Skip to main content
Log in

3D Co-Culture with Vascular Cells Supports Long-Term Hepatocyte Phenotype and Function In Vitro

  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Progress in liver tissue engineering depends on the ability to reliably culture hepatocytes in vitro. In this study, we designed an environment that can help support liver-specific functions of primary hepatocytes for long enough periods of time to use them in therapeutic devices and in vitro modeling. This was accomplished by encapsulating hepatocytes with endothelial cells (ECs) and pericytes in a cell-adhesive and enzymatically degradable poly(ethylene glycol) (PEG) hydrogel scaffold. We used these hydrogels to investigate the long-term effects of 3D co-culture of hepatocytes with non-parenchymal ECs and pericytes in the context of vascular networks. We found that 3D co-culture of hepatocytes with tubule-forming ECs and pericytes leads to the development of robust microvascular tubules with close approximation to hepatocytes, similar to structures found in vivo. Furthermore, hepatocytes help support vasculogenesis and long-term tubule stability. We show that 3D co-culture of hepatocytes with cells in these networks enhances and retains hepatocyte function and phenotype. Hepatocytes in our constructs were able to synthesize 6.3 ± 1.1 pg albumin/hepatocyte/day at day 7 and increased over 3-fold to 22.6 ± 1.5 pg albumin/hepatocyte/day by day 28. Other essential liver functions, like urea secretion and cytochrome P450 activity, were also retained in our constructs for at least 4 weeks. Finally, we found that some of the hepatocytes in these organoids expressed the proliferation marker, Ki-67. These results are promising for the development of new liver disease treatments, organ engineering, and drug-testing models.

Lay Summary

Hepatocytes are the parenchymal cells of the liver, and they are responsible for performing many essential liver functions. When they are isolated from the body and cultured without the correct biochemical cues, they tend to lose their liver-specific functions and dedifferentiate into fibroblast-like cells. Advancement in tissue engineering liver disease therapies and in vitro drug-testing models depends on the development of hepatocyte culture methods that can maintain hepatocyte phenotype and function. Here, we tailored a polymeric hydrogel in which we can 3D co-culture hepatocytes with stabilizing non-parenchymal cells and achieve organ-level albumin synthesis as well maintenance of urea secretion and cytochrome P450 enzymatic activity for at least a month.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng B Rev. 2009;15(3):353–70. https://doi.org/10.1089/ten.teb.2009.0085.

    Article  Google Scholar 

  2. Shulman M, Nahmias Y. Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol. 2013;945:287–302. https://doi.org/10.1007/978-1-62703-125-7_17.

    Article  Google Scholar 

  3. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20. https://doi.org/10.1038/nm.2170.

    Article  Google Scholar 

  4. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9(6):661–8. https://doi.org/10.1038/nm0603-661.

    Article  Google Scholar 

  5. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294(5542):559–63. https://doi.org/10.1126/science.1063889.

    Article  Google Scholar 

  6. Bale SS, Golberg I, Jindal R, McCarty WJ, Luitje M, Hegde M, et al. Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C: Methods. 2014;21(4):413–22. https://doi.org/10.1089/ten.TEC.2014.0152.

    Article  Google Scholar 

  7. Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJ, et al. Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng. 2001;7(3):345–57. https://doi.org/10.1089/10763270152044206.

    Article  Google Scholar 

  8. Bhatia SN, Yarmush ML, Toner M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res. 1997;34(2):189–99. https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M.

    Article  Google Scholar 

  9. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315–530. https://doi.org/10.1007/s00204-013-1078-5.

    Article  Google Scholar 

  10. Nahmias Y, Odde DJ. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc. 2006;1(5):2288–96. https://doi.org/10.1038/nprot.2006.386.

    Article  Google Scholar 

  11. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng. 2005;92(2):129–36. https://doi.org/10.1002/bit.20585.

    Article  Google Scholar 

  12. Bader A, Knop E, Kern A, Böker K, Frühauf N, Crome O, et al. 3-D coculture of hepatic sinusoidal cells with primary hepatocytes—design of an organotypical model. Exp Cell Res. 1996;226(1):223–33. https://doi.org/10.1006/excr.1996.0222.

    Article  Google Scholar 

  13. Liu Y, Li H, Yan S, Wei J, Li X. Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules. 2014;15(3):1044–54. https://doi.org/10.1021/bm401926k.

    Article  Google Scholar 

  14. Cuchiara MP, Gould DJ, McHale MK, Dickinson ME, West JL. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater. 2012;22(21):4511–8. https://doi.org/10.1002/adfm.201200976.

    Article  Google Scholar 

  15. Moon JJ, West JL. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr Top Med Chem. 2008;8(4):300–10.

    Article  Google Scholar 

  16. Moore EM, Ying G, West JL. Macrophages influence vessel formation in 3D bioactive hydrogels. Adv Biosyst 2017;1(3). https://doi.org/10.1002/adbi.201600021.

