Skip to main content

Advertisement

Log in

A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Bacterial infections associated with biomaterials are currently regarded as the most severe and devastating complications for their use as implants and medical devices. Biofilm is the major cause of bacterial infections associated with biomaterials. This review presents the biofilm formation, associated infections, and their current prevention strategies. The loss of efficacy of conventional antibiotic therapies leads to the development of antibacterial surfaces and coatings. Multifunctional surfaces and coatings can prevent biofilm formation and can become a novel strategy to fight biofilm. In this review, attention is focused on different surface modification techniques, surface coatings, and their current manufacturing methods to produce antibacterial biomaterials using surface engineering and nanobiotechnology.

Lay Summary

Implants and medical devices are widely used in present day medicine in different ways. Implant infections caused by bacteria lead to serious complications and failure of implants. Bacteria attach to the surface of implants and form colonies called biofilm which is a major cause of implant-associated bacterial infections. The conventional antibiotic therapies present various limitations in biofilm treatment. Promising strategies based on material science and surface engineering are being developed to address these limitations. This review article discusses the different non-conventional methods to treat biofilms. A specific discussion involves surface modifications, surface coatings, and their interactions with biofilm-causing bacteria. Establishing standardized procedures for testing toxicity and tissue integration of these surfaces and coatings will guide the future strategies in developing infection-resistant biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gallieni M, Giordano A, Pinerolo C, Cariati M. Type of peritoneal dialysis catheter and outcomes. J Vasc Access. 2015;16(9_suppl):S68–72. https://doi.org/10.5301/jva.5000369.

    Article  Google Scholar 

  2. Lawrence EL, Turner I. Materials for urinary catheters: a review of their history and development in the UK. Med Eng Phys. 2005;27:443–53. https://doi.org/10.1016/j.medengphy.2004.12.013.

    Article  CAS  Google Scholar 

  3. Timsit JF, Dubois Y, Minet C, Bonadona A, Lugosi M, Ara-Somohano C, et al. New materials and devices for preventing catheter-related infections. Ann Intensive Care. 2011;1:34. https://doi.org/10.1186/2110-5820-1-34.

    Article  Google Scholar 

  4. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28(9):1689–710. https://doi.org/10.1016/j.biomaterials.2006.11.042.

    Article  CAS  Google Scholar 

  5. Mancini D, Colombo PC. Left Ventricular Assist Devices: A rapidly evolving alternative to transplant. J Am Coll Cardiol. 2015;65(23):2542–55. https://doi.org/10.1016/j.jacc.2015.04.039.

    Article  Google Scholar 

  6. Paglia E, Carter J. Cardiac pacemakers. Hosp Med Clin. 2017;6(3):374–96. https://doi.org/10.1016/j.ehmc.2017.04.007.

    Article  Google Scholar 

  7. Jaffer IH, Whitlock RP. A mechanical heart valve is the best choice. Heart Asia. 2016;8:62–4. https://doi.org/10.1136/heartasia-2015-010660.

    Article  Google Scholar 

  8. Pashneh-Tala S, MacNeil S, Claeyssens F. Tissue Eng B Rev. 2016. https://doi.org/10.1089/ten.teb.2015.0100.

  9. Ferguson RJ, Palmer AJR, Taylor A, Porter ML, Malchau H, Glyn-Jones S. Hip and knee replacement 1 Hip replacement. Lancet. 2018:1662–71. https://doi.org/10.1016/S0140-6736(18)31777-X.

  10. Andrew J, Price AA, Troelsen A, Katz JN, Hooper G, Gray A, et al. Hip and knee replacement 2 Knee replacement. Lancet. 2018:1672–82. https://doi.org/10.1016/S0140-6736(18)32344-4.

  11. Mihra S. Taljanovic, Marci D. Jones, John T. Ruth, James B. Benjamin, Joseph E. Sheppard, Tim B. Hunter, Fracture fixation, RadioGraphics, 2003, pp. 1569–1590. https://doi.org/10.1148/rg.236035159.

  12. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015:932–58. https://doi.org/10.3390/ma8030932.

  13. Bilsel Y, Abci I. The search for ideal hernia repair; mesh materials and types. Int J Surg. 2012:317–21. https://doi.org/10.1016/j.ijsu.2012.05.002.

  14. Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc10. https://doi.org/10.3205/cto000062.

    Article  Google Scholar 

  15. Zaki M, Pardo J, Carracedo G. A review of international medical device regulations: contact lenses and lens care solutions. Cont Lens Anterior Eye. 2019;42(2):136–46. https://doi.org/10.1016/j.clae.2018.11.001.

    Article  Google Scholar 

  16. Alio J, Plaza-Puche AB, Férnandez-Buenaga R, Pikkel J, Maldonado M. Multifocal intraocular lenses: an overview. Surv Ophthalmol. 2017. https://doi.org/10.1016/j.survophthal.2017.03.005.

  17. Rodriguez KM, Kohn TP, Davis AB, Hakky TS. Penile implants: a look into the future. Transl Androl Urol. 2017;6(Suppl 5):S860–6. https://doi.org/10.21037/tau.2017.05.28.

    Article  Google Scholar 

  18. Maxwell GP, Gabriel A. Breast implant design. Gland Surg. 2017;6(2):148–53. https://doi.org/10.21037/gs.2016.11.09.

    Article  Google Scholar 

  19. Singh R, Hawkins W. Sutures, ligatures and knots. Surgery (Oxford). 2017;35(4):185–9. https://doi.org/10.1016/j.mpsur.2017.01.017.

    Article  Google Scholar 

  20. Sutherland IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9(5):222–7. https://doi.org/10.1016/S0966-842X(01)02012-1.

    Article  CAS  Google Scholar 

  21. Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol. 2002;68(9):4194–200. https://doi.org/10.1128/aem.68.9.4194-4200.2002.

    Article  CAS  Google Scholar 

  22. Gristina AG, Hobgood CD, Webb LX, Myrvik QN. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials. 1987;8(6):423–6. https://doi.org/10.1016/0142-9612(87)90077-9.

    Article  CAS  Google Scholar 

  23. Prosser BL, Taylor D, Dix BA, Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987;31(10):1502–6. https://doi.org/10.1128/aac.31.10.1502.

