Skip to main content
Log in

Advanced Electrochemical Oxidation Processes in the Treatment of Pharmaceutical Containing Water and Wastewater: a Review

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

This review addresses recent developments and challenges about electrochemical advanced oxidation processes (EAOPs) to favor market prospecting for EAO technology. The presence of contaminants of emerging concern (CEC) in the environment (wastewater, groundwater, surface water, tap water etc.), especially the pharmaceutical compounds, has been highlighted as a worldwide environmental problem, mainly due to their difficult elimination by conventional wastewater and water treatment processes. Aiming to solve the lower removal of a wide spectrum of CEC by conventional processes, the development of (EAOPs) has grown in recent decades, mainly because they are considered compact, scalable and automatable, and chemical-free. However, most studies were carried out using single contaminant in lab-scale which does not represent the reality of treatment systems. In this scenario, the treatment of complex matrices, multi-contaminants, lower contaminant concentration, energy consumption, fouling, and scaling still remain serious obstacles and challenges in the wider spread of the EAOPs. Therefore, considerable research and development efforts should include a deeper discussion on the treatment of complex water matrices, reactor design, hybrid processes, and what is necessary for enhanced process performance and to the scale up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gogoi A, Mazumder P, Tyagi VK, Tushara Chaminda GG, An AK, Kumar M. Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev Elsevier B.V.; 2018. p. 169–80.

  2. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: a review. Chem Eng J Elsevier B.V.; 2017. p. 361–80.

  3. Martínez-Costa JI, Maldonado Rubio MI, Leyva-Ramos R. Degradation of emerging contaminants diclofenac, sulfamethoxazole, trimethoprim and carbamazepine by bentonite and vermiculite at a pilot solar compound parabolic collector. Catal Today. Elsevier B.V.; 2020;341:26–36.

  4. Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov Elsevier B.V.; 2020.

  5. Boshir M, Zhou JL, Hao H, Guo W, Thomaidis NS, Xu J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater [Internet]. Elsevier B.V.; 2017;323:274–98. Available from: https://doi.org/10.1016/j.jhazmat.2016.04.045

  6. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res. Springer Verlag; 2014;21:8336–67.

  7. Comninellis C, Chen G. Electrochemistry for the environment [Internet]. Comninellis C, Chen G, editors. New York, NY: Springer New York; 2010. Available from: http://link.springer.com/10.1007/978-0-387-68318-8

  8. Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ. Manage. Academic Press; 2018. p. 189–207.

  9. Aliste M, Pérez-Lucas G, Vela N, Garrido I, Fenoll J, Navarro S. Solar-driven photocatalytic treatment as sustainable strategy to remove pesticide residues from leaching water. Environ Sci Pollut Res [Internet]. Environmental Science and Pollution Research; 2020;27:7222–33. Available from: http://link.springer.com/10.1007/s11356-019-07061-2

  10. Macías-quiroga IF, Henao-aguirre PA, Marín-flórez A, Arredondo-lópez SM. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research; 2020;

  11. Sauvé S, Desrosiers M. A review of what is an emerging contaminant. Chem Cent J. 2014;8:1–7.

    Article  Google Scholar 

  12. Senta I, Terzic S, Ahel M. Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment. Water Res [Internet]. Elsevier Ltd; 2013;47:705–14. Available from: https://doi.org/10.1016/j.watres.2012.10.041

  13. Gorito AM, Ribeiro AR, Almeida CMR, Silva AMT. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ Pollut Elsevier Ltd; 2017. p. 428–43.

  14. Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta [Internet]. 1994;39:1857–62 Available from: https://linkinghub.elsevier.com/retrieve/pii/0013468694851751.

    Article  CAS  Google Scholar 

  15. Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109:6541–69.

    Article  CAS  Google Scholar 

  16. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev American Chemical Society; 2015. p. 13362–407.

  17. Rodrigo MA, Oturan MA, Oturan N. Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev. American Chemical Society; 2014. p. 8720–45.

