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Green light-emitting diode from bromine based 
organic-inorganic halide perovskite
Xia  ng Qin1,2, Huanli Dong1* and Wenping Hu1*

Org  anic-inorganic halide perovskites have attracted con-
siderable attention owing to their outstanding solar cell ef-
ficiency.  Meanwhile, these halide perovskites exhibit good 
light emitting in visible and near-infrared range with high 
fluorescence quantum yield, resulting in electroluminescence. 
However, it remains challenging for lighting and display due to 
the low luminance and poor long-term stability. Herein, high 
performance green light-emitting diodes are fabricated from 
bromine based perovskite (CH3NH3PbBr3) by systematically 
adjusting the preparation conditions and optimizing the 
emitting layer thickness. A high luminance up to 1500 cd m−2 
(one of the highest values for perovskites-based light-emitting 
diodes) was achieved with 80 nm perovskites-emitting layer, 
due to the well-crystallized, full-coverage property of the films. 
This result further confirms the great prospect of organic-inor-
ganic perovskites in optoelectronics.

Recently, organic-inorganic halide perov skites, a new class 
of semiconductors with high power conversion efficiency 
and long-range balanced hole-electron transport character-
istics, have shown huge potential in photovoltaics [1−10]. 
However, the work principle of these perovskite materi-
als has not been well elucidated except for a few reports 
[11−15]. Apart from charge mobility [16,17], optical prop-
erties clearly point out another way to investigate these ma-
terials, which show pieces of information including charge 
separation, bandgap and chemical purity [18]. Interesting-
ly, these organic-inorganic materials based on perovskites 
really exhibit excellent photoluminescence properties with 
tunable visible and near-infrared spectru  m [19−22]. More-
over, combined with their balanced ambipolar properties, 
these materials have been proven to be electrically light 
emission. Very recently, a breakthrough in light-emitting 
diodes (LEDs) based on organic-inorganic halide per-
ovskites has been made, which proves organic-inorganic 
halide perovskites as promising candidates in LEDs [23]. 
The ever reported LEDs based on these halide perovskites 
which show electroluminescence in near-infrared, red and 
green region and a luminance of ~364 cd m−2 was achieved 
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when the thickness of the active layer was 20 nm. Lately, 
an improved luminance of 417 cd m−2 was obtained for 
multicolored perovskites-LEDs based on a 40 nm emitter 
layer, which is due to the reduced carrier injection barrier 
for efficient electroluminescence [24]. However, further 
application remains challenging owing to the toxicity of Pb 
atom, poor long-term stability and low luminance. Thus, 
improving the luminance, which is the focus of this paper, 
emerges as an important and urgent aspect to make these 
LEDs commercialized. 

According to previous reports, the efficiency of organ-
ic-inorganic halide perovskites based LEDs strongly de-
pends on the quality of the emitting layer, such as thickness, 
crystallinity and coverage. Herein, we successfully fabri-
cated a bromine based perovskite LED by a vapor meth-
od under atmosphere and evaluated the characteristics of 
the prepared perovskite LED at room temperature. In the 
device, CH3NH3PbBr3 was chosen as the emitting layer, 
which was more stable than CH3NH3PbI3 [25]. Attractively, 
high quality of emitter was achieved with well-crystallized, 
full-coverage and optimized thickness. Thanks to the 
high-quality emitting layer, the device showed brightly 
green emission with high color purity and exhibited high 
luminance at 1000 cd m−2, with the highest luminance up to 
1500 cd m−2. However, there was no significant optimiza-
tion in external quantum efficiency (EQE) compared with 
the previously reported LEDs.

In the green LED, a simple structure of indiumtin oxide 
(ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesul-
fonate) (PEDOT:PSS) (30 nm)/CH3NH3PbBr3/1,3,5-tri[(3-
pyridyl)-phen-3-yl]benzene(TmPyPB)(60 nm)/LiF(2 nm)/
Al(100 nm) was fabricated as shown in Fig. 1. In this struc-
ture, ITO and Al are the anode and cathode, respectively, 
while LiF serves as the cathode buff layer. PEDOT:PSS and 
TmPyPB separately takes the role of hole-transport and 
electron-transport layers. The critical layer for green emis-
sion is the perovskite layer. The fabrication of the green 
perovskite LED was carried out under ambient condition. 
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Firstly, PEDOT:PSS was spin-coated onto the patterned 
ITO substrate at 3000 rpm for 30 s and then annealed at 
120°C for 20 min. A planar CH3NH3PbBr3 emitter layer 
was represented via a vapor-assisted solution process [26]. 
Then, the TmPyPB layer was deposited at a rate of 2 A s−1 
with a base pressure at 10−6 Torr. Finally, the typical deposi-
tion rates of 0.1 A s−1 for LiF buffer layer and 0.6 A s−1 for Al 
layer at 10−6 Torr were carried out to complete the device. 