    Article  CAS  Google Scholar 

  24. Rice L. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31(S1):S7–S10. https://doi.org/10.1086/655995.

    Article  Google Scholar 

  25. Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347–55. https://doi.org/10.1557/mrs.2011.65.

    Article  CAS  Google Scholar 

  26. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem. 2016;80(1):7–12. https://doi.org/10.1080/09168451.2015.1058701.

    Article  CAS  Google Scholar 

  27. Peters G, Locci R, Pulverer G. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis. 1982;146(4):479–82. https://doi.org/10.1093/infdis/146.4.479.

    Article  CAS  Google Scholar 

  28. von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulasenegative staphylococci. Lancet Infect Dis. 2002;2(11):677–85. https://doi.org/10.1016/S1473-3099(02)00438-3.

    Article  Google Scholar 

  29. Espersen F, Wilkinson BJ, Gahrn-Hansen B, Rosdahl VT, Clemmensen I. Attachment of staphylococci to silicone catheters in vitro. APMIS. 1990;98:471–8. https://doi.org/10.1111/j.1699-0463.1990.tb01059.x.

    Article  CAS  Google Scholar 

  30. Herrmann M, Vaudaux PE, Pittet D, Auckenthaler R, Lew PD, Perdreau FS, et al. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis. 1988;158(4):693–701. https://doi.org/10.1093/infdis/158.4.693.

    Article  CAS  Google Scholar 

  31. Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7. https://doi.org/10.3389/fcimb.2015.00007.

    Article  CAS  Google Scholar 

  32. Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, et al. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun. 2002;70(6):3180–6. https://doi.org/10.1128/iai.70.6.3180-3186.2002.

    Article  Google Scholar 

  33. Geraci J, Neubauer S, Pöllath C, Hansen U, Rizzo F, Krafft C, et al. The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci Rep. 2017;7(1):13665. https://doi.org/10.1038/s41598-017-14168-4.

    Article  CAS  Google Scholar 

  34. Alabdullatif M, Ramirez-Arcos S. Biofilm-associated accumulation-associated protein (Aap): a contributing factor to the predominant growth of Staphylococcus epidermidis in platelet concentrates. Vox Sang. 2019;114:28–37. https://doi.org/10.1111/vox.12729.

    Article  CAS  Google Scholar 

  35. Tormo MÁ, Martí M, Valle J, Manna AC, Cheung AL, Lasa I, et al. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol. 2005;187(7):2348–56. https://doi.org/10.1128/JB.187.7.2348-2356.200.

    Article  CAS  Google Scholar 

  36. Rupp CJ, Fux CA, Stoodley P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol. 2005;71(4):2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

    Article  CAS  Google Scholar 

  37. Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, et al. Role of the luxs quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun. 2005;74(1):488–96. https://doi.org/10.1128/IAI.74.1.488-496.2006.

    Article  CAS  Google Scholar 

  38. Mitchell G, Fugère A, Pépin Gaudreau K, Brouillette E, Frost EH, et al. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS One. 2013;8(5):e65018. https://doi.org/10.1371/journal.pone.0065018.

    Article  Google Scholar 

  39. Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol. 2001;183(8):2624–33. https://doi.org/10.1128/JB.183.8.2624-2633.2001.

    Article  CAS  Google Scholar 

  40. Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64:175–88.

    Article  CAS  Google Scholar 

  41. NIH research on microbial biofilms. Available online: http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html.

  42. Potera C. Forging a link between biofilms and disease. Science. 1999;283:1837–9.

    Article  CAS  Google Scholar 

  43. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11. https://doi.org/10.1016/j.jcma.2017.07.012.

    Article  Google Scholar 

  44. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol. July 2012;65(2):127–45. https://doi.org/10.1111/j.1574-695X.2012.00968.x.

    Article  CAS  Google Scholar 

  45. Del Pozo JL. Biofilm-related disease. Expert Rev Anti-Infect Ther. 2018;16(1):51–65. https://doi.org/10.1080/14787210.2018.1417036.

    Article  CAS  Google Scholar 

  46. Dasgupta MK, Larabie M. Biofilms in peritoneal dialysis. Perit Dial Int. 2001;21:S213–7.

    Article  Google Scholar 

  47. Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control. 2004;32(3):177–83. https://doi.org/10.1016/j.ajic.2003.08.005.

    Article  Google Scholar 

  48. Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? APMIS. 2017;125:365–75.

    Article  CAS  Google Scholar 

  49. Baddour LM, et al. Infections of cardiovascular implantable electronic devices. N Engl J Med. 2012;367:842–9.

    Article  CAS  Google Scholar 

  50. Padera RF. Infection in ventricular assist devices: the role of biofilm. Cardiovasc Pathol. 2006;15(5):264–70. https://doi.org/10.1016/j.carpath.2006.04.008.

    Article  CAS  Google Scholar 

  51. Santos APA, Watanabe E, de Andrade D. Biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol. 2011;97(5):e113–20. https://doi.org/10.1590/S0066-782X2011001400018.

    Article  Google Scholar 

  52. Piper C, Körfer R, Horstkotte D. Prosthetic valve endocarditis. Heart. 2001;85:590–3.

    Article  CAS  Google Scholar 

  53. Zetrenne E, McIntosh BC, McRae MH, Gusberg R, Evans GR, Narayan D. Prosthetic vascular graft infection: a multi-center review of surgical management. Yale J Biol Med. 2007;80(3):113–21.

    Google Scholar 

  54. Geipel U. Pathogenic organisms in hip joint infections. Int J Med Sci. 2009;6(5):234–40. https://doi.org/10.7150/ijms.6.234.

    Article  CAS  Google Scholar 

  55. Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125:353–64.

    Article  Google Scholar 

  56. Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009;72(2):104–10. https://doi.org/10.1016/j.jhin.2009.02.010.

    Article  CAS  Google Scholar 

  57. Falagas ME, Velakoulis S, Iavazzo C, Athanasiou S. Mesh-related infections after pelvic organ prolapse repair surgery. Eur J Obstet Gynecol Reprod Biol. 2007;134(2):147–56. https://doi.org/10.1016/j.ejogrb.2007.02.024.