  18. Martínez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 2006;35:1324–40.

    Article  Google Scholar 

  19. Sirés I, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int Elsevier Ltd; 2012. p. 212–29.

  20. Brillas E, Arias C, Cabot PL, Centellas F, Garrido JA, Rodrguez RM. Degradation of organic contaminants by advanced electrochemical oxidation methods. Portgaliae Electrochim Acta. 2006;24:159–89.

    Article  CAS  Google Scholar 

  21. Monteil H, Péchaud Y, Oturan N, Oturan MA. A review on efficiency and cost effectiveness of electro- and bio-electro-Fenton processes: application to the treatment of pharmaceutical pollutants in water. Chem Eng J. Elsevier; 2019;376:119577.

  22. Espinoza LC, Henríquez A, Contreras D, Salazar R. Electrochemistry communications evidence for the production of hydroxyl radicals at boron-doped diamond electrodes with different sp3/sp2 ratios and its relationship with the anodic oxidation of aniline. Electrochem commun. Elsevier; 2018;90:30–3.

  23. Garcia-Segura S, Vieira Dos Santos E, Martínez-Huitle CA. Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem Commun. Elsevier Inc.; 2015. p. 52–5.

  24. Vatistas N. Adsorption layer and its characteristic to modulate the electro-oxidation runway of organic species. J Appl Electrochem. Kluwer Academic Publishers; 2010;40:1743–50.

  25. Brillas E, Martínez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ. Elsevier; 2015. p. 603–43.

  26. Panizza M. Application of synthetic diamond films to electro-oxidation processes. In: Brillas E, Martínez-Huitle CA, editors. New York: wiley; 2011. p. 333–51.

  27. Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, et al. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. 2015;1–8.

  28. Simond O, Schaller V, Comninellis C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta. 1997;42:2009–12.

    Article  CAS  Google Scholar 

  29. Marselli B, Garcia-Gomez J, Michaud P-A, Rodrigo MA, Comninellis C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc. 2003;150:D79.

    Article  CAS  Google Scholar 

  30. Fóti G, Gandini D, Comninellis C, Perret A, Haenni W, Lett ES, et al. Oxidation of organics by intermediates of water discharge on IrO 2 and synthetic diamond anodes oxidation of organics by intermediates of water discharge on IrO 2 and synthetic diamond anodes. 1999;2:228–30.

  31. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D. Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol. 2007;82:1115–21.

    Google Scholar 

  32. Lan Y, Coetsier C, Causserand C, Groenen Serrano K. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta. Elsevier Ltd; 2017;231:309–18.

  33. Chianca D, Moura D, Kérzia C, De Araújo C, Zanta CLPS, Salazar R, et al. Active chlorine species electrogenerated on Ti/Ru0.3Ti 0.7O2 surface: electrochemical behavior, concentration determination and their application. J Electroanal Chem. 2014;731:145–52.

    Article  Google Scholar 

  34. Brito CDN, De Araújo DM, Martínez-Huitle CA, Rodrigo MA. Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio. Electrochem Commun. Elsevier Inc.; 2015;55:34–8.

  35. da Silva SW, Navarro EMO, Rodrigues MAS, Bernardes AM, Pérez-Herranz V. Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. J Electroanal Chem. Elsevier B.V.; 2019;832:112–20.

  36. da Silva SW, Navarro EMO, Rodrigues MAS, Bernardes AM, Pérez-Herranz V. The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere. Elsevier Ltd; 2018;210:615–23.

  37. Chen L, Lei C, Li Z, Yang B, Zhang X, Lei L. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere. Elsevier Ltd; 2018;210:516–23.

  38. Shin Y-U, Yoo H-Y, Ahn Y-Y, Kim MS, Lee K, Yu S, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation. Appl Catal B Environ. 2019;254:156–65.