  17. Schweller RM, West JL. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater Sci Eng. 2015;1(5):335–44. https://doi.org/10.1021/acsbiomaterials.5b00064.

    Article  Google Scholar 

  18. Ahmed HMM, Salerno S, Morelli S, Giorno L, De Bartolo L. 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells. Biofabrication. 2017;9(2):025022. https://doi.org/10.1088/1758-5090/aa70c7.

    Article  Google Scholar 

  19. Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, et al. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development. 2017;144(6):1056–64. https://doi.org/10.1242/dev.142794.

    Google Scholar 

  20. Bhatia S, Balis U, Yarmush M, Toner M. Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog. 1998;14(3):378–87. https://doi.org/10.1021/bp980036j.

    Article  Google Scholar 

  21. Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6(245):245sr2. https://doi.org/10.1126/scitranslmed.3005975.

    Article  Google Scholar 

  22. Cho CH, Park J, Tilles AW, Berthiaume F, Toner M, Yarmush ML. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. BioTechniques. 2010;48(1):47–52. https://doi.org/10.2144/000113317.

    Article  Google Scholar 

  23. Kidambi S, Sheng L, Yarmush ML, Toner M, Lee I, Chan C. Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates. Macromol Biosci. 2007;7(3):344–53. https://doi.org/10.1002/mabi.200600205.

    Article  Google Scholar 

  24. Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2004;50(7):645–52.

    Article  Google Scholar 

  25. Koike M, Matsushita M, Taguchi K, Uchino J. Function of culturing monolayer hepatocytes by collagen gel coating and coculture with nonparenchymal cells. Artif Organs. 1996;20(2):186–92.

    Article  Google Scholar 

  26. Ranucci CS, Moghe PV. Polymer substrate topography actively regulates the multicellular organization and liver-specific functions of cultured hepatocytes. Tissue Eng. 1999;5(5):407–20. https://doi.org/10.1089/ten.1999.5.407.

    Article  Google Scholar 

  27. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng A. 2008;14(2):227–36. https://doi.org/10.1089/tea.2007.0143.

    Article  Google Scholar 

  28. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials. 2005;26(29):5864–71. https://doi.org/10.1016/j.biomaterials.2005.02.027.

    Article  Google Scholar 

  29. Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6(1):25187. https://doi.org/10.1038/srep25187.

    Article  Google Scholar 

  30. Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD. Characterization of a functional C3A liver spheroid model. Toxicol Res. 2016;5(4):1053–65. https://doi.org/10.1039/C6TX00101G.

    Article  Google Scholar 

  31. You J, Park S-A, Shin D-S, Patel D, Raghunathan VK, Kim M, et al. Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng A. 2013;19(23–24):2655–63. https://doi.org/10.1089/ten.tea.2012.0681.

    Article  Google Scholar 

  32. Brill S, Holst PA, Zvibel I, Fiorino AS, Sigal SH, Soma-sundaran U, Reid LM. Extracellular matrix regulation of growth and gene expression in liver cell lineages and hepatomas. In: IM Arias, Boyer JL, Fausto N , Jakoby WB, Schachter DA, and Shafritz DA, editors, The liver:biology and pathobiology. New York: Raven Press. Ltd., 1994 p. 869-897.

  33. Dunn J, Tompkins RG, Yarmush ML. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J Cell Biol. 1992;116(4):1043–53. https://doi.org/10.1083/jcb.116.4.1043.

    Article  Google Scholar 

  34. Dunn J, Yarmush M, Koebe H, Tompkins R. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989;3(2):174–7. https://doi.org/10.1096/fasebj.3.2.2914628.

    Article  Google Scholar 

  35. Dunn JC, Tompkins RG, Yarmush ML. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog. 1991;7(3):237–45. https://doi.org/10.1021/bp00009a007.

    Article  Google Scholar 

  36. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol-Cell Physiol. 1994;266(6):C1764–C74.

    Article  Google Scholar 

  37. D'Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 1991;16(7):246–50. https://doi.org/10.1016/0968-0004(91)90096-E.

    Article  Google Scholar 

  38. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res A. 1998;39(2):266–76.

    Article  Google Scholar 

  39. Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4315–23. https://doi.org/10.1016/S0142-9612(02)00176-X.

    Article  Google Scholar 

  40. Bhatia S, Balis U, Yarmush M, Toner M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13(14):1883–900. https://doi.org/10.1096/fasebj.13.14.1883.

    Article  Google Scholar 

  41. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 2010;31(13):3596–603. https://doi.org/10.1016/j.biomaterials.2010.01.068.

    Article  Google Scholar 

  42. Mazza G, Rombouts K, Hall AR, Urbani L, Luong TV, Al-Akkad W, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep. 2015;5(1):13079. https://doi.org/10.1038/srep13079.

