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Abstract Inefficient transport systems impose extra travel

time for travelers, cause dissatisfaction and reduce service

levels. In this study, the demand-oriented train scheduling

problem is addressed using a robust skip-stop method

under uncertain arrival rates during peak hours. This paper

presents alternative mathematical models, including a two-

stage scenario-based stochastic programming model and

two robust optimization models, to minimize the total

travel time of passengers and their waiting time at stations.

The modeling framework accounts for the design and

implementation of robust skip-stop schedules with earli-

ness and tardiness penalties. As a case study, each of the

developed models is implemented on line No. 5 of the

Tehran metro, and the results are compared. To validate the

skip-stop schedules, the values of the stochastic solution

and the expected value of perfect information are calcu-

lated. In addition, a sensitivity analysis is conducted to test

the performance of the model under different scenarios.

According to the obtained results, having perfect

information can reduce up to 16% of the value of the

weighted objective function. The proposed skip-stop

method has been shown to save about 5% in total travel

time and 49% in weighted objective function, which is a

summation of travel times and waiting times as against

regular all-stop service. The value of stochastic solutions is

about 21% of the value of the weighted objective function,

which shows that the stochastic model demonstrates better

performance than the deterministic model.

Keywords Train timetabling � Demand-oriented train

scheduling � Robust optimization � Earliness and tardiness �
Demand uncertainty � Stop-skip service

1 Introduction

Providing affordable and efficient transportation services to

users is a vital role in rail transportation systems [1]. Rapid

rail transit is recognized as one of the most efficient modes

of transport in urban areas. Rail companies devote a

growing amount of energy and effort to improving the

efficiency and robustness of train services in daily opera-

tions [2]. A practical approach to minimizing the opera-

tional cost and, simultaneously, passenger waiting time is

to optimize operational services following the spatial and

temporal profiles of passenger demand [3]. The quality of

rail services is directly affected by train schedules. The

design and implementation of a demand-oriented train

timetable is a complicated task that involves accurate

estimation of the passenger demand [4]. Train timetabling

is an inherently multi-objective optimization problem that

studies the minimization of the train’s travel time subject to

supply and demand constraints [5].
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Most rapid rail transit systems face challenges, e.g.,

saturated demand, and look for a solution to increase ser-

vice quality [6]. The service quality can be increased by

adding new trains. However, this solution is costly and not

economically feasible, as these extra trains may be used

only at peak demand hours [7]. Principally, the satisfaction

of passengers is directly affected by their travel and waiting

times [8]. One of the primary sources of passenger dis-

satisfaction is unpredicted variations in passenger flows

[9, 10]. The process of timetable adjustment supplying the

passengers’ demand provides solutions with high sensi-

tivity to the stochastic variations and requires an effective

and robust solution to be applied [11]. To increase the

service level for passengers, it is necessary to generate a

timetable which allows passengers to arrive at their desti-

nations on time [12]. In the railway context, robust

timetables avoid unplanned delays, though to some extent

such delays are caused by random disturbances [13].

Skip-stop service is one of the best-known strategies for

both increasing the operational speed and decreasing the

passenger waiting cost. It is commonly adopted in rapid

rail transit lines, which allow trains to skip some low

demand stations to reduce the train traveling time [14]. The

skip-stop operation enables rail users to reduce the travel

time of the trains and simultaneously increases the travel

speed of some passengers. However, some passengers may

experience extra waiting or access time as a result of skip-

stop services [15]. The punctuality of rail services is also a

primary indicator of the performance in railway systems

[16], defined as the percentage of trains that arrive at their

destinations with a delay below the specified threshold

[17]. Train delays are unavoidable due to the random

nature of the disturbance that occurs during the service

[18]. Accordingly, a proper solution to train timetabling

problem is to integrate the robustness and punctuality of

the train services in terms of deviation between the planned

and actual schedule [19].

Even though extensive literature exists on timetabling in

the rail transportation system, there have not been enough

studies directed toward the optimization of robust skip-stop

strategies with earliness and tardiness criteria under the

stochastic demand. The present research focuses on multi-

objective optimization of train timetables for minimum

passenger cost in terms of travel time and schedule devi-

ation. To the best of our knowledge, a direct application of

robust stop-skip scheduling has not been found in the lit-

erature; if so, it has not been addressed to theextent offered

in the present study. The main contributions of the present

study are as follows: first, this study presents novel math-

ematical formulations to obtain robust and efficient skip-

stop schedules, considering uncertainty associated with an

arrival rate of passengers. Second, this study develops

alternative stochastic programming models for generating

robust skip-stop schedules with earliness and tardiness

criteria for rapid rail transit systems, with an illustration

based on the Tehran metro system.

This article is organized as follows: Sect. 2 provides a

literature review on the robust train timetabling problem.

Section 3 presents an explanation of the mathematical

optimization models. In Sect. 4, the proposed skip-stop

scheduling models are evaluated, and the results are

interpreted. The proposed models are implemented in real

instances of the Tehran metro network. Finally, the con-

cluding remarks are provided, and suggestions for future

research are presented.

2 Literature Review

This section reviews the most significant contributions in

the field of train timetabling problems. A taxonomy of the

related studies is given in Table 1. Furth [20] proposed an

integer programming model to solve the limited stop

scheduling problem on a bus transit line. The suggested

optimization model tries to minimize the deviation between

the actual schedule and the initial schedule. Eberlein et al.