    Article  CAS  Google Scholar 

  39. Medeiros De Araújo D, Cañizares P, Martínez-Huitle CA, Rodrigo MA. Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp3/sp2 ratio. Electrochem commun. Elsevier Inc.; 2014;47:37–40.

  40. Souza FL, Saéz C, Lanza MRV, Cañizares P, Rodrigo MA. The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochim Acta. Elsevier Ltd. 2016;187:119–24.

    Article  CAS  Google Scholar 

  41. Davis J, Baygents JC, Farrell J. Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta [Internet]. 2014;150:65–74. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0013468614021124

  42. Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, et al. Hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton. J Mater Chem A. 2017;5:3655–66.

    Article  CAS  Google Scholar 

  43. Ganiyu SO, Zhou M, Martínez-Huitle CA. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl Catal B Environ [Internet]. Elsevier; 2018;235:103–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926337318303734

  44. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap. 2005;44:8269–85.

  45. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  CAS  Google Scholar 

  46. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. Elsevier B.V.; 2012;125:331–49.

  47. Nolan NT, Seery MK, Pillai SC. Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts. J Phys Chem C. 2009;113:16151–7.

    Article  CAS  Google Scholar 

  48. Koelsch M, Cassaignon S, Ta Thanh Minh C, Guillemoles JF, Jolivet JP. Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. Thin Solid Films. 2004;451–452:86–92.

  49. Hoffman AJ, Carraway ER, Hoffmann MR. Photocatalytic production of semiconductor colloids and organic peroxides on quantum-sized. 1994;28:776–85.

  50. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994;98:13669–79.

    Article  Google Scholar 

  51. Karlsson RKB, Cornell A, Pettersson LGM. The electrocatalytic properties of doped TiO2. Electrochim Acta. 2015;180:514–27.

    Article  CAS  Google Scholar 

  52. Trasatti S. Electrocatalysis: understanding the success of DSA®. Electrochim Acta. 2000;45:2377–85.

    Article  CAS  Google Scholar 

  53. Pelegrini RT, Freire RS, Duran N, Bertazzoli R. Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach Kraft mill effluent. Environ Sci Technol. 2001;35:2849–53.

    Article  CAS  Google Scholar 

  54. Pelegrini R, Reyes J, Durán N, Zamora PP, De Andrade AR. Photoelectrochemical degradation of lignin. J Appl Electrochem. 2000;30:953–8.

    Article  CAS  Google Scholar 

  55. da Silva SW, Klauck CR, Siqueira MA, Bernardes AM. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J Hazard Mater. Elsevier; 2015;282:241–8.

  56. Heberle ANA, da Silva SW, Klauck CR, Ferreira JZ, Rodrigues MAS, Bernardes AM. Electrochemical enhanced photocatalysis to the 2,4,6 Tribromophenol flame retardant degradation. J Catal. Academic Press Inc.; 2017;351:136–45.

  57. Oliveira HG, Ferreira LH, Bertazzoli R, Longo C. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO<inf>2</inf> and TiO<inf>2</inf>/WO<inf>3</inf> electrodes irradiated by a solar simulator. Water Res. Elsevier Ltd; 2015;72:305–14.

  58. Fukunaga MT, Guimarães JR, Bertazzoli R. Kinetics of the oxidation of formaldehyde in a flow electrochemical reactor with TiO2/RuO2 anode. Chem Eng J. 2008;136:236–41.

    Article  CAS  Google Scholar 

  59. Albornoz LL, da Silva SW, Bortolozzi JP, Banús ED, Brussino P, Ulla MA, et al. Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: activity and stability. Chemosphere. Elsevier Ltd; 2020.

  60. Krishnan S, Shriwastav A. Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. Biochem Pharmacol. Elsevier B.V.; 2020;104699.

