Skip to main content

Advertisement

Log in

Musculoskeletal Tissue Regeneration: the Role of the Stem Cells

  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Ligament, cartilage, and meniscus injuries often have poor healing due to low vascularity and low proliferative abilities of the resident cells. Drawbacks with conventional treatment methodologies have prompted interest in a new approach we term “Regenerative Engineering” to regenerate orthopaedic tissues. The work of cells is of central importance in the Regenerative Engineering paradigm. In this regard, both differentiated cells and stem cells such as bone marrow stromal cells have been studied as sources for orthopaedic tissue regeneration. In addition, other stem cells such as those derived from peripheral blood, synovium, adipose, and other extraembryonic sources have been isolated and characterized and subsequently investigated for regenerating various orthopaedic tissues. In this review, recent developments in the stem cell-mediated regeneration of ligament, cartilage, and menisci are discussed.

Lay Summary

Most orthopaedic tissue ailments originate from trauma or degenerative diseases. Commonly utilized strategies in clinical settings have shortcomings such as poor or incomplete healing. By converging advanced materials science with stem cells, growth factors/small molecules, and developmental biology, regenerative engineering is expected to provide strategies for orthopaedic tissue regeneration. In this review, we discuss various cell sources that have been isolated, characterized, and studied for regenerating orthopaedic tissues. Some of the underlying molecular mechanisms involved in those cells are also discussed. In addition, various approaches based on those cell sources for regenerating ligament, cartilage, and meniscus tissues are reported. In the future, cell-based approaches discussed in this review need to be combined with other salient aspects of regenerative engineering to facilitate activation of multiple signaling pathways required for tissue regeneration. Via such a holistic approach, we anticipate regeneration of ligaments, cartilage, and meniscus with features similar to that of native tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. United States Bone and Joint Initiative: the burden of musculoskeletal diseases in the United States (BMUS). Third edition, Rosemont, IL 2014, http://www.boneandjointburden.org/facts-brief. 2016.

  2. Mather RC, Hettrich CM, Dunn WR, Cole BJ, Bach BR Jr, Huston LJ, et al. Cost-effectiveness analysis of early reconstruction versus rehabilitation and delayed reconstruction for anterior cruciate ligament tears. Am J Sports Med. 2014;42:1583–91.

    Google Scholar 

  3. Maffulli N, Longo UG, Campi S, Denaro V. Meniscal tears. Open Access Journal of Sports Medicine. 2010;1:45–54.

    Google Scholar 

  4. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19.

    Google Scholar 

  5. Stringham DR, Pelmas CJ, Burks RT, Newman AP, Marcus RL. Comparison of anterior cruciate ligament reconstructions using patellar tendon autograft or allograft. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1996;12:414–21.

    Google Scholar 

  6. Gorschewsky O, Klakow A, Pütz A, Mahn H, Neumann W. Clinical comparison of the autologous quadriceps tendon (BQT) and the autologous patella tendon (BPTB) for the reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2007;15:1284–92.

    Google Scholar 

  7. Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T. There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. Scand J Med Sci Sports. 2001;11:170–7.

    Google Scholar 

  8. Ejerhed L, Kartus J, Sernert N, Köhler K, Karlsson J. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? Am J Sports Med. 2003;31:19–25.

    Google Scholar 

  9. Sun K, Tian S-q, Zhang J-h, Xia C-s, Zhang C-l, Yu T-b. ACL reconstruction with BPTB autograft and irradiated fresh frozen allograft. Journal of Zhejiang University SCIENCE B 2009;10:306–316.

  10. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, et al. Autologous chondrocyte implantation compared with microfracture in the knee. The Journal of Bone & Joint Surgery. 2004;86:455.

    Google Scholar 

  11. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee. Am J Sports Med. 2009;37:42–55.

    Google Scholar 

  12. Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci. 2009;14:579–88.

    Google Scholar 

  13. D’Anchise R, Manta N, Prospero E, Bevilacqua C, Gigante A. Autologous implantation of chondrocytes on a solid collagen scaffold: clinical and histological outcomes after two years of follow-up. Journal of Orthopaedics andTraumatology. 2005;6:36–43.

    Google Scholar 

  14. Zak L, Albrecht C, Wondrasch B, Widhalm H, Vekszler G, Trattnig S, et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold. Am J Sports Med. 2014;42:1618–27.

    Google Scholar 

  15. Kreuz PC, Müller S, Ossendorf C, Kaps C, Erggelet C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Research & Therapy. 2009;11:R33.

    Google Scholar 

  16. Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage. Am J Sports Med. 2014;42:1417–25.

    Google Scholar 

  17. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Review of Medical Devices. 2006;3:49–57.

    Google Scholar 

  18. Kwansa AL, Empson YM, Ekwueme EC, Walters VI, Freeman JW, Laurencin CT. Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter. 2010;6:5016–25.

    Google Scholar 

  19. Fishman JA, Greenwald MA. Grossi PA. Essential Considerations in Donor Screening. Clinical Infectious Diseases: Transmission of infection with human allografts; 2012.

    Google Scholar 

  20. Galili U, LaTemple DC, Walgenbach AW, Stone KR. Porcine and bovine cartilage transplants in cynomolgus monkey. Transplantation. 1997;63:646–51.

    Google Scholar 

  21. Stone KR, Abdel-Motal UM, Walgenbach AW, Turek TJ, Galili U. Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation. 2007;83:211–9.