[21] addressed the real-time skip-stop scheduling problem

in the public transportation system and developed a mixed-

integer nonlinear programming model. In the optimal

solutions provided, dwell times, train speeds and passenger

arrival rates were assumed to be deterministic and static.

The researchers also proposed a heuristic algorithm to

optimize skip-stop services. Vuchic [22] proposed a

deterministic train scheduling model to optimize a typical

pattern of the skip-stop plan. In this approach, the stations

are categorized into three clusters, A, B, and AB, regarding

their relative demand percentages. Sun and Hickman [23]

formulated the real-time stop-skip scheduling problem as a

nonlinear integer programming problem. The model

accounts for the uncertainty associated with the volume of

passenger boardings and alightings at stops. The large-size

instances of the problem were solved using an exhaustive

search method. The results indicated that the designed stop-

skip scheduling model could generate a solution that out-

performs the traditional all-stop service.

Kroon et al. [24] studied the periodic train scheduling

problem in the Dutch railway network under uncertainty

associated with the train running time. An optimal policy

for time supplement allocation was proposed, which aimed

to minimize the average train delays. Kroon et al. [25]

addressed the train scheduling problem by considering

connections in the Dutch rail network. To ensure the

desired level of schedule robustness, they developed a

stochastic programming model for optimal time buffer

allocation. Yang et al. [26] proposed a passenger train

scheduling model for a mixed single and double-track
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railway. In this model, the objective function was to min-

imize the total passenger travel time with a penalty func-

tion. They considered the number of passengers boarding

the train at each station as a random variable. A branch-

and-bound (B&B) algorithm was used to solve the train

timetabling problem.

Shafia et al. [46] examined the robustness and period-

icity of the train schedule in a single-track railway line.

They used a fuzzy programming approach to achieve a

balance between the total delay of trains and the stability of

the timetable. To solve large-scale instances of the prob-

lem, the simulated annealing (SA) method was utilized.

Cao et al. [33] proposed a skip-stop scheduling method to

find a trade-off between stopping time at stations and the

waiting time for travelers. The problem was heuristically

solved by an innovative Tabu search method.

Jamili and Aghaee [47] studied an operational plan for

urban metro lines with a skip-stop policy under uncertainty.

They proposed a robust optimization approach to design

more stable skip-stop patterns. The proposed skip-stop

scheduling problem was solved using a decomposition

algorithm and SA. Cao et al. [35] presented a multi-ob-

jective nonlinear model to minimize waiting times for

passengers using the skip-stop scheduling method. The

problem was formulated as a mixed integer nonlinear

programming model. The result shows that the travel time

Table 1 A classification of the existing skip-stop scheduling models in rail rapid transit systems

Reference Modeling approach Solution method Objective function (s) Earliness/tardiness

criteria

Uncertainty

[21] Mixed integer nonlinear

programming model

(MINLP)

Exact methods Total passenger cost – –

[27] Object-oriented Discrete

event simulation (DES)

– Deviations from the nominal timetable – –

[28] Mixed Integer Programming

(MIP)

CPLEX Solver Passenger waiting time – –

[29] DES – – – –

[30] MINLP Genetic

algorithm

Overall waiting times and the in-vehicle

crowded costs

– –

[31] MIP CPLEX Solver Minimizing the demand congestion and

maintaining a level of quality of service

– –

[32] DES Genetic

algorithm

Wait time –
p

[33] MIP Tabu search Waiting and trip times for all passengers

and the travel times of trains

– –

[34] MINLP GAMS Passenger waiting time – –

[35] Stochastic model Tabu search The travel time of the passengers –
p

[36] Multi-objective MIP CPLEX solver Total dwelling time and total delay – –

[37] – Simulation

method

total headway deviation
p p

[38] MINLP heuristic

algorithm

The average travel time for passengers – –

[39] MIP/MINLP Heuristic

method

Wait time – –

[40] MIP CPLEX Solver Recovery time and the waiting time for

passengers

– –

[41] MIP CPLEX Solver Total cost – –

[42] MIP Lagrangian-

based

heuristic

Max profit – –

[43] MIP/MINLP CPLEX solver Wait time – –

[44] MIP CPLEX solver The total travel time of all the passengers – –

[45] Multi-commodity flow-

modeling model

Lagrangian

decomposition

Total cost – –

This

study

Robust optimization and

stochastic programming

CPLEX Solver The total travel time for passengers and

timetable deviation

p p
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of passengers was reduced significantly by implementing

the skip-stop scheduling method. Hassannayebi et al. [48]

proposed robust multi-objective stochastic optimization

models for train timetabling problems in transit lines. The

model aims to minimize the passenger waiting times

besides its variance. They evaluated the effectiveness of

models through a case study in the Tehran subway system.

The results show significant reductions in the passenger

waiting time through the proposed robust model. Shak-

ibayifar et al. [49] presented a train rescheduling model to

minimize the total travel time of trains in Iranian rail net-

works. A heuristic approach was proposed to design a

disposition timetable in a reasonable time. To validate the

model, the re-scheduling model was tested for several

disruption scenarios, each associated with random recovery

time.

Recently, Qi et al. [50] proposed a robust approach to

train timetabling involving train stop planning with

uncertain passenger demand. The aim was to minimize

unsatisfied demand while ensuring that the sum of train

travel times and the total number of stops were less than the

optimal deterministic solutions to some extent. Shang et al.

[45] proposed a space–time-state formulation for the skip-

stop scheduling problem in an urban rail transit system.