It is well-known that the quality of the perovskite layer 

affects the performance of the device greatly. To prepare 
the critical CH3NH3PbBr3 layer, PbBr2 film was spin-coat-
ed on the PEDOT:PSS layer and annealed in CH3NH3Br 
vapor at 150°C for 2 h to form a perovskite layer under 
ambient condition. The quality of the perovskite layer was 
characterized by atomic force microcopy (AFM), X-ray 
diffraction (XRD) and scanning electron microscope 
(SEM) (Fig. 2). Different thicknesses of inorganic films were 
achieved through adjusting spin-coating rate from 2000 to 
6000 rpm. The reaction time for forming the perovskite 
film was optimized to be 2 h. Thus, a planar per ovskite 
layer was formed with different thicknesses ranging from 
20 to 150 nm. The XRD analysis (Fig. 2a) indicates that 
a shorter reaction time results in the incomplete of PbBr2, 
while a longer one contributes to higher roughness. In or-
der to mark the appropriate reaction time, four samples 
were prepared. XRD clearly indicates that a film without 
CH3NH3Br is composed of PbBr2. With increasing the 
reaction time, both PbBr2 and CH3NH3PbBr3 phases are 
confirmed. An obviously rising in CH3NH3PbBr3 phase 
a nd decreasing in PbBr2 phase are observed.  A tiny peak 
in 18.6° corresponding to the trace PbBr2 shows that the 
reaction time of 2 h is enough to change PbBr2 to CH3NH3 
PbBr3. Sharp diffraction peaks at 14.97° for (100) plane, 
30.20° for (200), 45.93° for (300) exhibit well crystallization 
even under ambient condition according to the previous 
work [27]. Fig. 2b shows a low roughness and continuous 
layer with 2 h reaction time. Cross-sectional SEM in Fig. 
2c demonstrates a planer morphology with three layers of 
ITO, PSS:PEDOT and CH3NH3PbBr3. Longer time (4 h) 
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Figure 1  Structure and energy level of the bromine based perovskite 
LED. (a) Single unit cell of a CH3NH3PbBr3 crystal; (b) device structure 
of the perovskite LED; (c) energy level of different layers.
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Figure 2 (a) Normalized XRD patterns for PbBr2 film with CH3NH3Br vap or treated time from 0 to 4 h. (b) AFM image and (c) cross-sectional SEM 
image of the formed CH3NH3PbBr3 layer after 2 h treatment of CH3NH3Br vapor. The scale bar is 1 μm for (b) and 200 nm for (c).



188     March 2015 | Vol.58 No.3           
© Science China Press and Springer-Verlag Berlin Heidelberg 2015

LETTERS SCIENCE CHINA Materials

results in totally transforming to perovskite, but leads to a 
higher roughness, which should be avoided for a better de-
vice performance. The well crystallized film under atmo-
sphere shows that CH3NH3PbBr3 is not mu  ch affected by 
oxygen and moisture, which confirms that CH3NH3PbBr3 
is more stable than CH3NH3PbI3 which decomposes at over 
55% relative humidity [28].

The emission spectrum of CH3NH3PbBr3 film is shown 
in Fig. 3. It can be seen that the electroluminescence s pec-
trum reveals a strong peak at 536 nm, which is slightly 
blue-shifted compared with its photoluminescence spec-
trum with peak at 544 nm. It should be noted that the full 
width at half maximum of electroluminescence spectrum is 
narrowed to 20 nm, which indicates the high color purity. 
The structure of CH3NH3PbBr3 is compos ed of two dimen-
sional (2D) inorganic (PbBr2) layer sandwiched between 
2D organic (CH3NH3Br) layers. The significant dielectric 
constant difference between organic and inorganic layers 
contributes to the high color purity owing to the excitons 
confined in the inorganic layer [29,30]. The inset image 
shows an optical graph of the brightly green diode with 
2 mm × 2 mm light emitting area. 

