Skip to main content
Log in

Block Nyström Method for Singular Differential Equations of the Lane–Emden Type and Problems with Highly Oscillatory Solutions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Singular and highly oscillatory ordinary differential equations (ODEs) are of great scientific significance, since they frequently arise in practice. Hence, in this paper, we present a Block Nyström method (BNM) that is applied to directly solve the Lane–Emden type equations which belong to a class of nonlinear singular ODEs. The application of the BNM is also extended to solve highly oscillatory ODEs directly without reducing the ODE into an equivalent first order system. The BNM is formulated from its continuous scheme which is constructed from an appropriate power series via collocation and interpolation techniques. The convergence and stability properties of the BNM are discussed. Accuracy and efficiency benefits of the method are demonstrated via several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, L.M.: A new perturbative approach to nonlinear problems. J. Math. Phys. 30, 144–1455 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wazwaz, A.A.: A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118, 287–310 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Lia, S.: A new analytic algorithm of Lane–Emden type equation. Appl. Math. Comput. 142, 539–541 (2003)

    MathSciNet  Google Scholar 

  4. Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet approximation solutions for the generalized Lane–Emden equations arising from astrophysics. Comput. Phys. Commun. 184, 2169–2177 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parand, K., Dehghan, M., Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of nonlinear Lane–Emden type equations arising in astrophysics using Hermite function collocation method. Comput. Phys. Commun. 181, 1096–1108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shiralashetti, S.C., Deshi, A.B., Desai, P.B.: Haar wavelet collocation method for the numerical solution of singular initial value problems. Ain Shams Eng. J. doi:10.1016/j.asej.2015.06.006

  7. Awoyemi, D.O.: A P-stable linear multistep method for solving general third order ordinary differential equations. Int. J. Comput. Math. 80(8), 987–993 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jator, S.N., Lee, L.: Implementing a seventh-order linear multistep method in a predictor–corrector mode or block mode: which is more efficient for the general second order initial value problem. SpringerPlus 3, 447 (2014). http://www.springerplus.com/content/3/1/447

  9. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime }=f (x, y, y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, New York (1996)

    Book  MATH  Google Scholar 

  11. Jator, S.N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime }=f(x, y, y^{\prime })\). Numer. Algorithms 62, 13–26 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jator, S.N.: A sixth order linear multistep method for the direct solution of \(y^{\prime \prime } = f(x, y, y^{\prime })\). Int. J. Pure Appl. Math. 40(4), 457–472 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Jator, S.N., Li, J.: A self starting linear multistep method for the direct solution of the general second order initial value problems. Int. J. Comput. Math. 86(5), 817–836 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jator, S.N.: Implicit third derivative Runge–Kutta–Nyström method with trigonometric coefficients. Numer. Algorithms 70, 133–150 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jator, S.N.: A continuous two-step method of order 8 with a block extension for \(y^{\prime \prime }=f(x, y, y^{\prime })\). Appl. Math. Comput. 219, 781–791 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding, H., Zhang, Y., Cao, J., Tian, J.: A class of difference scheme for solving telegraph equation by new non-polynomial spline methods. Appl. Math. Comput. 218, 4671–4683 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Coleman, J.P., Ixaru, G.R.: P-stability and exponential-fitting methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 16, 179–199 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 126, 47–75 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Baranwal, V.K., Pandy, R.K., Tripathi, M.P., PSingh, O.: An analytic algorithm of Lane–Emden type equations arising in astrophysics—a hybrid approach. J. Theor. Appl. Phys. 6, 22 (2012)

    Article  Google Scholar 

  21. Koch, O., Kofler, P., Weinmüller, E.B.: The implicit Euler method for the numerical solution of singular initial value problems. Appl. Numer. Math. 34, 231–252 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods, pp. 280–299. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  23. Chawla, M.M., Jain, M.K., Subramanian, R.: The application of explicit Nyström methods to singular second order differential equations. Comput. Math. Appl. 19(12), 47–51 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mazzia, F., Sestini, A., Trigiante, T.: B-spline linear multistep methods and their continuous extensions. SIAM J. Numer. 44, 1954–1973 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sahlan, M.N., Hashemizadeh, E.: Wavelet Galerkin method for solving nonlinear singular boundary value problems in physiology. Appl. Math. Comput. 250, 260–269 (2015)

    MATH  MathSciNet  Google Scholar 

  26. Fang, Y., Song, Y., Wu, X.: A robust trigonometrically fitted embedded pair for perturbed oscillators. J. Comput. Appl. Math. 225, 347–355 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    Article  MATH  Google Scholar 

  28. Sommeijer, B.P.: Explicit, high-order Runge–Kutta–Nyström methods for parallel computers. Appl. Numer. Math. 13, 221–240 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. D’Ambrosio, R., Ferro, M., Paternoster, B.: Two-step hybrid collocation methods for \(y^{\prime \prime }=f(x, y)\). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Jator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jator, S.N., Oladejo, H.B. Block Nyström Method for Singular Differential Equations of the Lane–Emden Type and Problems with Highly Oscillatory Solutions. Int. J. Appl. Comput. Math 3 (Suppl 1), 1385–1402 (2017). https://doi.org/10.1007/s40819-017-0425-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0425-2

Keywords

Navigation