The optimization model was based on the extension of a

multi-commodity network flow problem. A Lagrangian

heuristic was used to solve instances of the Beijing Subway

system. Lee et al. [51] addressed the skip-stop scheduling

problem using smartcard statistics. The aim was to reduce

the overall travel time of passengers with regard to route

choice behaviors. A genetic algorithm was proposed to

solve instances of the Seoul urban rail system.

Despite the existing models and solution methods for the

skip-stop scheduling problem, only a few papers addressed

the conflicting objectives appears in a real-world setting.

The present study adopts a multi-objective optimization

framework for skip-stop scheduling, which leads to a more

realistic solution for the studied problem. In the next sec-

tion, alternative formulations for robust skip-stop

scheduling are provided. The modeling framework con-

siders multiple conflicting objectives.

3 Problem Statement and Formulation

This section gives the assumptions related to the network

topology and presents the mathematical formulation of the

integrated train timetabling and skip-stop scheduling

problem. In this study, alternative optimization models are

proposed for generating robust stop-skip schedules under

stochastic passenger flows. The underlying problem in this

study involves the optimal design of skip-stop schedules

during peak hours in double-track rail transit lines. Unlike

the regular all-stop schedule, in this method, trains stop at

only a few stations instead of stopping at all stops. The

proposed model minimizes the total train travel time while

reducing the deviation between the planned and actual

timetables. Trains can avoid stopping at some stations to

shorten travel time, but at least one train should stop at

each station. It is assumed that all trains have the same

origins and destinations. The stopping time at the stations

is determined by the number of passengers boarding or

alighting at the stations. Each block can be occupied byn at

most one train, and there is no possibility of train over-

taking. The train timetabling model accounts for the min-

imum headway time and train capacity constraints. The

arrival rate of passengers at the stations is an uncertain

parameter, and it is given in different scenarios. Before

presenting the scenario-based formulation of the skip-stop

scheduling problem, the following notations for parameters

and variables are given:

Sets and Subscript

X ¼ f1; . . .;Mg Set of trains (i 2 X)
W ¼ f1; . . .;Ng Set of stations (j; k 2 W)

n ¼ f1; . . .; Sg Set of scenarios (s 2 n)

Model Parameters

Ci The maximum capacity of train i

sj The running time of the train from station j - 1 to

station j

kjks The arrival rate of passengers who want to travel

from station j to station k under scenario s

h Minimum headway time

a Minimum alighting and boarding time per passenger

tac Train acceleration time

tdec Train deceleration time

x The weight coefficient for total deviations between

the actual and planned timetable in the objective

function 0�x� 1

prs The probability of occurrence for scenario s

w Penalty coefficient for tardiness

w0 Penalty coefficient for earliness

v The penalty factor for passengers who have left the

train at the last station

b The train dwell time reserved for technical

operations such as the closing/opening of doors

M A sufficiently large positive number

Decision Variables

dijs Dwell time of the train i at station j under

scenario s

sijks The number of passengers skipped by train i who

will travel from station j to k under scenario s

Sijs Total number of passengers skipped by train i at

station j under scenario s
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psijs Number of passengers boarded on train i at

station j under scenario s

Vijs Number of passengers alighted from train i at

station j under scenario s

Wijks The total number of passengers waiting for train

i to travel from station j to station k under

scenario s

W 0
ijks The number of passengers boarded on train i to

travel from station j to station k under scenario s

xij If train i stops at station j, equals 1, otherwise

zero

yijk If train i stops at both station j and k equals to 1,

otherwise zero

fijs If train i has enough capacity to accommodate

passengers arrives at station j, equals 1, otherwise

zero

TArij The arrival time of train i at station j based on the

planned timetable

TDepij The departure time of train i from station j based

on the planned timetable

Arijs Arrival time of train i at station j under scenario s

Depijs The departure time of train i from station j under

scenario s

aþijs The positive deviation between the actual and

planned arrival time of train i at station j under

scenario s (tardiness)

a�ijs The negative deviation between the actual and

planned arrival time of train i at station j under

scenario s (earliness)

bþijs The positive deviation between the actual and

planned departure time of train i from station

j under scenario s

b�ijs The negative deviation between the actual and

planned departure time of train i from station

j under scenario s

pijs The number of passengers on train i when it

departs from station j under scenario s

sts The total deviation between the actual and

planned travel time under scenario s

swts Total waiting time of passengers under scenario s

hs An auxiliary variable representing the deviation

between actual travel time and mean value under

scenario s

h0s An auxiliary variable representing the deviation

between actual passenger waiting time and mean

value under scenario s

3.1 Scenario-Based Stochastic Optimization Model

This section presents a scenario-based stochastic pro-

gramming model for generating a robust stop-skip plan in

an urban railway. The problem has been formulated as a

multi-objective mixed-integer linear programming formu-

lation given in Eqs. (1)–(26). Equation (1) minimizes the

total travel time of trains plus absolute deviations between

the actual and planned timetable under different scenarios.

In the first objective function, the first term determines the

travel time of each train, and the second term shows the

deviations between the planned and actual arrival and

departure time of trains under different scenarios. Equa-

tion (2) shows the second objective function, which

accounts for the total passenger cost. The first term of this

function is the average waiting time for passengers at sta-

tions under different scenarios. For passengers who have

been able to board the train, the average waiting time is

half the minimum headway h
2

� �
and for those skipped by

trains, it equals h. The second part of the second objective

function also calculates the average number of passengers

who left the last train under different scenarios, which is a

kind of unsatisfied demand for passenger accommodation.