    Article  Google Scholar 

  58. Ciorba A, Bovo R, Trevisi P, et al. Eur Arch Otorhinolaryngol. 2012;269:1599. https://doi.org/10.1007/s00405-011-1818-1.

    Article  CAS  Google Scholar 

  59. Thissen H, Gengenbach T, du Toit R, Sweeney DF, Kingshott P, Griesser HJ, et al. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials. 2010;31(21):5510–9. https://doi.org/10.1016/j.biomaterials.2010.03.040.

    Article  CAS  Google Scholar 

  60. Shimizu K, Kobayakawa S, Tsuji A, Tochikubo T. Biofilm formation on hydrophilic intraocular lens material. Curr Eye Res. 2006;31(12):989–97. https://doi.org/10.1080/02713680601038816.

    Article  CAS  Google Scholar 

  61. Muench PJ. Infections versus penile implants: the war on bugs. J Urol. 2013;189(5):1631–7. https://doi.org/10.1016/j.juro.2012.05.080.

    Article  Google Scholar 

  62. Ajdic D, Zoghbi Y, Gerth D, Panthaki Z, Thaller S. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthet Surg J. 2016;36(3):297–309. https://doi.org/10.1093/asj/sjv177.

    Article  Google Scholar 

  63. Edmiston CE Jr, Krepel CJ, Marks RM, Rossi PJ, Sanger J, Goldblatt M, et al. Microbiology of explanted suture segments from infected and noninfected surgical patients. J Clin Microbiol. 2013;51(2):417–21. https://doi.org/10.1128/JCM.02442-12.

    Article  CAS  Google Scholar 

  64. Shah SR, Tatara AM, D’Souza RN, Mikos AG, Kasper FK. Evolving strategies for preventing biofilm on implantable materials. Mater Today. 2013;16(5):177–82. https://doi.org/10.1016/j.mattod.2013.05.003.

    Article  CAS  Google Scholar 

  65. Mendel V, Simanowski HJ, Scholz HC, et al. Arch Orthop Trauma Surg. 2005;125:363. https://doi.org/10.1007/s00402-004-0774-2.

    Article  CAS  Google Scholar 

  66. Tofuku K, Koga H, Yanase M, et al. Eur Spine J. 2012;21:2027. https://doi.org/10.1007/s00586-012-2435-4.

    Article  Google Scholar 

  67. Park MS, Kim YB. Sustained release of antibiotic from a fibrin-gelatin-antibiotic mixture. Laryngoscope. 1997;107:1378–81. https://doi.org/10.1097/00005537-199710000-00016.

    Article  CAS  Google Scholar 

  68. Becker PL, Smith RA, Williams RS, Dutkowsky JP. Comparison of antibiotic release from polymethylmethacrylate beads and sponge collagen. J Orthop Res. 1994;12:737–41. https://doi.org/10.1002/jor.1100120517.

    Article  CAS  Google Scholar 

  69. Miclau T, Dahners LE, Lindsey RW. In vitro pharmacokinetics of antibiotic release from locally implantable materials. J Orthop Res. 1993;11:627–32. https://doi.org/10.1002/jor.1100110503.

    Article  CAS  Google Scholar 

  70. Kent ME, Rapp RP, Smith KM. Antibiotic beads and osteomyelitis: here today, what’s coming tomorrow? Orthopedics. 2006;29:599–603.

    Article  Google Scholar 

  71. Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol. 2009;2:370–8. https://doi.org/10.1111/j.1751-7915.2009.00098.x.

    Article  CAS  Google Scholar 

  72. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9. https://doi.org/10.1126/science.1188628.

    Article  CAS  Google Scholar 

  73. Jennings JA, Courtney HS, Haggard WO. Clin Orthop Relat Res. 2012;470:2663. https://doi.org/10.1007/s11999-012-2388-2.

    Article  Google Scholar 

  74. Davies DG, Marques CNH. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 2009;191(5):1393–403. https://doi.org/10.1128/JB.01214-08.

    Article  CAS  Google Scholar 

  75. Hughes K, Sutherland I, Jones M. Microbiology. 144(11):3039–47. https://doi.org/10.1099/00221287-144-11-3039.

  76. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci. 2007;104(27):11197–202. https://doi.org/10.1073/pnas.0704624104.

    Article  CAS  Google Scholar 

  77. Desai NP, Hubbell JA. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules. 1992;25(1):226–32. https://doi.org/10.1021/ma00027a038.

    Article  CAS  Google Scholar 

  78. Desai NP, Hubbell JA. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials. 1991;12(2):144–53. https://doi.org/10.1016/0142-9612(91)90193-E.

    Article  CAS  Google Scholar 

  79. Lowenberg BF, Pilliar RM, Aubin JE, Sodek J, Melcher AH. Cell attachment of human gingival fibpoblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor. Biomaterials. 1988;9(4):302–9. https://doi.org/10.1016/0142-9612(88)90023-3.

    Article  CAS  Google Scholar 

  80. Schakenraad JM, Arends J, Busscher HJ, Dijk F, van Wachem PB, Wildevuur CRH. Kinetics of cell spreading on protein precoated substrata: a study of interfacial aspects. Biomaterials. 1989;10(1):43–50. https://doi.org/10.1016/0142-9612(89)90008-2.

    Article  CAS  Google Scholar 

  81. Gun J, Sagiv J. On the formation and structure of self-assembling monolayers: III. Time of formation, solvent retention, and release. J Colloid Interface Sci. 1986;112(2):457–72. https://doi.org/10.1016/0021-9797(86)90114-1.

    Article  CAS  Google Scholar 

  82. Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96(4):1533–54. https://doi.org/10.1021/cr9502357.

    Article  CAS  Google Scholar 

  83. Senaratne W, Andruzzi L, Ober CK. Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules. 2005;6(5):2427–48. https://doi.org/10.1021/bm050180a.

    Article  CAS  Google Scholar 

  84. Rauf S, Zhou D, Abell C, Klenermanb D, Kang D-J. Building three-dimensional nanostructures with active enzymes by surface templated layer-by-layer assembly. https://doi.org/10.1039/b517557g.

  85. Quinn JF, Johnston APR, Such GK, Zelikina AN, Caruso F. Next generation, sequentially assembled ultrathin films: beyond electrostatics. https://doi.org/10.1039/B610778H.