  61. Phongamwong T, Chareonpanich M, Limtrakul J. Role of chlorophyll in Spirulina on photocatalytic activity of CO 2 reduction under visible light over modified N-doped TiO 2 photocatalysts. Appl Catal B Environ [Internet]. Elsevier B.V.; 2015;168–169:114–24. Available from: https://doi.org/10.1016/j.apcatb.2014.12.022

  62. Phongamwong T, Donphai W, Prasitchoke P, Rameshan C, Barrabés N, Klysubun W, et al. Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B. Appl Catal B Environ [Internet]. Elsevier B.V.; 2017;207:326–34. Available from: https://doi.org/10.1016/j.apcatb.2017.02.042

  63. Barbosa VV, Severiano J dos S, De Oliveira DA, Barbosa JE de L . Influence of submerged macrophytes on phosphorus in a eutrophic reservoir in a semiarid region. J Limnol [Internet]. 2020;79:138–50. Available from: https://jlimnol.it/index.php/jlimnol/article/view/jlimnol.2020.1931

  64. Glibert PM. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae [Internet]. Elsevier; 2020;91:101583. Available from: https://doi.org/10.1016/j.hal.2019.03.001

  65. Lü X, Qian H, Mele G, De Riccardis A, Zhao R, Chen J, et al. Impact of different TiO 2 samples and porphyrin substituents on the photocatalytic performance of TiO 2 @copper porphyrin composites. Catal Today [Internet]. 2017;281:45–52 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0920586116303005.

    Article  Google Scholar 

  66. Joshi M, Kamble SP, Labhsetwar NK, Parwate DV, Rayalu SS. Chlorophyll-based photocatalysts and their evaluations for methyl orange photoreduction. J Photochem Photobiol A Chem [Internet]. 2009;204:83–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1010603009000483

  67. Hsiao C-J, Lin J-F, Wen H-Y, Lin Y-M, Yang C-H, Huang K-S, et al. Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chem [Internet]. Elsevier; 2020;306:125300. Available from: https://doi.org/10.1016/j.foodchem.2019.125300

  68. Gomathi Devi L, Nithya PM. Photocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processes. Inorg Chem Front. 2018;5:127–38.

    Article  CAS  Google Scholar 

  69. Krishnakumar B, Balakrishna A, Arranja CT, Dias CMF, Sobral AJFN. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2017;176:134–41. Available from: http://www.sciencedirect.com/science/article/pii/S1386142517300215

  70. Mele G, Del Sole R, Vasapollo G, García-López E, Palmisano L, Schiavello M. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. J Catal [Internet]. 2003;217:334–42. Available from: http://www.sciencedirect.com/science/article/pii/S002195170300040X

  71. Gong J, Pu W, Yang C, Zhang J. Tungsten and nitrogen co-doped TiO2 electrode sensitized with Fe–chlorophyllin for visible light photoelectrocatalysis. Chem Eng J [Internet]. 2012;209:94–101. Available from: http://www.sciencedirect.com/science/article/pii/S138589471201039X

  72. Ye Z, Schukraft GEM, L’Hermitte A, Xiong Y, Brillas E, Petit C, et al. Mechanism and stability of an Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micropollutants under UVA and visible light irradiation. Water Res. Elsevier Ltd; 2020;184:115986.

  73. Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater Elsevier B.V.; 2021.

  74. Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng [Internet]. Elsevier Ltd; 2014;2:557–72. Available from: https://doi.org/10.1016/j.jece.2013.10.011

  75. Ye Z, Brillas E, Centellas F, Cabot PL, Sirés I. Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode. Appl Catal B Environ [Internet]. 2019;257:117907. Available from: http://www.sciencedirect.com/science/article/pii/S0926337319306538

  76. Papoutsakis S, Miralles-Cuevas S, Oller I, Garcia Sanchez JL, Pulgarin C, Malato S. Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: an experimental design approach. Catal Today [Internet]. 2015;252:61–9. Available from: http://www.sciencedirect.com/science/article/pii/S092058611500070X

  77. Ahile UJ, Wuana RA, Itodo AU, Sha’Ato R, Dantas RF. A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: current trends, knowledge gap and future studies. Sci Total Environ [Internet]. 2020;710:134872. Available from: http://www.sciencedirect.com/science/article/pii/S0048969719348648