    Google Scholar 

  22. Stone KR, Walgenbach AW, Turek TJ, Somers DL, Wicomb W, Galili U. Anterior cruciate ligament reconstruction with a porcine xenograft: a serologic, histologic, and biomechanical study in primates. Arthroscopy. 2007;23:411-9.e1.

  23. Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long-Term Eff Med Implants. 2011;21:93–122.

    Google Scholar 

  24. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Advanced Healthcare Materials. 2015;4:1268–85.

    Google Scholar 

  25. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–64.

    Google Scholar 

  26. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.

    Google Scholar 

  27. Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci. 2015;46:1–24.

    Google Scholar 

  28. Narayanan G, Gupta BS, Tonelli AE. Poly(ε-caprolactone) nanowebs functionalized with α- and γ-cyclodextrins. Biomacromolecules. 2014;15:4122–33.

    Google Scholar 

  29. Narayanan G, Gupta BS, Tonelli AE. Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin. Polymer. 2015;76:321–30.

    Google Scholar 

  30. Narayanan G, Aguda R, Hartman M, Chung C-C, Boy R, Gupta BS, et al. Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules. 2016;17:271–9.

    Google Scholar 

  31. Narayanan G, Ormond BR, Gupta BS, Tonelli AE. Efficient wound odor removal by β-cyclodextrin functionalized poly (ε-caprolactone) nanofibers. Journal of Applied Polymer Science. 2015.;132:DOI: 10.1002/app.42782.

  32. Narayanan G, Chung C-C, Aguda R, Boy R, Hartman M, Mehraban N, et al. Correlation of the stoichiometries of poly(ε-caprolactone) and [small alpha]-cyclodextrin pseudorotaxanes with their solution rheology and the molecular orientation, crystallite size, and thermomechanical properties of their nanofibers. RSC Adv. 2016;6:111326–36.

    Google Scholar 

  33. Bhattacharjee M, Chameettachal S, Pahwa S, Ray AR, Ghosh S. Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc. ACS Appl Mater Interfaces. 2014;6:183–93.

    Google Scholar 

  34. Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8:3313–25.

    Google Scholar 

  35. Bhattacharjee M, Schultz-Thater E, Trella E, Miot S, Das S, Loparic M, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.

    Google Scholar 

  36. Narayanan G, Tekbudak MY, Caydamli Y, Dong J, Krause WE. Accuracy of electrospun fiber diameters: the importance of sampling and person-to-person variation. Polym Test. 2017;61:240–8.

    Google Scholar 

  37. Lo KWH, Ulery BD, Deng M, Ashe KM, Laurencin CT. Current patents on osteoinductive molecules for bone tissue engineering. Recent Pat Biomed Eng. 2011;4:153–67.

    Google Scholar 

  38. Lo KWH, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med. 2012;6:40–8.

    Google Scholar 

  39. Lo KWH, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med. 2012;7:535–49.

    Google Scholar 

  40. Lo KWH, Ulery BD, Ashe KM, Laurencin CT. Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev. 2012;64:1277–91.

    Google Scholar 

  41. Ficklscherer A, Serr M, Loitsch T, Niethammer TR, Lahner M, Pietschmann MF, et al. The influence of different footprint preparation techniques on tissue regeneration in rotator cuff repair in an animal model. Arch Med Sci. 2016;13:481–8.

    Google Scholar 

  42. Lo KWH, Kan HM, Gagnon KA, Laurencin CT. One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for in vitro angiogenesis and osteoblastic differentiation. J Tissue Eng Regen Med. 2016;10:867–75.

    Google Scholar 

  43. Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32:74–81.

    Google Scholar 

  44. Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, et al. Simple signaling molecules for inductive bone regenerative engineering. PLoS One. 2014;9:e101627.

    Google Scholar 

  45. Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KWH. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today. 2014;19:794–800.

    Google Scholar 

  46. Lo KWH, Ulery BD, Kan HM, Ashe KM, Laurencin CT. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med. 2014;8:728–36.

    Google Scholar 

  47. Carbone EJ, Rajpura K, Jiang T, Laurencin CT, Lo KW-H. Regulation of bone regeneration with approved small molecule compounds 2014.

  48. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, et al. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006;12:3265–83.

    Google Scholar 

  49. Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regenerative Engineering and Translational Medicine. 2015;1:1–3.

    Google Scholar 

  50. Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–7.

    Google Scholar 

  51. McCusker C, Lehrberg J, Gardiner D. Position-specific induction of ectopic limbs in non-regenerating blastemas on axolotl forelimbs. Regeneration. 2014;1:27–34.

    Google Scholar 

  52. McCusker C, Bryant SV, Gardiner DM. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration. 2015;2:54–71.

    Google Scholar 

  53. Lehrberg J, Gardiner DM. Regulation of axolotl (Ambystoma mexicanum) limb blastema cell proliferation by nerves and BMP2 in organotypic slice culture. PLoS One. 2015;10:e0123186.

    Google Scholar 

  54. Laurencin CT, Nair LS. The quest toward limb regeneration: a regenerative engineering approach. Regenerative Biomaterials. 2016;3:123–5.

    Google Scholar 

  55. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.

    Google Scholar 

  56. Bahney C, Miclau T. Therapeutic potential of stem cells in orthopedics. Indian Journal of Orthopaedics. 2012;46:4–9.

    Google Scholar 

  57. Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38:810–6.

    Google Scholar 

  58. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96:737–49.

    Google Scholar 

  59. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.