  86. Such GK, Johnston APR, Caruso F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. https://doi.org/10.1039/C0CS00001A.

  87. Davila J, Harriman A. Photosensitized oxidation of biomaterials and related model compounds. Photochem Photobiol. 1989;50:29–35. https://doi.org/10.1111/j.1751-1097.1989.tb04126.x.

    Article  CAS  Google Scholar 

  88. Gabriel M, van Nieuw Amerongen GP, van Hinsbergh VWM, van Nieuw Amerongen AV, Zentner A. Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. J Biomater Sci Polym Ed. 2006;17(5):567–77. https://doi.org/10.1163/156856206776986288.

    Article  CAS  Google Scholar 

  89. Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075–82. https://doi.org/10.1016/j.biomaterials.2004.08.005.

    Article  CAS  Google Scholar 

  90. Nam YS, Yoon JJ, Lee JG, Park TG. Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process. J Biomater Sci Polym Ed. 1999;10(11):1145–58. https://doi.org/10.1163/156856299X00801.

    Article  CAS  Google Scholar 

  91. Ratner BD. Characterization of graft polymers for biomedical applications. J Biomed Mater Res. 1980;14:665–87. https://doi.org/10.1002/jbm.820140512.

    Article  CAS  Google Scholar 

  92. Ruckenstein E, Li ZF. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Colloid Interf Sci. 2005;113(1):43–63. https://doi.org/10.1016/j.cis.2004.07.009.

    Article  CAS  Google Scholar 

  93. Ratner BD. Plasma deposition for biomedical applications: a brief review. J Biomater Sci Polym Ed. 1993;4(1):3–11. https://doi.org/10.1163/156856292X00240.

    Article  Google Scholar 

  94. Nitschke M. Plasma modification of polymer surfaces and plasma polymerization. In: Stamm M, editor. Polymer surfaces and interfaces. Berlin, Heidelberg: Springer; 2008.

    Google Scholar 

  95. Hume EBH, Baveja J, Muir B, Schubert TL, Kumar N, Kjelleberg S, et al. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials. 2004;25(20):5023–30. https://doi.org/10.1016/j.biomaterials.2004.01.048.

    Article  CAS  Google Scholar 

  96. Barrios CA, Xu Q, Cutright T, Newby B-m Z. Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment. Colloids Surf B: Biointerfaces. 2005;41(2–3):83–93. https://doi.org/10.1016/j.colsurfb.2004.09.009.

    Article  CAS  Google Scholar 

  97. Dell’orto S, Cattò C, Villa F, Forlani F, Vassallo E, Morra M, et al. Low density polyethylene functionalized with antibiofilm compounds inhibits Escherichia coli cell adhesion. J Biomed Mater Res A. 2017;2017(105A):3251–61.

    Article  Google Scholar 

  98. Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, et al. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater. 2012;8(5):1869–80. https://doi.org/10.1016/j.actbio.2012.01.032.

    Article  CAS  Google Scholar 

  99. Norcy TL, Niemann H, Proksch P, Linossier I, Vallée-Réhel K, Hellio C, et al. Anti-biofilm effect of biodegradable coatings based on hemibastadin derivative in marine environment. Int J Mol Sci. 2017;18(7):1520. https://doi.org/10.3390/ijms18071520.

    Article  CAS  Google Scholar 

  100. Cattò C, James G, Villa F, Villa S, Cappitelli F. Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation. Biofouling. 2018;34(4):440–52. https://doi.org/10.1080/08927014.2018.1462342.

    Article  CAS  Google Scholar 

  101. Zhao C, Deng B, Chen G, et al. Nano Res. 2016;9:963. https://doi.org/10.1007/s12274-016-0984-2.

    Article  CAS  Google Scholar 

  102. Su XJ, Zhao Q, Wang S, Bendavid A. Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion. Surf Coat Technol. 2010;204(15):2454–8. https://doi.org/10.1016/j.surfcoat.2010.01.022.

    Article  CAS  Google Scholar 

  103. Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 2008;24(13):6409–13. https://doi.org/10.1021/la800951v.

    Article  CAS  Google Scholar 

  104. Ma J, Sun Y, Gleichauf K, Lou J, Langmuir QL. Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions. 2011;27(16):10035–40. https://doi.org/10.1021/la2010024.

  105. Cheng YT, Rodak DE, Wong CA, Hayden CA. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology. 2006;17:1359–62.

    Article  Google Scholar 

  106. Watson GS, Green DW, Lin S, Li X, Cribb BW, Myhra S, et al. A gecko skin micro/nano structure – a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater. 2015;21:109–22. https://doi.org/10.1016/j.actbio.2015.03.007.

    Article  CAS  Google Scholar 

  107. Wen L, Weaver JC, Lauder GV. Biomimetic shark skin: design, fabrication and hydrodynamic function. J Exp Biol. 2014;217:1656–66. https://doi.org/10.1242/jeb.097097.

    Article  Google Scholar 

  108. Hasan J, Webb HK, Truong VK, et al. Appl Microbiol Biotechnol. 2013;97:9257. https://doi.org/10.1007/s00253-012-4628-5.

    Article  CAS  Google Scholar 

  109. Kelleher SM, Habimana O, Lawler J, O’Reilly B, Daniels S, Casey E, et al. Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces. 2016;8(24):14966–74. https://doi.org/10.1021/acsami.5b08309.

    Article  CAS  Google Scholar 

  110. Bixler GD, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 2013;5:7685. https://doi.org/10.1039/C3NR01710A.

    Article  CAS  Google Scholar 

  111. Ivanova EP, et al. Bactericidal activity of black silicon. Nat Commun. 2013;4:2838. https://doi.org/10.1038/ncomms3838.

    Article  CAS  Google Scholar 

  112. Szewczyk PK, Knapczyk-Korczak J, Ura DP, Metwally S, Gruszczyński A, Stachewicz U. Biomimicking wetting properties of spider web from Linothele megatheloides with electrospun fibers. Mater Lett. 2018. https://doi.org/10.1016/j.matlet.2018.09.007.

  113. Acikgoz C, Hempenius MA, Huskens J, Vancso GJ. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polym J. 2011;47(11):2033–52. https://doi.org/10.1016/j.eurpolymj.2011.07.025.