MinZ1¼
X

i2X
ðTAriM�TAri1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þx �
X

i2X

X

j2W

X

s2n
prs �ðw �ðaþijsþbþijsÞþw0ða�ijsþb�ijsÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

ð1Þ

Min Z2 ¼
X

i2X

X

j2W

X

s2n
prs � psijs �

h

2
þ Sði�1Þjs � h

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þ t �
X

i¼M;j2W

X

s2n
prs � Sijs

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

ð2Þ

Constraint (3) calculates the train dwell time under

scenario s. The train dwell time is defined as a function of

the number of passengers boarding/alighting the train plus

a fixed time for technical operations such as the closing/

opening of doors. It ensures that if train i stops at station j,

this time is equal to the time taken to board passengers onto

train i.

dijs ¼ bþ xij
X

k[ j

ðW 0
ijks þ VijsÞa 8 i 2 X; j 2 W; s 2 n

ð3Þ

Constraint (4) states that the departure time of train i

from station j under scenario s equals the arrival time of the

train at the station plus the train dwell time.

Depijs ¼ Arijs þ dijs 8 i 2 X; j 2 W; s 2 n ð4Þ

Constraints (5) and (6) calculate the positive and nega-

tive deviations between the actual and planned departure

and arrival times, respectively, under different scenarios.
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Arijs � TArij ¼ aþijs � a�ijs 8 i 2 X; j 2 W; s 2 n ð5Þ

Depijs � TDepij ¼ bþijs � b�ijs 8 i 2 X; j 2 W; s 2 n ð6Þ

Equation (7) calculates the running time of train i from

station j - 1 to station j under scenario s with respect to the

acceleration and deceleration of trains. Likewise, the run-

ning time between two consecutive stops j - 1 and j prin-

cipally comprises three terms, i.e., pure running time (sj),
acceleration time (tac), and deceleration time (tdec).

Arijs � Depiðj�1Þs ¼ sj þ tacxiðj�1Þ þ tdecxij

8 i 2 X; j 2 W; s 2 n
ð7Þ

Constraint (8) calculates the total number of passengers

skipped by train i at station j under scenario s.

Sijs ¼
XN

k¼jþ1

sijks 8 i 2 X; j 2 W; s 2 n ð8Þ

Constraint (9) counts the total number of passengers

boarding the train i at station j under scenario s.

psijs ¼
XN

k¼jþ1

W 0
ijks 8 i 2 X; j 2 W� fNg; s 2 n ð9Þ

Constraint (10) ensures that if train i skips two stations j

and k, the number of passengers boarded onto train i at

station j, which are intended to alight at station k, is zero.

W 0
ijks �Myijk 8 i 2 X; j; k 2 W; s 2 n ð10Þ

Constraint (11) implies that the summation of passen-

gers skipped and boarded on train i at station j equals the

number of passengers waiting at station j. In other words,

the number of passengers that could not board train i - 1

will be the number waiting for train i.

W 0
ijks ¼ Wijks � sði�1Þjks 8 i 2 X; j; k 2 W; s 2 n ð11Þ

Equation (12) defines the maximum number of passen-

gers accommodated by train i in station j under scenario s.

Ci � pijs �Mfijs 8 i 2 X; j 2 W; s 2 n ð12Þ

Constraint (13) states that if train i stops at both stations

j and k, there are no left behind passengers traveling from

station j to station k.

sijks �Mð1� fijsÞ þMð1� yijkÞ 8 i 2 X; j; k 2 W; s 2 n

ð13Þ

Constraint (14) calculates the total number of passengers

traveling fromstation k\ j to station j accommodatedby train i.

Vijs ¼
Xj�1

k¼1

W 0
ikjs 8 i 2 X; j 2 W; s 2 n ð14Þ

Constraint (15) indicates that the number of passengers

waiting at station j to board train i is equal to the number of

passengers who were skipped by the previous train plus the

number of new passengers arriving at station j.

Wijks ¼ si�1;jks þ kjksðArijs � Arði�1ÞjsÞ
8 i 2 Xnf1g; j; k 2 W; k[ j; s 2 n

ð15Þ

To ensure the quality of skip-stop services, constraint

(16) ensures that all trains must stop at the first (j = 1) and

last station (j = N).

xi1 þ xiN ¼ 2 8 i 2 X ð16Þ

Given the management regulations, constraint (17)

guarantees that at least one of two successive trains must

stop at each station.

xij þ xðiþ1Þj � 1 8 i 2 XnfMg; j 2 W ð17Þ

Likewise, constraint (18) indicates that each train must

stop at at least one intermediate station.
X

j2W�f1;Ng
xij � 1 8 i 2 X ð18Þ

Constraint (19) ensures that there must be at least one

train to stop at two distinct stations j and k.
X

i2X
yijk � 1 8 j; k 2 W ð19Þ

Constraint (20) counts the number of passengers on the

train i when it departs from station j under scenario s.

pijs ¼
X

k[ j

W 0
ijks þ

X

l\j

X

m[ j

W 0
ilms 8 i 2 X; j 2 W; s 2 n

ð20Þ

Constraint (21) ensures that the number of passengers on

the train does not exceed the maximum capacity of the

train.

pijs �Ci 8 i 2 X; j 2 W; s 2 n ð21Þ

Constraints (22) and (23) define the logical relationship

between the skip-stop variables x and y. For example,

constraint (23) ensures that if the train i stops at stations k

and j, the value of variable y is equal to 1.

