MM. Antimicrobial activity of Centella asiatica on Aspergillus Niger and Bacillus subtilis. Chem Eng Trans. 2017;56:1381–6.

    Google Scholar 

  87. Sultan RA, Mahmood SB, Azhar I, Ahmed SW, Mahmood ZA. Biological activities assessment of Centella asiatica (Linn.). J Herbs Spices Med Plants. 2014;20(3):319–27.

    Google Scholar 

  88. Kuo YS, Chien HF, Lu W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid-Based Compl Alt. 2012;2012:1–9.

    Google Scholar 

  89. Bonfill M, Mangas S, Cusido R, Osuna L, Pinol M, Palazon J. Identification of triterpenoid compounds of Centellaasiatica by thin-layer chromatography and mass spectrometry. Biomed Chromatogr. 2006;20:151–3.

    CAS  Google Scholar 

  90. Islam MM, Hossain ML, Diba F, Hasan MZ, Juliana FM, Asaduzzaman SM. The combined effect of amniotic membrane and Moringa oleifera leaves derived gel for wound and burn healing in rat model. Regen Eng Transl Med. 2018;1(1):1–10.

    Google Scholar 

  91. Yifeng K, Yixiang W, Xuan C, Xun L, Min Y, Chunbo Y, et al. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoSONE. 2015;10(3):1–18.

    Google Scholar 

  92. Mayefis D. Burn wound healing activity of the combination of Centella asiatica extract and papaya latex on male white mice. Int J Res Pharm Pharm Sci. 2016;1(4):07–12.

    Google Scholar 

  93. Metcalf DG, Bowler PG. Biofilm delays wound healing: a review of the evidence. Burns Trauma. 2015;1:5–12.

    Google Scholar 

  94. Rosen H, Blumenthal A, McCallum J. Effect of asiaticoside on wound healing in the rat. Proc Soc Exp Biol Med. 1967;125:279–80.

    CAS  Google Scholar 

  95. Incandela L, Cesarone MR, Cacchio M, De Sanctis MT, Santavenere C, D’Auro MG, et al. Total triterpenic fraction of Centella asiatica in chronic venous insuffi ciency and in high-perfusion microangiopathy. Angiology. 2001;52:S9–13.

    Google Scholar 

  96. Lee J, Jung E, Kim Y, Park J, Park J, Hong S, et al. Asiaticoside induced human collagen I synthesis through TGF-beta receptor I kinase (TbetaRI kinase) – independent smad signaling. Planta Med. 2006;72:324–8.

    CAS  Google Scholar 

  97. Stephen-Haynes J, Gibson E, Greenwood M. Chitosan: a natural solution for wound healing. J Comm Nurs. 2014;28:48–53.

    Google Scholar 

  98. Jie J, Yang J, He H, Zheng J, Wang W, Zhang L, et al. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane. Sci Rep. 2018;8:6400.

    Google Scholar 

  99. Alitalo K, Kurkinen M, Vaheri A. Extracellular matrix components synthesized by human amniotic epithelial cells in culture 1980;19:1053–1062.

  100. Ramesh B, Chandrasekaran J, Jeevankumar S, Jacob G, Cherian KM. Hybrid amniotic membrane dressing with green silver nanoparticles as bioengineered skin for wounds and burns: a pilot studies. J Biotechnol Biomater. 2017;7:272.

    Google Scholar 

  101. Patel NA, Patel M, Patel RP. Formulation and evaluation of Polyherbal gel for wound healing. Int Res J Pharm. 2011;1:1–6.

    CAS  Google Scholar 

  102. Prakash V, Jaiswal NI, Srivastava MR. A review on medicinal properties of Centella asiatica. Asian J Pharm Clin Res. 2017;10(10):69.

    CAS  Google Scholar 

  103. Saeidinia A, Keihanian F, Lashkari A, Lahiji H, Studenta M, Mobayyen M, et al. Partial-thickness burn wounds healing by topical treatment: a randomized controlled comparison between silver sulfadiazine and centiderm. Medicine. 2017;96(9):61–8.

    Google Scholar 

  104. Davis J. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med. 1910;15:307.

    Google Scholar 

  105. Stern M. The grafting of preserved amniotic membranes to burned and ulcerated surfaces, substituting skin grafts. JAMA. 1913;60:973.

    Google Scholar 

  106. Sabella N. Use of the fetal membranes in skin grafting. Med Rec. 1913;83:478–80.

    Google Scholar 

  107. Wu F, Bian D, Xia Y, Gong Z, Tan Q, Chen J, et al. Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs. Evid-Based Compl Alt. 2012;2012:1–13.

    Google Scholar 

  108. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2:18–28.

    CAS  Google Scholar 

  109. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al. Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med. 2015;9:E252–66.

    CAS  Google Scholar 

  110. Hou Q, Li M, Lu YH, Liu DH, Li CC. Burn wound healing properties of asiaticoside and madecassoside. Exp Ther Med. 2016;12(3):1269–74.

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank all the authors of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Asaduzzaman.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The Institute of Tissue Banking and Biomaterial Research (ITBBR) performs its research and developmental activities with human tissue samples under the authority of the Bangladesh Atomic Energy Commission with the strong cooperation of the International Atomic Energy Commission (IAEA). Besides, two government bills had been passed entitled “Human Organ/Tissue Donation and Transplantation Act (5/1999)” and “Safe Blood Transfusion Act (12/2002)”. ITBBR strongly follows the guideline of IAEA regarding Tissue Banking set up, e.g., the American Association of Tissue Bank (AATB) and the European Association of Tissue Bank (EATB). And samples are collected at ITBBR getting informed consent from the patients.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.L., Rahman, M.A., Siddika, A. et al. Burn and Wound Healing Using Radiation Sterilized Human Amniotic Membrane and Centella asiatica Derived Gel: a Review. Regen. Eng. Transl. Med. 6, 347–357 (2020). https://doi.org/10.1007/s40883-019-00122-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00122-5

Keywords

Navigation