    Article  CAS  Google Scholar 

  114. Zhang G, Wang D. Colloidal lithography—the art of nanochemical patterning. Chem Asian J. 2009;4:236–45. https://doi.org/10.1002/asia.200800298.

    Article  CAS  Google Scholar 

  115. Wood MA. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface. 2007;4:1–17. https://doi.org/10.1098/rsif.2006.0149.

    Article  CAS  Google Scholar 

  116. Wang Y, Zhang M, Lai Y, Chi L. Advanced colloidal lithography: from patterning to applications. Nano Today. 2018;22:36–61. https://doi.org/10.1016/j.nantod.2018.08.010.

    Article  CAS  Google Scholar 

  117. Puliyalil H, Cvelbar U. Selective plasma etching of polymeric substrates for advanced applications. Nanomaterials. 2016;6(6):108. https://doi.org/10.3390/nano6060108.

    Article  CAS  Google Scholar 

  118. Vasilev K, Griesser SS, Griesser HJ. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process Polym. 2011;8:1010–23. https://doi.org/10.1002/ppap.201100097.

    Article  CAS  Google Scholar 

  119. Joseph Nathanael A, Han SS, Oh TH. Polymer-assisted hydrothermal synthesis of hierarchically arranged hydroxyapatite nanoceramic. J Nanomater. 2013;2013:962026, 8 pages. https://doi.org/10.1155/2013/962026.

    Article  CAS  Google Scholar 

  120. Tsimbouri PM, et al. Osteogenic and bactericidal surfaces from hydrothermal titanium nanowires on titanium substrates. Sci Rep. 2016;6:36857. https://doi.org/10.1038/srep36857.

    Article  CAS  Google Scholar 

  121. Qing D, Wei D, Liu S, Cheng S, Hu N, Wang Y, et al. The hydrothermal treated Zn-incorporated titania based microarc oxidation coating: surface characteristics, apatite-inducing ability and antibacterial ability. Surf Coat Technol. 2018;352:489–500. https://doi.org/10.1016/j.surfcoat.2018.08.007.

    Article  CAS  Google Scholar 

  122. García LEG, MacGregor MN, Visalakshan RM, Ninan N, Cavallaro AA, Trinidad AD, et al. Self-sterilizing antibacterial silver-loaded microneedles. Chem Commun. 2019;55:171. https://doi.org/10.1039/C8CC06035E.

    Article  Google Scholar 

  123. Mücklich F, Lasagni A, Daniel C. Laser interference metallurgy – using interference as a tool for micro/nano structuring. Int J Mater Res. 2006;97(10):1337–44. https://doi.org/10.3139/146.101375.

    Article  Google Scholar 

  124. Lasagni A, D’Alessandria M, Giovanelli R, Mücklich F. Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy. Appl Surf Sci. 2007;254(4):930–6. https://doi.org/10.1016/j.apsusc.2007.08.010.

    Article  CAS  Google Scholar 

  125. Chi GJ, Yao SW, Fan J, Zhang WG, Wang HZ. Antibacterial activity of anodized aluminum with deposited silver. Surf Coat Technol. 2002;157(2–3):162–5. https://doi.org/10.1016/S0257-8972(02)00150-0.

    Article  CAS  Google Scholar 

  126. Gilani S, Ghorbanpour M, Parchehbaf Jadid A. J Nanostruct Chem. 2016;6:183. https://doi.org/10.1007/s40097-016-0194-1.

    Article  CAS  Google Scholar 

  127. Zhao D-Y, Huang Z-P, Wang M-J, Wang T, Jin Y. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications. J Mater Process Technol. 2012;212(1):198–202. https://doi.org/10.1016/j.jmatprotec.2011.09.002.

    Article  CAS  Google Scholar 

  128. Diu T, Faruqui N, Sjöström T, Lamarre B, Jenkinson HF, Su B, et al. Cicada-inspired cell-instructive nanopatterned arrays. Sci Rep. 2014;4:7122. https://doi.org/10.1038/srep07122.

    Article  CAS  Google Scholar 

  129. Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, Van Der Mei HC, Choi CH. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl Mater Interfaces. 2015;7:20304–13. https://doi.org/10.1021/acsami.5b05947.

    Article  CAS  Google Scholar 

  130. Bhadra CM, Khanh Truong V, Pham VTH, Al Kobaisi M, Seniutinas G, Wang JY, et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep. 2015;5:16817. https://doi.org/10.1038/srep16817.

    Article  CAS  Google Scholar 

  131. Fisher LE, Yang Y, Yuen M-F, Zhang W, Nobbs AH, Su B. Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases. 2016;11:11014. https://doi.org/10.1116/1.4944062.

    Article  CAS  Google Scholar 

  132. Hasan J, Raj S, Yadav L, Chatterjee K. Engineering a nanostructured “super surface” with superhydrophobic and superkilling properties. RSC Adv. 2015;5:44953–9. https://doi.org/10.1039/C5RA05206H.

    Article  CAS  Google Scholar 

  133. Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF. Nanopatterned polymer surfaces with bactericidal properties. Biointerphases. 2015;10:21010. https://doi.org/10.1116/1.4922157.

    Article  CAS  Google Scholar 

  134. Valle J, Burgui S, Langheinrich D, Gil C, Solano C, Toledo-Arana A, et al. Evaluation of surface microtopography engineered by direct laser interference for bacterial antibiofouling. Macromol Biosci. 2015;15:1060–9. https://doi.org/10.1002/mabi.201500107.

    Article  CAS  Google Scholar 

  135. Wu S, Zuber F, Brugger J, Maniura-Weber K, Ren Q. Antibacterial Au nanostructured surfaces. Nanoscale. 2016:2620–5. https://doi.org/10.1039/C5NR06157A.

  136. Moore B, Asadi E, Lewis G. Deposition methods for microstructured and nanostructured coatings on metallic bone implants: a review. Adv Mater Sci Eng. 2017;2017:5812907, 9 pages. https://doi.org/10.1155/2017/5812907.

    Article  CAS  Google Scholar 

  137. Bakhshandeh S, Yavari SA. Electrophoretic deposition: a versatile tool against biomaterial associated infections. J Mater Chem B. 2018;6:1128. https://doi.org/10.1039/C7TB02445B.

