Skip to main content
Log in

Neutrosophic Goal Geometric Programming Problem and Its Application to Multi-objective Reliability Optimization Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents the goal geometric programming method in neutrosophic environment. Neutrosophic set is one of the most useful tools to express uncertainty, impreciseness in a more general way compare to fuzzy set and intuitionistic fuzzy set. Thus, the proposed approach is described here as an extension of fuzzy goal geometric programming and intuitionistic fuzzy goal geometric programming. To demonstrate the methodology and applicability of the proposed approach, a multi-objective nonlinear reliability optimization model is taken here and it is evaluated comparing the result obtained by the proposed method with the solution obtained in intuitionistic fuzzy goal geometric programming technique at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  3. Zimmermann, H.J.: Fuzzy Set Theory—And Its Applications. Allied Publishers limited, Mumbai (1996)

    Book  MATH  Google Scholar 

  4. Atanassov, K.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1986)

    MATH  Google Scholar 

  5. Smarandache, F.: Neutrosophy, Neutrosophic Probability. Set and Logic. American Research Press, Rehoboth (1998)

    MATH  Google Scholar 

  6. Pal, B.B., Maitra, B.N., Maulik, U.: A goal programming procedure for multi-objective linear programming problem. Fuzzy Sets Syst 139, 395–405 (2003)

    Article  Google Scholar 

  7. El-Wahed, W.F.A., Sang, S.M.: Interactive fuzzy goal programming for multi-objective transportation problems. Int. J. Manag. Sci. 34, 158–166 (2006)

    Google Scholar 

  8. Hwang, C.L., Lee, H.B.: Non-linear integer goal programming applied to optimal system reliability. IEEE Trans. Reliab. 33, 431–438 (2004)

    Google Scholar 

  9. Zangiabadi, M., Maleki, H.R.: Fuzzy goal programming for multi-objective transportation problem. J. Appl. Math. Comput. 24, 449–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, P., Roy, T.K., Majumder, C.: Optimization of industrial wastewater treatment using intuitionistic fuzzy goal geometric programming problem. Fuzzy Inf. Eng. 8, 329–343 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ghosh, P., Roy, T.K.: Intuitionistic fuzzy goal geometric programming problem. Notes Intuit. Fuzzy Sets 20(1), 63–78 (2014)

    Google Scholar 

  12. Ye, J.: Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput. Appl. 26(5), 1157–1166 (2015)

    Article  Google Scholar 

  13. Das, P., Roy, T.K.: Multi-objective programming problem based on neutrosophic geometric programming technique. Neutrosophic Oper. Res. I, 131–142 (2016)

    Google Scholar 

  14. Roy, R., Das, P.: Neutrosophic goal programming applied to bank: three investment problem. NSS 12, 97–104 (2016)

    Google Scholar 

  15. Ye, J.: Multi-criteria decision making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. (2013). https://doi.org/10.3233/IFS-130916

    Google Scholar 

  16. Ye, J.: Multi-criteria decision making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst 42(4), 386–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  18. Tillman, F.A., Hwng, C.L., Fan, L.T., Lai, K.C.: Optimal reliability of a complex system. IEEE Trans. Reliab. 19(3), 95–100 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the University of Kalyani for financial support through the university research scholarship (URS) and DST-PURSE in the Department of Mathematics, University of Kalyani, Kalyani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay Kundu.

Appendices

Appendix 1

1.1 Proof of Lemma 3.1

From the Eq. (3.5) we have

$$\begin{array}{*{20}l} {} & {\mu_{i} \left( {f_{oi} } \right) \ge \sigma_{i} \left( {f_{oi} } \right)} \\ {\text{implies}} & {1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge 1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }}} \\ {{\text{or}},} & {\left( {f_{oi} \left( x \right) - b_{0i} } \right)\left( {\frac{1}{{d_{0i} }} - \frac{1}{{a_{0i} }}} \right) \ge 0} \\ \end{array}$$
(i)

In the above-mentioned neutrosophic goal programming problem, we consider each objective functions \(f_{oi} \left( x \right)\) satisfying target achievement value \(b_{0i}\) and also from the relation,

$$\begin{array}{*{20}l} {} & {\vartheta_{i} \left( {f_{oi} } \right) \ge 0} \\ {{\text{or}},} & {\frac{{f_{oi} \left( x \right) - b_{0i} }}{{r_{0i} }} \ge 0} \\ {{\text{or}},} & {\left( {f_{oi} \left( x \right) - b_{0i} } \right) \ge 0} \\ \end{array}$$
(ii)

Thus the relation (i) is true if \(\left( {\frac{1}{{d_{0i} }} - \frac{1}{{a_{0i} }}} \right) \ge 0\)

$${\text{i}} . {\text{e}} .\;\;\;a_{0i} > d_{0i}$$
(iii)

Hence from relation (iii), we have in neutrosophic goal geometric programming problem, acceptance tolerance \(a_{0i}\) should be greater than indeterminacy tolerance \(d_{0i}\).