  78. Ameta R, Chohadia AK., Jain A, Punjabi PB. Chapter 3 - Fenton and photo-Fenton processes. In: Ameta SC, Ameta RBT-AOP for WWT, editors. Academic Press; 2018. p. 49–87. Available from: http://www.sciencedirect.com/science/article/pii/B9780128104996000036

  79. Matilainen A, Sillanpää M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere [Internet]. 2010;80:351–65. Available from: http://www.sciencedirect.com/science/article/pii/S0045653510005163

  80. Oturan MA. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2 , 4-D. 2000;475–82.

  81. Brillas E, Calpe JC, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res. 2000;34:2253–62.

    Article  CAS  Google Scholar 

  82. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ Elsevier B.V.; 2017. p. 217–61.

  83. Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109:6570–631.

    Article  CAS  Google Scholar 

  84. Brillas E, Bastida RM, Llosa E, Casado J. Technical papers electrochemical science and technology electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE 02-fed cathode Ph bO lq I. 1995;142.

  85. Bocos E, Iglesias O, Pazos M, Ángeles Sanromán M. Nickel foam a suitable alternative to increase the generation of Fenton’s reagents. Process Saf Environ Prot. Institution of Chemical Engineers; 2016;101:34–44.

  86. Umar M, Aziz HA, Yusoff MS. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. Elsevier Ltd; 2010;30:2113–21.

  87. Utset B, Garcia J, Casado J, Dom X. Replacement of H 2 O 2 by O 2 in Fenton and photo-Fenton reactions. 2000;41:1187–92.

  88. Wu J, Pu W, Yang C, Zhang M, Zhang J. Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe 2 O 4 nanoparticles as catalyst. J Environ Sci. The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences; 2013;25:801–7.

  89. Ramírez J, Godínez LA, Méndez M, Meas Y, Rodrıguez FJ. Heterogeneous photo-electro-Fenton process using different iron supporting materials. 2010;1729–36.

  90. García-rodríguez O, Bañuelos JA, El-ghenymy A, Godínez LA, Brillas E, Rodríguez-valadez FJ. Use of a carbon felt – iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. JEAC. Elsevier B.V.; 2016;767:40–8.

  91. Scaria J, Gopinath A, Nidheesh P V. A versatile strategy to eliminate emerging contaminants from the aqueous environment: heterogeneous Fenton process. J Clean Prod. Elsevier Ltd; 2021;278:124014.

  92. Casado J. Towards industrial implementation of electro-Fenton and derived technologies for wastewater treatment: a review. J. Environ. Chem. Eng. Elsevier Ltd; 2019.

  93. Oturan MA, Aaron JJ. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol. 2014;44:2577–641.

    Article  CAS  Google Scholar 

  94. Dong C, Ji J, Shen B, Xing M, Zhang J. Remediation and Control Technologies Enhancement of H2O2 decomposition by the cocatalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr ( VI ) and remediation of phenol. 2018;

  95. Sarmento AP, Borges AC, Matos AT De. Phenol degradation by Fenton-like process. Environ Sci Pollut Res. Environmental Science and Pollution Research; 2016;

  96. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem. Elsevier Inc.; 2018;4:1359–72.

  97. Maekawa J, Mae K, Nakagawa H. Fenton-Cu2+ system for phenol mineralization. J Environ Chem Eng. Elsevier Ltd.; 2014;2:1275–80.

  98. Brillas E, Garcia-segura S. Benchmarking recent advances and innovative technology approaches of Fenton , photo-Fenton , electro-Fenton , and related processes: a review on the relevance of phenol as model molecule. Sep Purif Technol. Elsevier; 2020;237:116337.