    Google Scholar 

  60. Alison MR. Liver stem cells. Stem Cell Rev. 2005;1:253–60.

    Google Scholar 

  61. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci. 2000;97:14720–5.

    Google Scholar 

  62. Amini AR, Laurencin CT, Nukavarapu SP. Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res. 2012;30:1507–15.

    Google Scholar 

  63. Mangano C, Paino F, d'Aquino R, De Rosa A, Iezzi G, Piattelli A, et al. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS One. 2011;6:e18721.

    Google Scholar 

  64. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, FHJ C, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.

    Google Scholar 

  65. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2:155–62.

    Google Scholar 

  66. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Google Scholar 

  67. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Google Scholar 

  68. Gertow K, Cedervall J, Unger C, Szöke K, Blennow E, Imreh MP, et al. Trisomy 12 in HESC leads to no selective in vivo growth advantage in teratomas, but induces an increased abundance of renal development. J Cell Biochem. 2007;100:1518–25.

    Google Scholar 

  69. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology. 2003;42:162–5.

    Google Scholar 

  70. Eisenstein M. IPSCs: one cell to rule them all? Nat Meth. 2010;7:81–5.

    Google Scholar 

  71. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Google Scholar 

  72. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.

    Google Scholar 

  73. Guzzo RM, Scanlon V, Sanjay A, Xu R-H, Drissi H. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential. Stem Cell Rev Rep. 2014;10:820–9.

    Google Scholar 

  74. Lietman SA. Induced pluripotent stem cells in cartilage repair. World Journal of Orthopedics. 2016;7:149–55.

    Google Scholar 

  75. Bilic J, Belmonte JCI. Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells. 2012;30:33–41.

    Google Scholar 

  76. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Mácia A, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28:1568–70.

    Google Scholar 

  77. Baker M. Why hES cells make teratomas. 2009.

    Google Scholar 

  78. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198–210.

    Google Scholar 

  79. Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M, et al. Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone–patellar tendon–bone graft configuration versus a round hamstring graft. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013;29:1981–90.

    Google Scholar 

  80. Caplan AI. Are all adult stem cells the same? Regenerative Engineering and Translational Medicine. 2015;1:4–10.

    Google Scholar 

  81. Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng. 2012;40:2079–97.

    Google Scholar 

  82. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology. 1966;16:381–90.

    Google Scholar 

  83. Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11:1198–211.

    Google Scholar 

  84. van Buul GM, Villafuertes E, Bos PK, Waarsing JH, Kops N, Narcisi R, et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr Cartil. 2012;20:1186–96.

    Google Scholar 

  85. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25.

    Google Scholar 

  86. Schmitt A, van Griensven M, Imhoff AB, Buchmann S. Application of stem cells in orthopedics. Stem Cells Int. 2012;2012:11.

    Google Scholar 

  87. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014;6:552–70.

    Google Scholar 

  88. Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012;7:e35685.

    Google Scholar 

  89. Kasir R, Vernekar VN, Laurencin CT. Regenerative engineering of cartilage using adipose-derived stem cells. Regenerative Engineering and Translational Medicine. 2015;1:42–9.

    Google Scholar 

  90. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.

    Google Scholar 

  91. Zheng Y-H, Xiong WEI, Su KAI, Kuang S-J, Zhang Z-G. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Experimental and Therapeutic Medicine. 2013;5:1576–80.

    Google Scholar 

  92. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 15:641–8.

  93. Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.

    Google Scholar 

  94. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–64.

    Google Scholar 

  95. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    Google Scholar 

  96. Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163:399–408.

    Google Scholar 

  97. Reinhardt M, Bader A, Giri S. Devices for stem cell isolation and delivery: current need for drug discovery and cell therapy. Expert Review of Medical Devices. 2015;12:353–64.

    Google Scholar 

  98. Körbling M, Burke P, Braine H, Elfenbein G, Santos G, Kaizer H. Successful engraftment of blood derived normal hemopoietic stem cells in chronic myelogenous leukemia. Exp Hematol. 1981;9:684–90.

    Google Scholar 

  99. Bensinger WI, Clift RA, Anasetti C, Appelbaum FA, Demirer T, Rowley S, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells. 1996;14:90–105.

    Google Scholar 

  100. Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World Journal of Stem Cells. 2015;7:470–6.

    Google Scholar 

  101. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001;153:1133–40.

    Google Scholar 

  102. Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology. 2008;47:126–31.

    Google Scholar 

  103. Fernandez M, Simon V, Herrera G, Cao C, Del Favero H, Minguell J. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997;20

  104. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research & Therapy. 2000;2:477.

    Google Scholar 

  105. Rodriguez-Fontan F, Piuzzi NS, Chahla J, Payne KA, LaPrade RF, Muschler GF, et al. Stem and progenitor cells for cartilage repair: source, safety, evidence, and efficacy, operative techniques in sports medicine. 2017;25:25–33.

  106. Hopper N, Wardale J, Brooks R, Power J, Rushton N, Henson F. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS One. 2015;10:e0133937.

    Google Scholar 

  107. Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23:1105–12.

    Google Scholar 

  108. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74:833–45.

    Google Scholar 

  109. Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells. 2007;25:1830–9.

    Google Scholar 

  110. Cesselli D, Beltrami AP, Rigo S, Bergamin N, D'Aurizio F, Verardo R, et al. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104:1225–34.