    Article  Google Scholar 

  43. Underhill GH, Chen AA, Albrecht DR, Bhatia SN. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 2007;28(2):256–70. https://doi.org/10.1016/j.biomaterials.2006.08.043.

    Article  Google Scholar 

  44. Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee S-H, Smith AA, et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials. 2010;31(14):3840–7. https://doi.org/10.1016/j.biomaterials.2010.01.104.

    Article  Google Scholar 

  45. Roudsari LC, Jeffs SE, Witt AS, Gill BJ, West JL. A 3D poly (ethylene glycol)-based tumor angiogenesis model to study the influence of vascular cells on lung tumor cell behavior. Sci Rep. 2016;6:32726. https://doi.org/10.1038/srep32726.

    Article  Google Scholar 

  46. Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev. 2016;97:250–9. https://doi.org/10.1016/j.addr.2015.11.004.

    Article  Google Scholar 

  47. Ali S, Saik JE, Gould DJ, Dickinson ME, West JL. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. BioRes Open Access. 2013;2(4):241–9. https://doi.org/10.1089/biores.2013.0021.

    Article  Google Scholar 

  48. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33. https://doi.org/10.1038/nrd1851.

    Article  Google Scholar 

  49. Nahmias Y, Schwartz RE, Hu W-S, Verfaillie CM, Odde DJ. Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng. 2006;12(6):1627–38. https://doi.org/10.1089/ten.2006.12.1627.

    Article  Google Scholar 

  50. Wang Y-J, Liu H-L, Guo H-T, Wen H-W, Liu J. Primary hepatocyte culture in collagen gel mixture and collagen sandwich. World J Gastroenterol. 2004;10(5):699–702. https://doi.org/10.3748/wjg.v10.i5.699.

    Article  Google Scholar 

  51. Ezzell RM, Toner M, Hendricks K, Dunn JC, Tompkins RG, Yarmush ML. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp Cell Res. 1993;208(2):442–52. https://doi.org/10.1006/excr.1993.1266.

    Article  Google Scholar 

  52. Michalopoulos G, Pitot H. Primary culture of parenchymal liver cells on collagen membranes: morphological and biochemical observations. Exp Cell Res. 1975;94(1):70–8.

    Article  Google Scholar 

  53. Bissell DM, Guzelian PS. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349(1):85–98. https://doi.org/10.1111/j.1749-6632.1980.tb29518.x.

    Article  Google Scholar 

  54. Strom SC, Michalopoulos G. [29] Collagen as a substrate for cell growth and differentiation. Methods Enzymol. 1982;82:544–55. https://doi.org/10.1016/0076-6879(82)82086-7.

    Article  Google Scholar 

  55. Garcovich M, Zocco MA, Gasbarrini A. Clinical use of albumin in hepatology. Blood Transfus. 2009;7(4):268–77. https://doi.org/10.2450/2008.0080-08.

    Google Scholar 

  56. Li AP. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact. 2007;168(1):16–29. https://doi.org/10.1016/j.cbi.2007.01.001.

    Article  Google Scholar 

  57. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  Google Scholar 

  58. Cho JW, Lee CY, Ko Y. Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. J Gastroenterol Hepatol. 2012;27(8):1362–70. https://doi.org/10.1111/j.1440-1746.2012.07137.x.

    Article  Google Scholar 

  59. Lee S-H, Moon JJ, Miller JS, West JL. Poly (ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials. 2007;28(20):3163–70. https://doi.org/10.1016/j.biomaterials.2007.03.004.

    Article  Google Scholar 

  60. Calabro SR, Maczurek AE, Morgan AJ, Tu T, Wen VW, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One. 2014;9(7):e90571. https://doi.org/10.1371/journal.pone.0090571.

    Article  Google Scholar 

  61. Bussolino F, Di Renzo M, Ziche M, Bocchietto E, Olivero M, Naldini L, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992;119(3):629–41. https://doi.org/10.1083/jcb.119.3.629.

    Article  Google Scholar 

  62. Naldini L, Vigna E, Narsimhan R, Gaudino G, Zarnegar R, Michalopoulos G, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991;6(4):501–4.

    Google Scholar 

  63. Bottaro DP, Rubin JS. Identification of the hepatocyte growth factor receptor as the c-met Porto-oncogene product. Science. 1991;251(4995):802.

    Article  Google Scholar 

  64. Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Woude GV. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci. 1987;84(18):6379–83. https://doi.org/10.1073/pnas.84.18.6379.

    Article  Google Scholar 

  65. Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID, editors. HGF/SF in angiogenesis. Ciba Foundation Symposium 212-Plasminogen-Related Growth Factors; 1997: Wiley Online Library.

  66. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor. Circulation. 1998;97(4):381–90. https://doi.org/10.1161/01.CIR.97.4.381.