2yijk � xij þ xik 8 i 2 X; j; k 2 W ð22Þ

xij þ xik � 1þ yijk 8 i 2 X; j; k 2 W ð23Þ

Constraints (24) and (25) define the minimum safety

headway time as a difference between the departure and

arrival of two consecutive trains, respectively.

Depijs � Depði�1Þjs � h 8 i 2 Xnf1g; j 2 W; s 2 n ð24Þ

Arijs � Arði�1Þjs � h 8 i 2 X; j 2 W; s 2 n ð25Þ

Finally, constraint (26) defines the type and domain of

the decision variables.
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yijk; xij 2 f0; 1g 8 i 2 X; j; k 2 W

Arijs;Depijs; pijs;W
0
ijks;Wijks;Vijs; sijks; psijs; Sijs; dijs � 0

8 i 2 X; j; k 2 W; s 2 n ð26Þ

3.2 A Scenario-Based Robust Optimization Model

This section explains the robust counterpart formulation of

the skip-stop scheduling problem. The method is based on

the formulation of Mulvey et al. [52] as a highly successful

optimization approach under uncertainty. The robust opti-

mization model considers the scenarios and their proba-

bility of occurrence. Following the notations of Mulvey

et al. [52], Eq. (27) shows the first objective function of the

robust model, which comprises two parts. The first part

minimizes the travel time of trains regardless of the real-

ized scenarios. The second part minimizes the average

deviation between the actual and planned timetable under

different scenarios weighted by a coefficient (x). This

coefficient balances the relative importance of earliness

and tardiness based on user preference. Constraint (28)

shows the second functional objective, which includes

three terms. The first term corresponds to the minimization

of the average waiting time of passengers under different

scenarios. The second term minimizes the absolute devia-

tion between the realized and expected wait time over

different scenarios weighted by a coefficient (x0). Finally,
the third term minimizes the number of passengers who

failed to board the trains (or equivalently, the unfulfilled

demand) weighted by a coefficient (m). The value of the

weight coefficient depends on user preference, and can be

obtained by numerical experiments or sensitivity analysis.

Min Z1 ¼
X

i2X
ðTAriM � TAri1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þx �
X

s2n
prs � sts

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2

where sts ¼
X

i2X

X

j2W
ðw � ðaþijs þ bþijsÞ þ w0ða�ijs þ b�ijsÞÞ

ð27Þ

Min Z2 ¼
X

s2n
prs � swts

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1

þ x0 �
X

s2n
prs � ðswts �

X

s02n
prs0 � swts0 þ 2h0sÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

þ t �
X

i¼M;j2W

X

s2n
prs � Sijs

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

where swts ¼
X

i2X

X

j2W
psijs:

h

2
þ Sði�1Þ;js � h

� �
ð28Þ

All the constraints of the stochastic optimization model

are also considered in the robust optimization model.

Equation (29) is added to the set of constraints for proper

consideration of the deviations in the objective function.

swts �
X

s02n
prs0swts0 þ h0s � 0 8s 2 n ð29Þ

Finally, the robust skip-stop scheduling model is for-

mulated as follows:

Min Z1 ¼
X

i2X
ðTAriM � TAri1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þ
X

s2n
prs � sts

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2

ð30Þ

Min Z2 ¼
X

s2n
prs � swts

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1

þ x0 �
X

s2n
prs � ðswts �

X

s02n
prs0 � swts0 þ 2h0sÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

þ t �
X

i¼M;j2W

X

s2n
prs � Sijs

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

ð31Þ

where

sts ¼
X

i2X

X

j2W
ðw � ðaþijs þ bþijsÞ þ w0ða�ijs þ b�ijsÞÞ

swts ¼
X

i2X

X

j2W
psijs:

h

2
þ Sði�1Þjs � h

� � ð32Þ

subject to:

swts �
X

s02n
prs0 � swts0 þ h0s � 0 8s 2 n ð33Þ

In this study, the normalized Lp-norm method is used to

solve the multi-objective optimization model. In this

method, the problem is solved for each objective function,

and the upper and lower bounds for the objective functions

are calculated. Afterward, these values are used to nor-

malize the objective function. Constraint (34) represents

the combination of two objective functions in which u 2
0; 1½ � is a weight factor. This weight factor indicates the

relative importance of the normalized objective functions.

As parameter u increases, the relative importance of the

first objective function decreases, and the weight of the

second objective function increases.

Min Zt ¼ u � Z1 � Z1min

Z1max � Z1min
þ ð1� uÞ � Z2 � Z2min

Z2max � Z2min

Subject to : Equations ð1Þ � ð33Þ ð34Þ
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4 Numerical Results

In this section, the statistical result and the validation

process are carried out using test instances of the Tehran

metro system. For further verification of the optimization

models, a sensitivity analysis is performed to study the

effect of critical parameters on the performance of the

model. The mathematical models were coded in GAMS

24.2 and run on a PC with an Intel Core i5 processor and

8 GB RAM, under the Windows 10 operating system. The

proposed optimization models were solved by CPLEX 12.9

solver, which uses several state-of-the-art MILP tech-

niques, e.g., branch and bound (B&B) and branch and cut

(B&C) algorithms. The designed models are well-matched

with standard optimization platforms, e.g., GAMS. It will

be shown that high-quality solutions can be generated for

real size instances of skip-stop scheduling problem within a

reasonable time.