    Google Scholar 

  111. Civriz Bozdag S, Bay M, Ayyıldız E, Topcuoglu P, Ilhan O. Older age and capacity of colony forming unit in autologous peripheral derived hematopoietic cells. Transfus Apher Sci. 2012;47:113–6.

    Google Scholar 

  112. de Sousa EB, Casado PL, Neto VM, Duarte MEL, Aguiar DP. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther. 2014;5:112.

    Google Scholar 

  113. Iwanaga T, Shikichi M, Kitamura H, Yanase H, Nozawa-Inoue K. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol. 2000;63:17–31.

    Google Scholar 

  114. Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J, van Rooijen N, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12:627–35.

    Google Scholar 

  115. Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis & Rheumatism. 2008;58:1731–40.

    Google Scholar 

  116. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51:249–57.

    Google Scholar 

  117. Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res. 2014;472:1357–64.

    Google Scholar 

  118. Lee DH, Sonn CH, Han SB, Oh Y, Lee KM, Lee SH. Synovial fluid CD34− CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthr Cartil. 2012;20:106–9.

    Google Scholar 

  119. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis & Rheumatism. 2004;50:817–27.

    Google Scholar 

  120. Hoff P, Buttgereit F, Burmester G-R, Jakstadt M, Gaber T, Andreas K, et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop. 2013;37:145–51.

    Google Scholar 

  121. Zoltan S, Gabriella S, Sandor S, Alisa EK. Chemokines in rheumatic diseases. Curr Drug Targets. 2006;7:91–102.

    Google Scholar 

  122. Röhner E, Matziolis G, Perka C, Füchtmeier B, Gaber T, Burmester G-R, et al. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases. Immunol Res. 2012;52:169–75.

    Google Scholar 

  123. Smith MD, Barg E, Weedon H, Papengelis V, Smeets T, Tak PP, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis. 2003;62:303–7.

    Google Scholar 

  124. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism. 2001;44:1928–42.

    Google Scholar 

  125. Harvanová D, Tóthová T, Sarisský M, Amrichová J, Rosocha J. Isolation and characterization of synovial mesenchymal stem cells. Folia Biol. 2011;57:119.

    Google Scholar 

  126. HERMIDA-GÓMEZ T, FUENTES-BOQUETE I, GIMENO-LONGAS MJ, MUIÑOS-LÓPEZ E, DÍAZ-PRADO S, de TORO FJ, et al. Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol. 2011;38:339–49.

    Google Scholar 

  127. Arufe MC, De la Fuente A, Fuentes-Boquete I, De Toro FJ, Blanco FJ. Differentiation of synovial CD-105+ human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J Cell Biochem. 2009;108:145–55.

    Google Scholar 

  128. Arufe MC, De la Fuente A, Fuentes I, de Toro FJ, Blanco FJ. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem. 2010;111:834–45.

    Google Scholar 

  129. Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One. 2012;7:e43616.

    Google Scholar 

  130. Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, et al. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep. 2016;6:23076.

    Google Scholar 

  131. Zheng Y-L, Sun Y-P, Zhang H, Liu W-J, Jiang R, Li W-Y, et al. Mesenchymal stem cells obtained from synovial fluid mesenchymal stem cell-derived induced pluripotent stem cells on a Matrigel coating exhibited enhanced proliferation and differentiation potential. PLoS One. 2015;10:e0144226.

    Google Scholar 

  132. Tuan RS. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis & Rheumatism. 2006;54:3075–8.

    Google Scholar 

  133. Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng B Rev. 2012;18:301–11.

    Google Scholar 

  134. Pei M, He F. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol. 2012;227:2163–74.

    Google Scholar 

  135. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism. 2005;52:2521–9.

    Google Scholar 

  136. Garcia J, Wright K, Roberts S, Kuiper JH, Mangham C, Richardson J, et al. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: the influence of tissue source and inflammatory stimulus. Sci Rep. 2016;6:24295.

    Google Scholar 

  137. Sabapathy V, Sundaram B, Vm S, Mankuzhy P, Kumar S. Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9:e93726.

    Google Scholar 

  138. Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, Borlongan C. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14:11692.

    Google Scholar 

  139. La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009;131:267–82.

    Google Scholar 

  140. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Google Scholar 

  141. Troyer DL, Weiss ML. Concise review: Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26:591–9.

    Google Scholar 

  142. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Google Scholar 

  143. Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.

    Google Scholar 

  144. McElreavey KD, Irvine AI, Ennis KT, McLean WHI. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans. 1991;19:29S.

    Google Scholar 

  145. Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 2004;22:1330–7.

    Google Scholar 

  146. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotech. 2007;25:100–6.

    Google Scholar 

  147. Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, et al. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury. 2013;44:540–9.

    Google Scholar 

  148. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Google Scholar 

  149. Davydova DA, Vorotelyak EA, Smirnova Y, Zinovieva RD, Romanov Y, Kabaeva NV, et al. Cell phenotypes in human amniotic fluid. Acta Nat. 2009;1:98–103.

    Google Scholar 

  150. Aicher WK, Bühring H-J, Hart M, Rolauffs B, Badke A, Klein G. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—potential and pitfalls. Adv Drug Deliv Rev. 2011;63:342–51.

    Google Scholar 

  151. Rozemuller H, Prins H-J, Naaijkens B, Staal J, Bühring H-J, Martens AC. Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev. 2010;19:1911–21.

    Google Scholar 

  152. Farias VA, Linares-Fernández JL, Peñalver JL, Payá Colmenero JA, Ferrón GO, Duran EL, et al. Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta. 2011;32:86–95.