    Article  CAS  Google Scholar 

  138. Amiri S, Rahimi A. Iran Polym J. 2016;25:559. https://doi.org/10.1007/s13726-016-0440-x.

    Article  CAS  Google Scholar 

  139. Champagne VK, Helfritch DJ. A demonstration of the antimicrobial effectiveness of various copper surfaces. J Biol Eng. 2013;7(1):8. https://doi.org/10.1186/1754-1611-7-8.

    Article  CAS  Google Scholar 

  140. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84. https://doi.org/10.1038/nrmicro3028.

  141. Phillips DJ, Harrison J, Richards SJ, Mitchell DE, Tichauer E, Hubbard A, et al. Evaluation of the antimicrobial activity of cationic polymers against mycobacteria: toward antitubercular macromolecules. Biomacromolecules. 2017;18(5):1592–9. https://doi.org/10.1021/acs.biomac.7b00210.

    Article  CAS  Google Scholar 

  142. Carmona-Ribeiro AM, De Melo Carrasco LD. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013;14(5):9906–46.

    Article  Google Scholar 

  143. Baier G, Cavallaro A, Friedemann K, Müller B, Glasser G, Vasilev K, et al. Enzymatic degradation of poly(l-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects. Nanomedicine. 2014;10(1):131–9. https://doi.org/10.1016/j.nano.2013.07.002.

    Article  CAS  Google Scholar 

  144. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res. 2009;91B:470–80. https://doi.org/10.1002/jbm.b.31463.

    Article  CAS  Google Scholar 

  145. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012.

    Article  CAS  Google Scholar 

  146. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543–75. https://doi.org/10.3390/ph6121543.

    Article  CAS  Google Scholar 

  147. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. https://doi.org/10.3389/fcimb.2016.00194.

    Article  CAS  Google Scholar 

  148. Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat S. Antimicrobial peptides in biomedical device manufacturing. Front Chem. 2017;5:63. https://doi.org/10.3389/fchem.2017.00063.

    Article  CAS  Google Scholar 

  149. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202–15. https://doi.org/10.1016/j.jconrel.2008.05.020.

    Article  CAS  Google Scholar 

  150. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Appl Environ Microbiol. 2017;83(3):e02508–16. https://doi.org/10.1128/AEM.02508-16.

    Article  Google Scholar 

  151. Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS. 2017;125:304–19.

    Article  Google Scholar 

  152. Graham MV, Cady NC. Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings. 2014;4(1):37–59. https://doi.org/10.3390/coatings4010037.

    Article  CAS  Google Scholar 

  153. Reza Nejadnik M, van der Mei HC, Norde W, Busscher HJ. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials. 2008;29(30):4117–21. https://doi.org/10.1016/j.biomaterials.2008.07.014.

    Article  CAS  Google Scholar 

  154. Muszanska AK, Rochford ETJ, Gruszka A, Bastian AA, Busscher HJ, Norde W, et al. Antiadhesive polymer brush coating functionalized with antimicrobial and rgd peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15(6):2019–26. https://doi.org/10.1021/bm500168s.

    Article  CAS  Google Scholar 

  155. Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B. 2018;6:4274. https://doi.org/10.1039/C8TB01245H.

    Article  CAS  Google Scholar 

  156. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–9. https://doi.org/10.1016/j.biomaterials.2007.05.041.

    Article  CAS  Google Scholar 

  157. Schlenoff JB. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir. 2014;30(32):9625–36. https://doi.org/10.1021/la500057j.

    Article  CAS  Google Scholar 

  158. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(6):2655–61. https://doi.org/10.1128/AAC.00045-11.

    Article  CAS  Google Scholar 

  159. Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov. 2013;8:68. https://doi.org/10.2174/1574891X11308010012.

    Article  CAS  Google Scholar 

  160. Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21:5. https://doi.org/10.2174/1381612820666140905114627.

    Article  CAS  Google Scholar 

  161. Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978. https://doi.org/10.1155/2019/2015978.

    Article  CAS  Google Scholar 

  162. Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, et al. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol. 2017;37(4):525–40. https://doi.org/10.1080/07388551.2016.1199010.

    Article  CAS  Google Scholar 

  163. Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, et al. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther. 2017;25(9):2104–16. https://doi.org/10.1016/j.ymthe.2017.06.021.

    Article  CAS  Google Scholar 

  164. Sadrearhami Z, Nguyen T, Namivandi-Zangeneh R, Jung K, Wong EHH, Boyer C. Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. J Mater Chem B. 2018;6:2945. https://doi.org/10.1039/C8TB00299A.

    Article  CAS  Google Scholar 

  165. Zhu W, Wang Y, Li K, Gao J, Huang CH, Chen CC, et al. Antibacterial drug leads: DNA and enzyme multitargeting. J Med Chem. 2015;58(3):1215–27. https://doi.org/10.1021/jm501449u.

    Article  CAS  Google Scholar 

  166. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, et al. Noneluting Enzymatic Antibiofilm Coatings. ACS Appl Mater Interfaces. 2012;4(9):4708–16. https://doi.org/10.1021/am3010847.

    Article  CAS  Google Scholar 

  167. Chung PY, Toh YS. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis. 2014;70(3):231–9. https://doi.org/10.1111/2049-632X.12141.

    Article  CAS  Google Scholar 

  168. Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067.

    Article  Google Scholar 

  169. Gambino M, Cappitelli F. Mini-review: biofilm responses to oxidative stress. Biofouling. 2016;32(2):167–78. https://doi.org/10.1080/08927014.2015.1134515.

    Article  CAS  Google Scholar 

  170. Hope CK, Wilson M. Induction of lethal photosensitization in biofilms using a confocal scanning laser as the excitation source. J Antimicrob Chemother. 2006;57(6):1227–30. https://doi.org/10.1093/jac/dkl096.

    Article  CAS  Google Scholar 

  171. de Melo WC, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, et al. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti-Infect Ther. 2013;11(7):669–93. https://doi.org/10.1586/14787210.2013.811861.

    Article  CAS  Google Scholar 

  172. Shrestha A, et al. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 40(10):1604–10. https://doi.org/10.1016/j.joen.2014.03.009.