    Article  Google Scholar 

  67. Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E, et al. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Investig. 1999;79(4):427–38.

    Google Scholar 

  68. Morishita R, Nakamura S, Hayashi S-i, Taniyama Y, Moriguchi A, Nagano T, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension. 1999;33(6):1379–84. https://doi.org/10.1161/01.HYP.33.6.1379.

    Article  Google Scholar 

  69. Rehman J, Considine RV, Bovenkerk JE, Li J, Slavens CA, Jones RM, et al. Obesity is associated with increased levels of circulating hepatocyte growth factor. J Am Coll Cardiol. 2003;41(8):1408–13. https://doi.org/10.1016/S0735-1097(03)00231-6.

    Article  Google Scholar 

  70. Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20. https://doi.org/10.1016/S0002-9440(10)64058-8.

    Article  Google Scholar 

  71. Nakazawa Y, Kawano S, Matsui J, Funahashi Y, Tohyama O, Muto H, et al. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci. 2015;106(2):201–7. https://doi.org/10.1111/cas.12581.

    Article  Google Scholar 

  72. Yamamoto Y, Matsuura T, Narazaki G, Sugitani M, Tanaka K, Maeda A, et al. Synergistic effects of autologous cell and hepatocyte growth factor gene therapy for neovascularization in a murine model of hindlimb ischemia. Am J Phys Heart Circ Phys. 2009;297(4):H1329–H36. https://doi.org/10.1152/ajpheart.00321.2009.

    Google Scholar 

  73. Ding S, Merkulova-Rainon T, Han ZC, Tobelem G. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood. 2003;101(12):4816–22. https://doi.org/10.1182/blood-2002-06-1731.

    Article  Google Scholar 

  74. Maeshima A, Miya M, Mishima K, Yamashita S, Kojima I, Nojima Y. Activin a: autocrine regulator of kidney development and repair. Endocr J. 2008;55(1):1–9. https://doi.org/10.1507/endocrj.KR-113.

    Article  Google Scholar 

  75. Parr C, Hiscox S, Nakamura T, Matsumoto K, Jiang WG. Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer. 2000;85(4):563–70.

    Article  Google Scholar 

  76. Leung E, Xue A, Wang Y, Rougerie P, Sharma V, Eddy R, et al. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene. 2017;36(19):2680–92. https://doi.org/10.1038/onc.2016.421.

    Article  Google Scholar 

  77. Fausto N, Laird A, Webber E. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J. 1995;9(15):1527–36. https://doi.org/10.1096/fasebj.9.15.8529831.

    Article  Google Scholar 

  78. Cho CH, Berthiaume F, Tilles AW, Yarmush ML. A new technique for primary hepatocyte expansion in vitro. Biotechnol Bioeng. 2008;101(2):345–56. https://doi.org/10.1002/bit.21911.

    Article  Google Scholar 

  79. Ishii T, Sato M, Sudo K, Suzuki M, Nakai H, Hishida T, et al. Hepatocyte growth factor stimulates liver regeneration and elevates blood protein level in normal and partially hepatectomized rats. J Biochem. 1995;117(5):1105–12. https://doi.org/10.1093/oxfordjournals.jbchem.a124814.

    Article  Google Scholar 

  80. Yeh T-S, Chen T-C, Chen M-F. Dedifferentiation of human hepatocellular carcinoma up-regulates telomerase and Ki-67 expression. Arch Surg. 2000;135(11):1334–9. https://doi.org/10.1001/archsurg.135.11.1334.

    Article  Google Scholar 

  81. Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A, et al. Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res A. 2002;62(3):464–70. https://doi.org/10.1002/jbm.10228.

    Article  Google Scholar 

  82. Suh CH, Kim SY, Kim KW, Lim Y-S, Lee SJ, Lee M-G, et al. Determination of normal hepatic elasticity by using real-time shear-wave elastography. Radiology. 2014;271(3):895–900. https://doi.org/10.1148/radiol.14131251.

    Article  Google Scholar 

  83. Foucher J, Chanteloup E, Vergniol J, Castera L, Le Bail B, Adhoute X, et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut. 2006;55(3):403–8. https://doi.org/10.1136/gut.2005.069153.

    Article  Google Scholar 

  84. Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater. 2016;55:87–103. https://doi.org/10.1016/j.jmbbm.2015.10.016.

    Article  Google Scholar 

Download references

Acknowledgements

AZU was supported by the National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Electronic supplementary material

ESM 1

(DOCX 3932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unal, A.Z., Jeffs, S.E. & West, J.L. 3D Co-Culture with Vascular Cells Supports Long-Term Hepatocyte Phenotype and Function In Vitro. Regen. Eng. Transl. Med. 4, 21–34 (2018). https://doi.org/10.1007/s40883-018-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0046-2

Keywords

Navigation