    Google Scholar 

  153. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second- trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19:1450–6.

    Google Scholar 

  154. Arnhold S, Gluer S, Hartmann K, Raabe O, Addicks K, Wenisch S, et al. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011;2011

  155. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4:423–33.

    Google Scholar 

  156. Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: culture, differentiation and challenges. World Journal of Stem Cells. 2015;7:769–75.

    Google Scholar 

  157. Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 2012;8:58–73.

    Google Scholar 

  158. Nazarov I, Lee JW, Soupene E, Etemad S, Knapik D, Green W, et al. Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med. 2012;1:359–72.

    Google Scholar 

  159. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 2006;24:781–92.

    Google Scholar 

  160. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood. 2008;111:2631–5.

    Google Scholar 

  161. Talwadekar MD, Kale VP, Limaye LS. Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts—a paired sample study. Sci Rep. 2015;5:15784.

    Google Scholar 

  162. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–8.

    Google Scholar 

  163. Jin HJ, Kwon JH, Kim M, Bae YK, Choi SJ, Oh W, et al. Downregulation of melanoma cell adhesion molecule (MCAM/CD146) accelerates cellular senescence in human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Transl Med. 2016;5:427–39.

    Google Scholar 

  164. Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res. 2010;5:244–54.

    Google Scholar 

  165. Chitteti BR, Kobayashi M, Cheng Y, Zhang H, Poteat BA, Broxmeyer HE, et al. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood. 2014;124:519–29.

    Google Scholar 

  166. Noort WA, Oerlemans MIFJ, Rozemuller H, Feyen D, Jaksani S, Stecher D, et al. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med. 2012;16:1827–39.

    Google Scholar 

  167. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod (Oxf, Engl). 2004;19:1450–6.

    Google Scholar 

  168. Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang P-H, et al. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells. 2003;21:527–35.

    Google Scholar 

  169. Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2006;22:441–51.

    Google Scholar 

  170. Lewis SL, Bucher L, Heitkemper MM, Harding MM, Kwong J, Roberts D. Medical-surgical nursing: assessment and management of clinical problems, Single volume. St. Louis: Elsevier Health Sciences; 2016.

  171. Freeman JW, Woods MD, Laurencin CT. Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J Biomech. 2007;40:2029–36.

    Google Scholar 

  172. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2007;23:278–83.

    Google Scholar 

  173. Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 2014;102:1614–24.

    Google Scholar 

  174. Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M, Akeson W. Medial collateral ligament healing. Am J Sports Med. 1983;11:379–89.

    Google Scholar 

  175. Keene GCR, Bickerstaff D, Rae PJ, Paterson RS. The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med. 1993;21:672–9.

    Google Scholar 

  176. Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials. 2007;28:187–202.

    Google Scholar 

  177. Arnoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res. 1983;172:19–25.

    Google Scholar 

  178. Laurencin CT, Ambrosio A, Borden M, Cooper J Jr. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46.

    Google Scholar 

  179. Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35–47.

    Google Scholar 

  180. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29:1363–71.

    Google Scholar 

  181. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998;16:414–20.

    Google Scholar 

  182. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26:1523–32.

    Google Scholar 

  183. Lu HH, Cooper JA Jr, Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005;26:4805–16.

    Google Scholar 

  184. Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26:7530–6.

    Google Scholar 

  185. Freeman JW, Woods MD, Cromer DA, Ekwueme EC, Andric T, Atiemo EA, et al. Evaluation of a hydrogel–fiber composite for ACL tissue engineering. J Biomech. 2011;44:694–9.

    Google Scholar 

  186. Li W-J, Cooper JA Jr, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.

    Google Scholar 

  187. Meaney Murray M, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22:2393–402.

    Google Scholar 

  188. Majima T, Funakosi T, Iwasaki N, Yamane S-T, Harada K, Nonaka S, et al. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci. 2005;10:302–7.

    Google Scholar 

  189. Shao H-J, Chen CS, Lee Y-T, Wang J-H, Young T-H. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(ϵ-caprolactone) and chitosan. J Biomed Mater Res A. 2010;93A:1297–305.

    Google Scholar 

  190. Majima T, Irie T, Sawaguchi N, Funakoshi T, Iwasaki N, Harada K, et al. Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc Inst Mech Eng H J Eng Med. 2007;221:537–46.

    Google Scholar 

  191. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23:4131–41.

    Google Scholar 

  192. Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World J Orthop. 2015;6:127–36.

    Google Scholar 

  193. Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng. 2006;12:775–8.

    Google Scholar 

  194. Cooper JA Jr, Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, Achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials. 2006;27:2747–54.

    Google Scholar 

  195. Kato S, Saito M, Funasaki H, Marumo K. Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro. Knee Surg Sports Traumatol Arthrosc. 2015;23:1384–92.

    Google Scholar 

  196. Ge Z, Goh JCH, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant. 2005;14:573–83.

    Google Scholar 

  197. Cooper JA, Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci. 2007;104:3049–54.

    Google Scholar 

  198. Fan H, Liu H, Toh SL, Goh JCH. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials. 2008;29:1017–27.

    Google Scholar 

  199. Fan H, Liu H, Toh SL, Goh JCH. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–77.

    Google Scholar 

  200. Mifune Y, Matsumoto T, Takayama K, Terada S, Sekiya N, Kuroda R, et al. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials. 2013;34:5476–87.