  173. Castillo-Martínez JC, Martínez-Castañón GA, Martínez-Gutierrez F, et al. Antibacterial and antibiofilm activities of the photothermal therapy using gold nanorods against seven different bacterial strains. J Nanomater. 2015;2015:783671, 7 pages. https://doi.org/10.1155/2015/783671.

    Article  CAS  Google Scholar 

  174. Teng CP, Zhou T, Ye E, Liu S, Koh LD, Low M, et al. Effective targeted photothermal ablation of multidrug resistant bacteria and their biofilms with NIR-absorbing gold nanocrosses. Adv Healthc Mater. 2016;5:2122–30. https://doi.org/10.1002/adhm.201600346.

    Article  CAS  Google Scholar 

  175. Jia X, Ahmad I, Yang R, Wang C. Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. J Mater Chem B. 2017;5:2459. https://doi.org/10.1039/C6TB03084J.

    Article  CAS  Google Scholar 

  176. Pourhajibagher M, Chiniforush N, Ghorbanzadeh R, Bahador A. Photo-activated disinfection based on indocyanine green against cell viability and biofilm formation of Porphyromonas gingivalis. Photodiagn Photodyn Ther. 2017;17:61–4. https://doi.org/10.1016/j.pdpdt.2016.10.003.

    Article  CAS  Google Scholar 

  177. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9. https://doi.org/10.1016/S0142-9612(97)00245-7.

    Article  CAS  Google Scholar 

  178. Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher HJ. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149(Pt 11):3239e46. https://doi.org/10.1099/mic.0.26519-0.

    Article  CAS  Google Scholar 

  179. Hendricks SK, Kwok C, Shen M, Horbett TA, Ratner BD, Bryers JD. Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation. J Biomed Mater Res. 2000;50:160–70. https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<160::AID-JBM10>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  180. Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13(6):1853–63. https://doi.org/10.1021/bm300345e.

    Article  CAS  Google Scholar 

  181. Zhang F, Zhang Z, Zhu X, Kang E-T, Neoh K-G. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29(36):4751–9. https://doi.org/10.1016/j.biomaterials.2008.08.043.

    Article  CAS  Google Scholar 

  182. Webster TJ, Patel AA, Rahaman MN, Sonny Bal B. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. Acta Biomater. 2012;8(12):4447–54. https://doi.org/10.1016/j.actbio.2012.07.038.

    Article  CAS  Google Scholar 

  183. Ma Y, Chen M, Jones JE, Ritts AC, Yu Q, Sun H. Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother. 2012;56(11):5923–37. https://doi.org/10.1128/AAC.01739-1.

    Article  CAS  Google Scholar 

  184. Berry JA, Biedlingmaier JF, Whelan PJ. In vitro resistance to bacterial biofilm formation on coated fluoroplastic tympanostomy tubes. Otolaryngol Head Neck Surg. 2000;123(3):246–51. https://doi.org/10.1067/mhn.2000.107458.

    Article  CAS  Google Scholar 

  185. Kenan DJ, Walsh EB, Meyers SR, O’Toole GA, Carruthers EG, Lee WK, et al. Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem Biol. 2006;13(7):695–700. https://doi.org/10.1016/j.chembiol.2006.06.013.

    Article  CAS  Google Scholar 

  186. Stallard CP, McDonnell KA, Onayemi OD, O’Gara JP, Dowling DP. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases. 2012;7:31. https://doi.org/10.1007/s13758-012-0031-0.

    Article  CAS  Google Scholar 

  187. Tebbs SE, Elliott TSJ. Eur J Clin Microbiol Infect Dis. 1994;13:111. https://doi.org/10.1007/BF01982182.

    Article  CAS  Google Scholar 

  188. Popelka A, Novák I, Lehocký M, Chodák I, Sedliačik J, Gajtanska M, et al. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules. 2012;17:762–85.

    Article  CAS  Google Scholar 

  189. Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of coated VICRYL* plus antibacterial suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surg Infect. 2002;3(s1):s79–87. https://doi.org/10.1089/sur.2002.3.s1-79.

    Article  Google Scholar 

  190. Cao Z, Sun Y. N-halamine-based chitosan: preparation, characterization, and antimicrobial function. J Biomed Mater Res. 2008;85A:99–107. https://doi.org/10.1002/jbm.a.31463.

    Article  CAS  Google Scholar 

  191. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials. 2007;28(6):909–15. https://doi.org/10.1016/j.biomaterials.2006.10.009.

    Article  CAS  Google Scholar 

  192. Luo J, Sun Y. Acyclic N-halamine-based biocidal tubing: preparation, characterization, and rechargeable biofilm-controlling functions. J Biomed Mater Res. 2008;84A:631–42. https://doi.org/10.1002/jbm.a.31301.

    Article  CAS  Google Scholar 

  193. Cen L, Neoh KG, Kang ET. Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine). J Biomed Mater Res. 2004;71A:70–80. https://doi.org/10.1002/jbm.a.30125.

    Article  CAS  Google Scholar 

  194. Kevin B, Liang J, Wu R, Worley SD, Lee J, Broughton RM, et al. Huang, synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin]. Biomaterials. 2006;27(27):4825–30. https://doi.org/10.1016/j.biomaterials.2006.05.023.

    Article  CAS  Google Scholar 

  195. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79:465–71. https://doi.org/10.1002/bit.10299.

    Article  CAS  Google Scholar 

  196. Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83:168–72. https://doi.org/10.1002/bit.10651.

    Article  CAS  Google Scholar 

  197. Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang T-S. N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials. 2006;27(11):2495–501. https://doi.org/10.1016/j.biomaterials.2005.11.020.

    Article  CAS  Google Scholar 

  198. Pfeufer NY, Hofmann-Peiker K, Mühle M, et al. Bioactive coating of titanium surfaces with recombinant human β-defensin-2 (rHuβD2) may prevent bacterial colonization in orthopaedic surgery. J Bone Joint Surg Am. 2011;93(9):840e6. https://doi.org/10.2106/JBJS.I.01738.

    Article  Google Scholar 

  199. Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, et al. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol. 2009;16(1):58–69. https://doi.org/10.1016/j.chembiol.2008.11.006.

    Article  CAS  Google Scholar 

  200. Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, et al. New bactericidal surgical suture coating. Langmuir. 2012;28(33):12134–9. https://doi.org/10.1021/la302732w.