4.1 Case Study

In this section, the effectiveness of the proposed robust

skip-stop scheduling models is verified by a real example

of Tehran Metro Line No. 5. The input data are collected

using a field survey and a questionnaire targeting the pas-

sengers and the Tehran Metro Organization. Suburban rail

line No. 5 is about 41-kilometer long with ten stations

which connect Tehran to Golshahr (Fig. 1). The underlying

test example considers six trains running on a double-track

rail line with ten stations. Here, five discrete scenarios

represent the uncertainty associated with arrival rate. The

probability of the occurrence of scenarios 1, 2, 3, 4, and 5

are considered to be 0.15, 0.2, 0.3, 0.2, and 0.15, respec-

tively. Table 2 provides the input parameters used to solve

the test problems.

Table 3 reports the free running time of the trains on

block sections along the route.

Arrival rates of passengers are represented by the

number of travelers per second who are planning to travel

between different origins and destinations (Table 4). As

illustrated in Table 4, parameter k0jk corresponds to the

values of the nominal arrival rate. In addition, qs is a

coefficient that alters the arrival rate within the range of

- 10 to 10%. For example, in the first scenario, the arrival

rate is 90% of its nominal amount, while under scenario 5,

the arrival rate is 10% higher than the nominal value.

The numerical experiments are executed by setting the

input parameters as x ¼ 1; m ¼ 103, and u ¼ 0:5. In the

first step, each objective function is optimized separately,

and the minimum and maximum values are obtained

(Table 5). These values are entered as input parameters for

the Lp-metric method, and the scenario-based skip-stop

scheduling model is solved with the combined objective

function. Table 6 illustrates the values of the combined

objective functions and the first and second objective

functions, namely as the travel time of trains and the

waiting time of passengers under different scenarios. The

optimal value of the normalized objective function is

Table 2 Parameters values and

related units used in the case

study

Parameters Value

Train maximum capacity (passenger) 2000

Minimum headway time (minutes) 10

Minimum alighting and boarding time per passenger (seconds) 0.05

Train acceleration and braking times (seconds) 15

Table 3 Train pure running

time between two consecutive

stations (minutes)

Block section (j) 1 2 3 4 5 6 7 8 9

sj 5.62 3.75 3.75 5.62 5.62 8.35 5.62 5.78 4.77

Fig. 1 Route map of the Line No.5 of Tehran metro network
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obtained as 0.259. According to the obtained results, the

lowest and highest values of waiting time and trains’ travel

time have been obtained in the first and fifth scenarios,

respectively. Figure 2 shows the optimal skip-stop sched-

ule obtained in the third scenario. As can be seen, most of

the trains stop at two stations with the highest demand

(stations No. 3 and 9).

Figure 3 shows a time–space graph of the train move-

ment obtained for the third scenario. As illustrated in this

figure, trains No. 1, 3 and 5 skip stations No. 6, 7 and 8, and

thus have the same arrival and departure times. As can be

seen, all trains have stopped at stations No. 3 and 9 because

of the high demand for travel.

4.2 Stochastic Analysis of Solutions

In this section, the value of the stochastic solution for joint

train timetabling and skip-stop planning problem is ana-

lyzed. Suppose zEEV, zWS, and zRP are the values of the

objective function corresponding to the Expected Value

optimization, wait and see (in the case of having perfect

information) and resource problem, respectively. It can be

shown that in the case of a minimization problem, the

inequities (35) are valid.

ZWS � ZRP � ZEEV ð35Þ

Expected Value of Perfect Information (EVPI), which

indicates the importance of addressing the uncertainty of

information, is defined as shown in Eq. (36). EVPI mea-

sures how much imperfect information affects the value of

the objective function. A low value of EVPI indicates that

having complete information is not significant.

EVPI ¼ ZRP � ZWS ð36Þ

As another practical indicator, the Value of Stochastic

Solution (VSS) is defined in Eq. (37). VSS shows how

much savings can be obtained using a stochastic solution

rather than a deterministic solution, such as an average

value. In other words, VSS represents the cost of ignoring

uncertainty during the decision-making the process. The

Table 6 The objective function

values (Sts; Swts)
Zt = 0.25997 s = 1 s = 2 s = 3 s = 4 s = 5 Average

Z1 = 21,771.7 382.7 143.5 95.7 175.4 574.1 236.03

Z2 = 4,574,779.1 3,138,746.0 4,255,271.1 4,478,294.8 4,701,224.6 6,093,865.2 4,519,679.3

Table 4 The arrival time of

passengers with different

origins and destinations

(passengers per second)

kjks ¼ qs � k0jk 8s 2 S

qs ¼ f0:9; 0:95; 1; 1:05; 1:1g

k0jk k = 1 2 3 4 5 6 7 8 9 10

j = 1 – 0.113 0.319 0.019 0.112 0.094 0.075 0.037 0.469 0.487

2 – – 0.020 0.005 0.006 0.005 0.004 0.004 0.048 0.053

3 – – – 0.029 0.065 0.058 0.053 0.035 0.310 0.339

4 – – – – 0.006 0.004 0.002 0.002 0.015 0.016

5 – – – – – 0.012 0.009 0.007 0.037 0.042

6 – – – – – – 0.002 0.002 0.011 0.012

7 – – – – – – – 0.006 0.024 0.028

8 – – – – – – – – 0.005 0.005

9 – – – – – – – – – 0.027

10 – – – – – – – – – –

Table 5 The range of the objective function values

Objective functions Max Min

Z1 23,110.7 21,201.5

Z2 9,252,720.4 3,245,513.9

Fig. 2 The stop-skip pattern for trains running on Line 5
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more significant value of the VSS indicates the importance

of accounting for the uncertainty of the model.