    Google Scholar 

  201. Liu H, Wei X, Ding X, Li X, Zhou G, Li P, et al. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds. J Biomed Mater Res A. 2015;103:115–25.

    Google Scholar 

  202. Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes. Vet Surg. 2013;42:137–46.

    Google Scholar 

  203. Proffen BL, Haslauer CM, Harris CE, Murray MM. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connect Tissue Res. 2013;54:14–21.

    Google Scholar 

  204. Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH. Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mater Sci Eng C. 2002;20:63–9.

    Google Scholar 

  205. Liu H, Fan H, Toh SL, Goh JCH. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials. 2008;29:1443–53.

    Google Scholar 

  206. Sahoo S, Ouyang H, Goh JC-H, Tay T, Toh S. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006;12:91–9.

    Google Scholar 

  207. Gantenbein B, Gadhari N, Chan SCW, Kohl S, Ahmad SS. Mesenchymal stem cells and collagen patches for anterior cruciate ligament repair. World Journal of Stem Cells. 2015;7:521–34.

    Google Scholar 

  208. Petrigliano FA, English CS, Barba D, Esmende S, Wu BM, Mcallister DR. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. Tissue Eng. 2007;13:2721–31.

    Google Scholar 

  209. Sahoo S, Toh SL, Goh JCH. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31:2990–8.

    Google Scholar 

  210. Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, et al. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials. 2013;34:1942–53.

    Google Scholar 

  211. Liu A, Xue G-H, Sun M, Shao H-F, Ma C-Y, Gao Q, et al. 3D printing surgical implants at the clinic: a experimental study on anterior cruciate ligament reconstruction. Sci Rep. 2016;6:21704.

    Google Scholar 

  212. Yilgor C, Yilgor Huri P, Huri G. Tissue engineering strategies in ligament regeneration. Stem Cells Int. 2012;2012:9.

    Google Scholar 

  213. Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World Journal of Orthopedics. 2015;6:127–36.

    Google Scholar 

  214. Hoffmann A, Gross G. Tendon and ligament engineering: from cell biology to in vivo application. Regen Med. 2006;1:563–74.

    Google Scholar 

  215. Dong Y, Zhang Q, Li Y, Jiang J, Chen S. Enhancement of tendon–bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci. 2012;13:13605.

    Google Scholar 

  216. Wang C-J, Weng L-H, Hsu S-L, Sun Y-C, Yang Y-J, Chan Y-S, et al. pCMV–BMP-2-transfected cell-mediated gene therapy in anterior cruciate ligament reconstruction in rabbits. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2010;26:968–76.

    Google Scholar 

  217. Huang TF, Chen YT, Yang TH, Chen LL, Chiou SH, Tsai TH, et al. Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament. Cytotherapy. 2008;10:806–14.

    Google Scholar 

  218. Cheng M-T, Liu C-L, Chen T-H, Lee OK. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng A. 2010;16:2237–53.

    Google Scholar 

  219. Sarah B, Bizunesh MB, Marieke Z, Tom M, Bert S, Marc S, et al. Intravenous application of allogenic peripheral blood-derived mesenchymal stem cells: a safety assessment in 291 equine recipients. Current Stem Cell Research & Therapy. 2014;9:452–7.

    Google Scholar 

  220. Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, et al. Tenogenically induced allogeneic mesenchymal stem cells for the treatment of proximal suspensory ligament desmitis in a horse. Frontiers in Veterinary Science. 2015;2

  221. Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, et al. Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells. 2008;26:819–30.

    Google Scholar 

  222. Uefuji A, Matsumoto T, Matsushita T, Ueha T, Zhang S, Kurosaka M, et al. Age-related differences in anterior cruciate ligament remnant vascular-derived cells. Am J Sports Med. 2014;42:1478–86.

    Google Scholar 

  223. Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, et al. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med. 2015;43:320–30.

    Google Scholar 

  224. Buckwalter J, Mankin H. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1997;47:477–86.

    Google Scholar 

  225. Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure. Function, and Importance in Tissue Engineering. 2007;35:363–411.

    Google Scholar 

  226. Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. 2015;84:107–22.

    Google Scholar 

  227. Escobar JL, Ivirico MB, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017;3:16–27.

    Google Scholar 

  228. Fox AJS, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461–8.

    Google Scholar 

  229. Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng B Rev. 2013;19:31–40.

    Google Scholar 

  230. Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468:147–57.

    Google Scholar 

  231. Ossendorf C, Steinwachs MR, Kreuz PC, Osterhoff G, Lahm A, Ducommun PP, et al. Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. Sports Med, Arthrosc, Rehabil, Ther Technol. 2011;3:11.

    Google Scholar 

  232. Viste A, Piperno M, Desmarchelier R, Grosclaude S, Moyen B, Fessy MH. Autologous chondrocyte implantation for traumatic full-thickness cartilage defects of the knee in 14 patients: 6-year functional outcomes. Orthop Traumatol Surg Res. 2012;98:737–43.

    Google Scholar 

  233. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.

    Google Scholar 

  234. Barbero A, Grogan SP, Mainil-Varlet P, Martin I. Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. J Cell Biochem. 2006;98:1140–9.

    Google Scholar 

  235. Jenniskens YM, Koevoet W, de Bart AC, Weinans H, Jahr H, Verhaar JA, et al. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2006;14:1136–46.

    Google Scholar 

  236. Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, et al. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis & Rheumatism. 2008;58:197–208.

    Google Scholar 

  237. Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, et al. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng A. 2011;18:362–72.