    Article  CAS  Google Scholar 

  201. Willcox M, Hume E, Aliwarga Y, Kumar N, Cole N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol. 2008;105:1817–25. https://doi.org/10.1111/j.1365-2672.2008.03942.x.

    Article  CAS  Google Scholar 

  202. Jing FJ, Huang N, Liu YW, Zhang W, Zhao XB, Fu RK, et al. Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition. J Biomed Mater Res. 2008;87A:1027–33. https://doi.org/10.1002/jbm.a.31838.

    Article  CAS  Google Scholar 

  203. Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, et al. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res. 2011;97B:40–8. https://doi.org/10.1002/jbm.b.31784.

    Article  CAS  Google Scholar 

  204. Heidenau F, Mittelmeier W, Detsch R, et al. J Mater Sci Mater Med. 2005;16:883. https://doi.org/10.1007/s10856-005-4422-3.

    Article  CAS  Google Scholar 

  205. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomedicine. 2011;6:331–41. https://doi.org/10.2147/IJN.S16964.

    Article  CAS  Google Scholar 

  206. Zhang Y, Zhong S, Zhang M, et al. J Mater Sci. 2009;44:457. https://doi.org/10.1007/s10853-008-3129-5.

    Article  CAS  Google Scholar 

  207. Jeon H-J, Yi S-C, Seong-Geun O. Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials. 2003;24(27):4921–8. https://doi.org/10.1016/S0142-9612(03)00415-0.

    Article  CAS  Google Scholar 

  208. Colon G, Ward BC, Webster TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res. 2006;78A:595–604. https://doi.org/10.1002/jbm.a.30789.

    Article  CAS  Google Scholar 

  209. Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials. Dent Mater. 2008;24(2):244–9. https://doi.org/10.1016/j.dental.2007.04.015.

    Article  CAS  Google Scholar 

  210. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904–15. https://doi.org/10.1016/j.actbio.2011.09.031.

    Article  CAS  Google Scholar 

  211. Applerot G, Abu-Mukh R, Irzh A, Charmet J, Keppner H, Laux E, et al. Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes. ACS Appl Mater Interfaces. 2010;2(4):1052–9. https://doi.org/10.1021/am900825h.

    Article  CAS  Google Scholar 

  212. Lellouche J, Kahana E, Elias S, Gedanken A, Banin E. Antibiofilm activity of nanosized magnesium fluoride. Biomaterials. 2009;30(30):5969–78. https://doi.org/10.1016/j.biomaterials.2009.07.037.

    Article  CAS  Google Scholar 

  213. Jansson T, Clare-Salzler ZJ, Zaveri TD, Mehta S, Dolgova NV, Chu BH, et al. Antibacterial effects of zinc oxide nanorod surfaces. J Nanosci Nanotechnol. 2012;12(9):7132e8. https://doi.org/10.1166/jnn.2012.6587.

    Article  CAS  Google Scholar 

  214. Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:261–7. https://doi.org/10.2147/IJN.S63807.

    Article  CAS  Google Scholar 

  215. Grandi S, Cassinelli V, Bini M, Saino E, Mustarelli P, Arciola CR, et al. Bone reconstruction: Au nanocomposite bioglasses with antibacterial properties. Int J Artif Organs. 2011;34(9):920–8. https://doi.org/10.5301/ijao.5000059.

    Article  CAS  Google Scholar 

  216. Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44(14):5649–54. https://doi.org/10.1021/es101072s.

    Article  CAS  Google Scholar 

  217. Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, et al. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano. 2008;2(2):235–46. https://doi.org/10.1021/nn700191f.

    Article  CAS  Google Scholar 

  218. Riccio DA, Dobmeier KP, Hetrick EM, Privett BJ, Paul HS, Schoenfisch MH. Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials. 2009;30(27):4494–502. https://doi.org/10.1016/j.biomaterials.2009.05.006.

    Article  CAS  Google Scholar 

  219. Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, et al. NO-loaded Zn2+-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater. 2010;6(4):1515–21. https://doi.org/10.1016/j.actbio.2009.10.038.

    Article  CAS  Google Scholar 

  220. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005;26(34):6984–90. https://doi.org/10.1016/j.biomaterials.2005.05.017.

    Article  CAS  Google Scholar 

  221. Dunnill CW, Parkin IP. Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments. Dalton Trans. 2011;40:1635. https://doi.org/10.1039/C0DT00494D.

    Article  CAS  Google Scholar 

  222. Pratap Reddy M, Venugopal A, Subrahmanyam M. Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res. 2007;41(2):379–86. https://doi.org/10.1016/j.watres.2006.09.018.

    Article  CAS  Google Scholar 

  223. Zhou G, Li Y, Xiao W, Zhang L, Zuo Y, Xue J, et al. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J Biomed Mater Res. 2008;85A:929–37. https://doi.org/10.1002/jbm.a.31527.

    Article  CAS  Google Scholar 

  224. Nakamura K, Yamada Y, Ikai H, Kanno T, Sasaki K, Niwano Y. Bactericidal action of photoirradiated gallic acid via reactive oxygen species formation. J Agric Food Chem. 2012;60(40):10048–54. https://doi.org/10.1021/jf303177p.

    Article  CAS  Google Scholar 

  225. Tsuang Y, Sun J, Huang Y, Lu C, Chang WH, Wang C. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs. 2008;32:167–74. https://doi.org/10.1111/j.1525-1594.2007.00530.x.

    Article  CAS  Google Scholar 

  226. Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, et al. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials. 2009;30(1):89–93. https://doi.org/10.1016/j.biomaterials.2008.09.020.

    Article  CAS  Google Scholar 

  227. Fu G, Vary PS, Lin C-T. Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B. 2005;109(18):8889–98. https://doi.org/10.1021/jp0502196.

    Article  CAS  Google Scholar 

  228. Sunkara BK, Misra RDK. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2008;4(2):273–83. https://doi.org/10.1016/j.actbio.2007.07.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. V. V. S. Narayana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P., S.V.V.S.N., P., S.V.V.S. A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. Regen. Eng. Transl. Med. 6, 330–346 (2020). https://doi.org/10.1007/s40883-019-00116-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00116-3

Keywords

Navigation