Again from the relation \(\mu_{i} \left( {f_{oi} } \right) \ge \vartheta_{i} \left( {f_{oi} } \right)\) and \(\mu_{i} \left( {f_{oi} } \right) \ge \sigma_{i} \left( {f_{oi} } \right)\)

$${\text{we have}},\;\;\;\;1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge \frac{{f_{oi} \left( x \right) - b_{0i} }}{{r_{0i} }}$$
(iv)
$${\text{and}}\;\;\;1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge 1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }}$$
(v)

Adding the above inequalities (iv) and (v), we get

$$1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge \frac{1}{2} + \frac{{\left( {f_{oi} \left( x \right) - b_{0i} } \right)}}{2}\left( {\frac{1}{{r_{0i} }} - \frac{1}{{d_{0i} }}} \right)$$
(vi)

Now from (3.5) using the relation

$$\begin{aligned} & \mu_{i} \left( {f_{oi} } \right) \ge \vartheta_{i} \left( {f_{oi} } \right) \ge 0\;\;\;{\text{and}} \\ & \mu_{i} \left( {f_{oi} } \right) + \vartheta_{i} \left( {f_{oi} } \right) + \sigma_{i} \left( {f_{oi} } \right) \le 3 \\ & {\text{we get}},\;\;\;\sigma_{i} \left( {f_{oi} } \right) \le 3 \\ & \quad {\text{or}},\;\;\;1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \le 3 \\ & \quad {\text{or}},\;\;\;f_{oi} \left( x \right) - b_{0i} \ge - 2d_{0i} \\ & \quad {\text{or}},\;\;\;\frac{1}{{f_{oi} \left( x \right) - b_{0i} }} \le - \frac{1}{{2d_{0i} }} \\ \end{aligned}$$
(vii)

Hence from \(\mu_{i} \left( {f_{oi} } \right) + \vartheta_{i} \left( {f_{oi} } \right) + \sigma_{i} \left( {f_{oi} } \right) \le 3\) using (vi) and (vii)

$$\begin{aligned} & \frac{1}{2} + \frac{{\left( {f_{oi} \left( x \right) - b_{0i} } \right)}}{2}\left( {\frac{1}{{r_{0i} }} - \frac{1}{{d_{0i} }}} \right) + \frac{{f_{oi} \left( x \right) - b_{0i} }}{{r_{0i} }} \\ & \quad + 1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \le 3\;\;\;\;{\text{gives}}\;\;\;\;r_{0i} > 2d_{0i} . \\ \end{aligned}$$

Thus from the above relation, it is clear that in neutrosophic goal geometric programming problem half of the rejection tolerance \(r_{0i}\) should be greater than the indeterminacy tolerance \(d_{0i}\).

Appendix 2

2.1 Proof of Theorem 3.1

If \(x^{*}\) be a Pareto optimal solution of the FGGPP (3.10) then there does not exist any x such that \(f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right)\) for all i = 1, 2,…, p. and \(f_{oi} \left( {x^{*} } \right) \ne f_{oi} \left( x \right)\) for at least one i.

Then we have for all \(x = \left( {x_{1} ,x_{2} , \ldots ,x_{m} } \right)\),

$$f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right)$$
(A)

with strict inequality hold for at least one i.

$$\begin{aligned} & {\text{i}} . {\text{e}} .\;\;\;f_{oi} \left( x \right) - b_{0i} \le f_{oi} \left( {x^{*} } \right) - b_{0i} \\ & {\text{or}},\;\;\;\frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \le \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{a_{0i} }} \\ & {\text{or}},\;\;\;1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge 1 - \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{a_{0i} }}\;\;\;{\text{implies}}\,\;\;\mu_{i} \left( {f_{oi} \left( x \right)} \right) \ge \mu_{i} \left( {f_{oi} \left( {x^{*} } \right)} \right). \\ \end{aligned}$$

Similarly from (A) we have \(\frac{{f_{oi} \left( x \right) - b_{0i} }}{{r_{0i} }} \le \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{r_{0i} }}\) which implies \(\vartheta_{i} \left( {f_{oi} \left( x \right)} \right) \le \vartheta_{i} \left( {f_{oi} \left( {x^{*} } \right)} \right)\)

$$\begin{aligned} & {\text{and also}}\;\;\;\frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \le \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{d_{0i} }} \\ & {\text{or}},\;\;\;1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \ge 1 - \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{d_{0i} }} \\ \end{aligned}$$

or, \(\sigma_{i} \left( {f_{oi} \left( x \right)} \right) \ge \sigma_{i} \left( {f_{oi} \left( {x^{*} } \right)} \right)\). Hence from the definition of Pareto optimal solution to the NGGPP, we have \(x^{*}\) is the Pareto optimal solution of (3.1).

Conversely, let \(x^{*}\) is a Pareto optimal solution to NGGPP (3.1), then from the expression of membership function given in (3.2) we get

$$\begin{aligned} & 1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{a_{0i} }} \ge 1 - \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{a_{0i} }} \\ & {\text{i}} . {\text{e}} .\;\;\; f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right). \\ \end{aligned}$$

Again using (3.3) we have \(\frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \le \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{d_{0i} }}\) which implies \(f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right).\)

Similarly, using (3.4), \(1 - \frac{{f_{oi} \left( x \right) - b_{0i} }}{{d_{0i} }} \ge 1 - \frac{{f_{oi} \left( {x^{*} } \right) - b_{0i} }}{{d_{0i} }}\) gives \(f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right).\)

Thus we have \(f_{oi} \left( x \right) \le f_{oi} \left( {x^{*} } \right)\) with strict inequality hold for at least one i, \(i \in \left\{ {1,2, \ldots ,p} \right\}\) and which shows that \(x^{*}\) is a Pareto optimal solution of (3.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, T., Islam, S. Neutrosophic Goal Geometric Programming Problem and Its Application to Multi-objective Reliability Optimization Model. Int. J. Fuzzy Syst. 20, 1986–1994 (2018). https://doi.org/10.1007/s40815-018-0479-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0479-2

Keywords

Navigation