    Google Scholar 

  238. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388:1985–94.

  239. Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5:e13246.

    Google Scholar 

  240. Seol D, McCabe DJ, Choe H, Zheng H, Yu Y, Jang K, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis & Rheumatism. 2012;64:3626–37.

    Google Scholar 

  241. Cucchiarini M, Venkatesan JK, Ekici M, Schmitt G, Madry H. Human mesenchymal stem cells overexpressing therapeutic genes: from basic science to clinical applications for articular cartilage repair. Biomed Mater Eng. 2012;22:197–208.

    Google Scholar 

  242. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 2007;4:415–28.

    Google Scholar 

  243. Al Faqeh H, Nor Hamdan BMY, Chen HC, Aminuddin BS, Ruszymah BHI. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol. 2012;47:458–64.

    Google Scholar 

  244. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Engineering Part C: Methods. 2009;15:647–58.

    Google Scholar 

  245. Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, et al. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artificial Cells, Blood Substitutes, and Biotechnology. 2011;39:31–8.

    Google Scholar 

  246. McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2011;27:1552–61.

    Google Scholar 

  247. Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008–18.

    Google Scholar 

  248. Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, et al. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 2016;23(4):647–54.

    Google Scholar 

  249. Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng A. 2009;16:523–33.

    Google Scholar 

  250. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis & Rheumatism. 2006;54:1222–32.

    Google Scholar 

  251. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27:91–9.

    Google Scholar 

  252. Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30:2683–93.

    Google Scholar 

  253. Koh Y-G, Choi Y-J, Kwon S-K, Kim Y-S, Yeo J-E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2013;23:1308–16.

    Google Scholar 

  254. Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Research & Therapy. 2013;15:1–16.

    Google Scholar 

  255. Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int. 2012;36:189–94.

    Google Scholar 

  256. Jurgens WJFM, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GAP, Smit TH, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. BioResearch Open Access. 2013;2:315–25.

    Google Scholar 

  257. Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 2007;13:659–66.

    Google Scholar 

  258. Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju Y-J, et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res. 2009;27:435–41.

    Google Scholar 

  259. Fan J, Varshney RR, Ren L, Cai D, Wang D-A. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng B Rev. 2009;15:75–86.

    Google Scholar 

  260. Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97:84–97.

    Google Scholar 

  261. Lee J-C, Lee SY, Min HJ, Han SA, Jang J, Lee S, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A. 2012;18:2173–86.

    Google Scholar 

  262. Lee J-C, Min HJ, Park HJ, Lee S, Seong SC, Lee MC. Synovial membrane–derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013;29:1034–46.

    Google Scholar 

  263. MEASE PJ, HANNA S, FRAKES EP, ALTMAN RD. Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J Rheumatol. 2011;38:1546–51.

    Google Scholar 

  264. Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials. 2010;31:8004–11.

    Google Scholar 

  265. Saw K-Y, Anz A, Merican S, Tay Y-G, Ragavanaidu K, Jee CSY, et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2011;27:493–506.

    Google Scholar 

  266. Turajane T, Chaweewannakorn U, Larbpaiboonpong V, Aojanepong J, Thitiset T, Honsawek S, et al. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thail = Chotmaihet thangphaet. 2013;96:580–8.

    Google Scholar 

  267. Fu W-L, Ao Y-F, Ke X-Y, Zheng Z-Z, Gong X, Jiang D, et al. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment. Knee. 2014;21:609–12.

    Google Scholar 

  268. Ossendorf C, Steinwachs MR, Kreuz PC, Osterhoff G, Lahm A, Ducommun PP, et al. Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. Sports Med, Arthrosc, Rehabil, Ther Technol: SMARTT. 2011;3:11.

    Google Scholar 

  269. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue engineering Part C, Methods. 2009;15:647–58.

    Google Scholar 

  270. Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, et al. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 2016;23:647–54.

    Google Scholar 

  271. Koh Y-G, Choi Y-J, Kwon S-K, Kim Y-S, Yeo J-E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:1308–16.

    Google Scholar 

  272. Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A. 2012;18:2173–86.

    Google Scholar 

  273. Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193:161–78.

    Google Scholar 

  274. Maher SA, Rodeo SA, Warren RF. The meniscus. J Am Acad Orthop Surg. 2017;25:e18–e9.

    Google Scholar 

  275. Vaquero J, Forriol F. Meniscus tear surgery and meniscus replacement. Muscles, Ligaments and Tendons Journal. 2016;6:71–89.

    Google Scholar 

  276. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. JBJS. 1983;65:538–47.

    Google Scholar 

  277. Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci. Sports Health. 2011;4:340–51.

    Google Scholar 

  278. Pereira H, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The meniscus: basic science. In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin: Springer; 2013. p. 7–14.

    Google Scholar 

  279. Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy. 1995;11:96–103.

    Google Scholar 

  280. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32:7411–31.

    Google Scholar 

  281. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43:635–40.

    Google Scholar 

  282. DeHaven KE, Sebastianelli WJ. Open meniscus repair. Indications, technique, and results. Clin Sports Med. 1990;9:577–87.

    Google Scholar 

  283. Harston A, Nyland J, Brand E, McGinnis M, Caborn DNM. Collagen meniscus implantation: a systematic review including rehabilitation and return to sports activity. Knee Surg Sports Traumatol Arthrosc. 2012;20:135–46.

    Google Scholar 

  284. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11–23.

    Google Scholar 

  285. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006;14:1056–65.