Fig. 4 shows the device characteristics of the green per-
ovskite LED. A typical diode I-V curve is demonstrated in 
Fig. 4a, which indicates a rapid increasing rate of current 
density. An obvious turn-on voltage of  light-emission is ob-
served at 3.5 V (Fig. 4b), which is a little higher than that of 
3.3 V for a thinner emitter layer [23] owing to the increased 

thickness of the emitting layer. Thanks to the high-quality 
emitting layer, the luminance rises sharply to ~1000 cd m−2 
at a current density of ~800 mA cm−2. And the device ex-
hibits a power efficiency of 0.1 lm W−1 with an EQE of 0.1% 
(Fig. 4c). Fig. 4d exhibits the relationship between the emit-
ter thickness and the luminance properties. An obvious 
luminance rising is observed by increasing perovskite layer 
from 20 to 80 nm. And the device with 80 nm perov skite 
reveals the highest luminance upto 1500 cd cm−2. Where-
as, any further increase in perovskite thickness results in 
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Figure 3 Normalized emission spectra of the CH3NH3PbBr3 layer. 
Photoluminescence (red) at 544 nm and electroluminescence (green) at 
536 nm. The inset image: green electroluminescence of the CH3NH3PbBr3 
LED.
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Figure 4  Device characteristics of the green perovskite LED tested in ambition condition. (a) Current density vs. voltage. (b) Luminance vs. voltage, 
the green diode turns on at 3.5 V. (c) EQE vs. luminance characteristics. (d) Luminance vs. the thickness of CH3NH3PbBr3 layer.
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the luminance decreasing owing to the higher roughness. 
Thus, the optimized emitter layer should be 80 nm in the 
perovskite LEDs.  Moreover, these perovskite-LED devices 
exhibit good reproducibility, as illustrated by Fig. 4d based 
on measu  rement of 50 devices. The electroluminescence 
efficiency with a rising current density, corresponding 
to the previous work [23], demonstrates a need for high 
charge density for efficient recombination. Even though 
a higher luminance can be given with successive rising 
charge density, the electroluminescence efficiency decreas-
es at high current density. In addition, a marked luminance 
decrease with a much higher current density was found due 
to the high temperature from the self-heat. Thus, it should 
be mentioned that an exceed voltage leads to a device bro-
ken, and thus an exceed current density should be avoided 
for a longtime electroluminescence and a higher efficiency.

In this work, a significant increase in electrolumines-
cence is observed for perovskite-based LEDs with both in-
creasing voltage and current density. Higher carrier recom-
bination contributes to the increased electroluminescence 
luminance because of the h igh-quality emitter, whereas 
the EQE does not go up with the increased luminance. 
Large charge barriers and carrier quenching should take 
responsibility for the low EQE [31]. As shown in Fig. 1c, 
barrier potential for hole injecting from PEDOT:PSS to 
CH3NH3PbBr3 is large because of the much deeper energy 
level of CH3NH3PbBr3 than that of P EDOT:PSS. And the 
electron barrier is obvious attributed to the energy level 
mismatch of CH3NH3PbBr3 and TmPyPB. Moreover, the 
interface roughness also lowers the EQE. For further study, 
appropriate hole transport and electron transport materials 
are essential for the higher efficiency.

In summary, high performan ce LED based on organ-
ic-inorganic halide perovskite (CH3NH3PbBr3) was fabri-
cated via a vapor assisted method under atmosphere. The 
devices exhibit high purity green electroluminescence 
characteristics at room temperature with a luminance at 
1000 cd m−2 owing to the high quality emitting layer with 
full-coverage, well-crystallized and optimized thickness. It 
should be noted that a higher quality emitter for high cur-
rent density is needed for a brighter emitting, and large car-
rier barriers create blocks for high efficiency. Meanwhile, 
the exceed current density can break the device quickly. It 
can be concluded that the organic-inorganic halide pe r-
ovskites have great potential in optoelectronics or lighting 
fields and further researches on low toxicity, long-term sta-
bility and high luminance are expected. 
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中文摘要    有机金属卤化钙钛矿(CH3NH3PbX3)作为一种新型的半导体材料在光伏领域引起了广泛的关注. 同时, 有机金属卤化钙钛矿
所拥有的光致发光以及较高荧光量子产率为其电致发光提供了可能. 因而, 研究有机金属卤化钙钛矿的电致发光行为对于进一步拓展
其在光电领域的应用具有重要意义. 溴化钙钛矿(CH3NH3PbBr3)具备良好的光致发光性能, 具有较高的荧光量子产率, 同时在空气中具
有较好的稳定性. 本文挑选CH3NH3PbBr3作为发光层, 借用气体辅助法得到了高质量的CH3NH3PbBr3薄膜, 并成功构建了发光二极管. 
基于CH3NH3PbBr3的发光二极管电致发光为536 nm的绿光, 发光亮度达到1000 cd m−2, 外量子效率为0.1%. 该研究对于探索有机金属
卤化钙钛矿的电致发光行为大有裨益, 同时也拓宽了有机金属卤化钙钛矿在光电领域的应用潜能.
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