VSS ¼ ZEEV � ZRP ð37Þ

The calculation of zEEV requires the values of the

decision variables of the deterministic scheduling model to

be entered as parameters in the stochastic optimization

model. With the suggested approach, the expected value

optimization model is solved and the corresponding

objective value is obtained, i.e., zEEV ¼ 0:3323. The

amount of zws also is equal to the average of the objective

function in the case of having perfect information about the

occurrence of scenarios. To obtain the wait and see value,

the deterministic model is separately solved for each sce-

nario, and the corresponding values of the objective func-

tions are multiply by the occurrence probability of the

scenarios (zws ¼ 0:2152). The amount of resource function,

zRP, corresponds to the stochastic value of the objective

function which is obtained, i.e., zRP ¼ 0:25997 . Finally,

the values EVPI of VSS are obtained, i.e., EVPI ¼ ZRP �
Zws ¼ 0:0447 and VSS ¼ ZEEV � ZRP ¼ 0:07234, respec-

tively. It can be observed that having accurate information

can reduce up to 16% the value of the combined objective

function. Moreover, VSS is 21% of the value of the com-

bined objective function, which indicates that the

stochastic model outperforms the solution obtained by the

deterministic optimization model.

4.3 Results of Robust Skip-Stop Scheduling Models

In this subsection, the input parameters are assumed to be

x ¼ x0 ¼ 1, m ¼ 103, and u ¼ 0:5. As can be seen in

Table 7, the minimum and maximum values for objective

functions are obtained separately. Then, the obtained pay-

off table is used as an input for the robust skip-stop

scheduling model. Table 8 shows the values of the com-

bined objective functions, the first and second objective

functions, and the amount of earliness and tardiness under

different scenarios. The optimal value of the normalized

objective function is obtained, i.e., Zt = 0.2804.

Figure 4 shows the skip-stop schedules generated in the

third scenario. Likewise, compared with the result pre-

sented in previous sections, all trains stop at stations No. 3

and 9 because of the highest demand for travel. Figure 5

illustrates the corresponding time–space diagram of train

movements obtained in the third scenario.

4.4 Sensitivity Analysis

In this section, a sensitivity analysis is conducted to assess

the effect of some key parameters on the quality of the

skip-stop schedules. Table 9 shows the sensitivity analysis

of the train capacity parameter. In this analysis, the train

capacity rate factor is changed within a range of 50% to

110%. According to the obtained result (Table 9), with the

increase in train capacity, the amount of the combined

objective function is reduced. Correspondingly, the value

of the second objective function, as well as the number of

passengers skipped by trains and the unsatisfied demand, is

reduced exponentially by increasing the capacities of the

trains.

Figure 6 shows the trade-off between the value of the

combined objective function and the standard deviation of

the passenger waiting times versus the values of weight

coefficient (x0). According to Fig. 6, as the value of x0

increases, the combined objective function increases and

the standard deviation of the passenger waiting time

decreases.

It would also be beneficial to test the effect of relative

weight coefficient on the objective values. Table 10 shows

the values of the first and second objective functions

against the value of u. According to the obtained result, by

increasing this coefficient, the value of the first objective

function reaches its lowest cost, and in contrast, the value

of the second objective function increases. Table 10 reports

the total number of train stops at stations in different values

of u. As can be observed, the number of stops decreases

with increasing u, and by reducing this value, the number

of stops reaches its maximum amount. Figure 7 shows the

sensitivity analysis for the first and second objective

functions in different values of u. Accordingly, the

Table 7 The minimum and the maximum values of the objective

functions in the robust skip-stop scheduling model

Objective functions Maximum value Minimum value

Z1 23,110.7 21,201.5

Z2 9,532,710.4 3,545,218.2
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Fig. 3 The time–space graph of the train movements
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decision maker can find a suitable trade-off between the

values of the objective functions, i.e., Z1 and Z2.

Table 11 reports the values of both objective functions in

the casewhere the number of skip-stop patterns changes. The

outcomes indicate that, in case of all stop operationmode, the

value of the objective function is higher than that of skip-stop

service. It can be observed that by increasing the number of

skip-stop patterns, the value of Z1 decreases (Fig. 8). On the

other hand, as the number of patterns increases, travel time

decreases, and in contrary, passenger waiting time increases.

Overall, in the underlying case study with six skip-stop

patterns, the value of the combined objective function (Zt) is

reduced by 49% as compared with regular all-stop service.

Furthermore, the travel time of passengers decreases by 5%

compared with the regular all-stop operation. Thus, the

results confirm that the proposed robust skip-stop scheduling

model can significantly improve the robustness and operat-

ing efficiency of the urban rail transit system.