    Google Scholar 

  286. Marijnissen WJCM, van Osch GJVM, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 2002;23:1511–7.

    Google Scholar 

  287. Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34:32–42.

    Google Scholar 

  288. Heijkants RGJC, van Calck RV, de Groot JH, Pennings AJ, Schouten AJ, van Tienen TG, et al. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med. 2004;15:423–7.

    Google Scholar 

  289. Grande D, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–20.

    Google Scholar 

  290. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Science. Transl Med. 2014;6:266ra171.

    Google Scholar 

  291. Webber RJ, Harris MG, Hough AJ. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985;3:36–42.

    Google Scholar 

  292. Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med. 2004;32:915–20.

    Google Scholar 

  293. Kang S-W, Son S-M, Lee J-S, Lee E-S, Lee K-Y, Park S-G, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A. 2006;78A:638–51.

    Google Scholar 

  294. Peretti GM, Gill TJ, Xu J-W, Randolph MA, Morse KR, Zaleske DJ. Cell-based therapy for meniscal repair. Am J Sports Med. 2004;32:146–58.

    Google Scholar 

  295. Esposito AR, Moda M, Cattani SM, de Santana GM, Barbieri JA, Munhoz MM, et al. PLDLA/PCL-T scaffold for meniscus tissue engineering. BioResearch open access. 2013;2:138–47.

    Google Scholar 

  296. Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds. J Tissue Eng Regen Med. 2010;4:115–22.

    Google Scholar 

  297. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13:1103–12.

    Google Scholar 

  298. Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci. 2010;88:326–32.

    Google Scholar 

  299. Ballard GA, Warnock JJ, Bobe G, Duesterdieck-Zellmer KF, Baker L, Baltzer WI, et al. Comparison of meniscal fibrochondrocyte and synoviocyte bioscaffolds toward meniscal tissue engineering in the dog. Res Vet Sci. 2014;97:400–8.

    Google Scholar 

  300. Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94A:1150–61.

    Google Scholar 

  301. Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater. 2013;101:1133–42.

    Google Scholar 

  302. Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, et al. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet Surg. 2014;43:255–65.

    Google Scholar 

  303. Vangsness CTJ, Farr JI, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind controlled study. JBJS. 2014;96:90–8.

    Google Scholar 

  304. Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, et al. Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells. 2009;27:878–87.

    Google Scholar 

  305. Horie M, Driscoll MD, Sampson HW, Sekiya I, Caroom CT, Prockop DJ, et al. Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. JBJS. 2012;94:701–12.

    Google Scholar 

  306. Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr Cartil. 2015;23:1007–17.

    Google Scholar 

  307. Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. Biomed Res Int. 2014;2014:10.

    Google Scholar 

  308. Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32:639–51.

    Google Scholar 

  309. Halili AN, Hasirci N, Hasirci V. A multilayer tissue engineered meniscus substitute. J Mater Sci Mater Med. 2014;25:1195–209.

    Google Scholar 

  310. Tan G-K, Dinnes DLM, Butler LN, Cooper-White JJ. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules. Biomaterials. 2010;31:6104–18.

    Google Scholar 

  311. Jakob M, Demarteau O, Schäfer D, Hintermann B, Dick W, Heberer M, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001;81:368–77.

    Google Scholar 

  312. Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil. 2009;17:336–45.

    Google Scholar 

  313. Port J, Jackson DW, Lee TQ, Simon TM. Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med. 1996;24:547–55.

    Google Scholar 

  314. Walsh CJ, Goodman D, Caplan AI, Goldberg VM. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng. 1999;5:327–37.

    Google Scholar 

  315. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis & Rheumatism. 2003;48:3464–74.

    Google Scholar 

  316. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Google Scholar 

  317. Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005;12:217–23.

    Google Scholar 

  318. Ding Z, Huang H. Mesenchymal stem cells in rabbit meniscus and bone marrow exhibit a similar feature but a heterogeneous multi-differentiation potential: superiority of meniscus as a cell source for meniscus repair. BMC Musculoskelet Disord. 2015;16:65.

    Google Scholar 

  319. Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.

    Google Scholar 

  320. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends in Biotechnology. 2007;25:24–32.

    Google Scholar 

  321. Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, et al. Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev. 2014;23:2274–82.

    Google Scholar 

  322. Friedenstein AJ, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

    Google Scholar 

  323. Wegmeyer H, Bröske A-M, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013;22:2606–18.

    Google Scholar 

  324. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21:2724–52.

    Google Scholar 

  325. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis & Rheumatism. 2002;46:704–13.

    Google Scholar 

  326. Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng A. 2012;18:1161–70.

    Google Scholar 

  327. Gawlitta D, van Rijen MH, Schrijver EJ, Alblas J, Dhert WJ. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells. Tissue Eng Part A. 2012;18:1957–66.

    Google Scholar 

  328. Sheehy EJ, Buckley CT, Kelly DJ. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochemical and Biophysical Research Communications. 417:305–10.

  329. Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res. 2004;22:998–1003.

    Google Scholar 

  330. Tasso R, Augello A, Carida’ M, Postiglione F, Tibiletti MG, Bernasconi B, et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009;30:150–7.

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge funding from the Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, NIH R01AR063698, and NIH DP1 AR068147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, G., Bhattacharjee, M., Nair, L.S. et al. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. Regen. Eng. Transl. Med. 3, 133–165 (2017). https://doi.org/10.1007/s40883-017-0036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-017-0036-9

Keywords

Navigation