4.5 Model Reliability Test

In this sub-section, the reliability of the optimization model

is verified using test examples. Table 12 reports the results

Table 8 The values of the

objective functions under

different scenarios

u ¼ 0:5 ; x ¼ 1

x0 ¼ 1; t ¼ 1000

Sts; Swts Average

Zt = 0.2804 s = 1 s = 2 s = 3 s = 4 s = 5

Z1 = 21,843.5 386.9 143.9 95.8 175.8 578.6 237.5

Z2 = 4,890,218.3 3,010,041.5 4,080,348.1 4,294,237.3 4,508,040.0 5,773,023.0 4,323,408.5

Table 9 Sensitivity analysis of train capacity parameter

Parameters Values

Train capacity rate factor 50% 60% 70% 80% 90% 100% 110%

Zt 0.5925 0.4513 0.3290 0.2651 0.2370 0.2202 0.2182

Z1 21,644.4 21,803.9 21,944.9 21,872.8 21,872.8 21,872.8 21,872.8

Z2*10
6 10.5 8.10 5.98 5.43 5.07 4.86 4.83

Number of passengers skipped by trains 38,939 25,612 14,918 12,816 11,056 10,197 10,087

Unsatisfied demand (passengers) 13,391 8333 3320 1364 484 55 0

Fig. 4 The skip-stop schedule obtained for the robust optimization

model

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000

St
at

io
n 

nu
m

be
r

Time (seconds)

Train 1
Train 2
Train 3
Train 4
Train 5
Train 6

Fig. 5 The time-station graph of the train movement
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of the robust skip-stop scheduling model for a different

number of trains. The results include the objective values

and computational time. In this set of numerical experi-

ments, the scale of the case study is expanded and the

travel demand is increased to better highlight the perfor-

mance of the robust skip-stop scheduling model. The

results of computational experiments show that by

increasing the number of trains, the total travel time of

trains (Z1) and total passenger waiting time (Z2) grow

almost linearly by the number of trains, while the CPU

time increased exponentially. This linear behavior is

expected because the total train traveling time depends on

the number of trains. Also, by increasing the number of

trains, the entire service time is expanded, hence the

overall demand increases accordingly.

The robust skip-stop scheduling model was able to find

the optimal solution for test problems with fewer than 13

trains in a reasonable time. However, the outcomes indicate

that the CPU time required to reach the optimal solution

grows exponentially by increasing the number of trains as

the complexity of the mathematical model increases by the

size of the problem. Overall, the result confirms the

applicability of the proposed robust skip-stop scheduling

model to find efficient solutions in urban rail systems

during peak hours. However, due to the complexity of

problem size, there is a limitation of the method in real-

time applications.

5 Concluding Remarks

This study addressed the joint train scheduling and train

stop planning problem by considering skip-stop services

during peak hours in rapid rail transit systems. We

Table 10 Sensitivity analysis of the u parameter

u Z1 Z2 Total number of train stops

0 23,155.9 3,559,047.3 60

0.1 23,155.9 3,559,047.3 60

0.2 22,732.6 3,792,148.0 54

0.3 22,172.8 4,455,339.1 45

0.4 21,872.8 4,855,339.1 42

0.5 21,872.8 4,855,339.1 42

0.6 21,872.8 4,855,339.1 42

0.7 21,627.6 6,476,696.9 39

0.8 21,557.1 7,418,834.1 38

0.9 21,469.7 9,248,499.7 37

1 21,469.4 9,921,301.8 37

Table 11 Sensitivity analysis of the number of patterns

Number of patterns Z1 Z2 Zt

1 23,006.0 4,533,989.0 0.555

2 22,702.8 4,575,652.5 0.479

3 22,485.2 4,618,687.0 0.426

4 22,152.6 4,709,558.2 0.346

5 21,995.3 4,805,838.4 0.313

6 21,843.5 4,890,218.3 0.280

Table 12 The performance of the robust optimization model

Number of trains Z1 Z2 (9 106) CPU time (min)

6 11,702 2.83 3.40

7 15,642 3.27 5.55

8 19,582 3.88 9.20

9 21,843 4.89 11.77

10 27,462 5.96 18.57

11 31,401 6.69 28.57

12 35,341 7.30 66.82

13 39,281 8.91 148.17

14 43,221 9.51 322.08

15 51,920 10.72 451.70
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proposed robust optimization models for optimal skip-stop

scheduling under uncertain arrival rates during peak hours.

The objective was to minimize the total weighted travel

time of passengers, wait time, and the deviation between

the actual and planned timetable. The problem was for-

mulated as a scenario-based stochastic optimization model

and then modeled using a robust optimization approach.

The efficiency of the proposed models was confirmed using

real data from line No. 5 of the Tehran Metro in Iran. To

validate the proposed robust optimization models, the

EVPI and VSS indicators were calculated, and sensitivity

analysis was conducted. The outcomes indicate that having

complete information can reduce up to 16% the value of

the combined objective function. Moreover, the value of

stochastic solutions reaches 21% of the value of the

deterministic solution, which indicates that the stochastic

model exhibits better performance than the deterministic

scheduling model. The designed skip-stop method has been

shown to save about 5% in total travel time and 49% in

aggregate objective function, which is a summation of

travel times and passenger waiting times as against regular

all-stop service. Also, the developed mathematical model

could produce high-quality solutions for large size instan-

ces of the problem in a reasonable time, thus providing a

practical framework for rail systems.

There are several possible extensions to this study.

Future research must address the implementation of other

methods such as short-turning, holding, and deadheading in

combination with skip-stop schedules. It would be inter-

esting to formulate the robust train timetabling problem as

a bi-criteria optimization model, where both the operator

and passenger costs are minimized. Providing multi-ob-

jective meta-heuristic optimization algorithms to find Par-

eto optimal solutions in the shortest possible time will be

considered for future research. It would be a motivating

research direction to study the effects of random distur-

bances, i.e., train delay, on the quality of the skip-stop

services.
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