  99. Ye Z, Sirés I, Zhang H, Huang Y-H. Mineralization of pentachlorophenol by ferrioxalate-assisted solar photo-Fenton process at mild pH. Chemosphere [Internet]. 2019;217:475–82. Available from: http://www.sciencedirect.com/science/article/pii/S0045653518320964

  100. Ambika S, Devasena M, Nambi IM. Assessment of meso scale zero valent iron catalyzed Fenton reaction in continuous- fl ow porous media for sustainable groundwater remediation. Chem Eng J. Elsevier; 2018;334:264–72.

  101. Vasudevan S, Oturan MA. Electrochemistry: as cause and cure in water pollution — an overview. 2013;

  102. Messele SA, Soares OSGP, Órfão JJM, Bengoa C, Font J. Zero-valent iron supported on Nitrogen-doped carbon xerogel as catalysts for the oxidation of phenol by Fenton-like system. 2017;3330.

  103. Heberle ANA, Alves MEP, da Silva SW, Klauck CR, Rodrigues MAS, Bernardes AM. Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes. Environ Pollut. Elsevier Ltd; 2019;249:354–61.

  104. Clarizia L, Russo D, Somma I Di, Marotta R, Andreozzi R. Applied catalysis B: environmental homogeneous photo-Fenton processes at near neutral pH: a review. "Applied Catal B, Environ. Elsevier B.V.; 2017;209:358–71.

  105. Oturan MA. Electrochemical advanced oxidation technologies for removal of organic pollutants from water. 2014;2–4.

  106. Ganiyu SO, Hullebusch ED Van, Cretin M, Esposito G, Oturan MA. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Elsevier B.V.; 2015;156:891–914.

  107. da Silva SW, do Prado JM, Heberle ANA, Schneider DE, Rodrigues MAS, Bernardes AM. Electrochemical advanced oxidation of Atenolol at Nb/BDD thin film anode. J Electroanal Chem. Elsevier B.V.; 2019;844:27–33.

  108. Welter JB, da Silva SW, Schneider DE, Rodrigues MAS, Ferreira JZ. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix. Chemosphere. Elsevier Ltd; 2020;248.

  109. Zhang Y, Wang H, Li Y, Wang B, Huang J, Deng S, et al. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Res. 2020;183:116115.

    Article  CAS  Google Scholar 

  110. Mohammadi H, Bina B, Ebrahimi A. A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways. Process Saf Environ Prot. Institution of Chemical Engineers; 2018;117:200–13.

  111. Maldonado S, Rodrigo M, Cañizares P, Roa G, Barrera C, Ramirez J, et al. On the degradation of 17-β estradiol using boron doped diamond electrodes. Processes [Internet]. 2020;8:710. Available from: https://www.mdpi.com/2227-9717/8/6/710

  112. Coria G, Sirés I, Brillas E, Nava JL. Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chem Eng J. Elsevier B.V.; 2016;304:817–25.

  113. Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, et al. Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B Environ. 2010;96:361–9.

    Article  Google Scholar 

  114. Ghasemian S, Nasuhoglu D, Omanovic S, Yargeau V. Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%-W20%-oxide electrodes. Sep Purif Technol [Internet]. 2017;188:52–9. Available from: http://www.sciencedirect.com/science/article/pii/S1383586617310158

  115. Hosseini M, Esrafili A, Farzadkia M, Kermani M, Gholami M. Degradation of ciprofloxacin antibiotic using photo-electrocatalyst process of Ni-doped ZnO deposited by RF sputtering on FTO as an anode electrode from aquatic environments: synthesis, kinetics, and ecotoxicity study. Microchem J. 2020;154:104663.

    Article  CAS  Google Scholar 

  116. Long Y, Feng Y, Li X, Suo N, Chen H, Wang Z, et al. Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). Chemosphere [Internet]. 2019;219:1024–31 Available from: http://www.sciencedirect.com/science/article/pii/S0045653518323762.

    Article  CAS  Google Scholar 

  117. Franzen Ramos L, da Silva SW, Schneider DE, Rodrigues MAS, Bernardes AM. Mineralization of erythromycin by UV-based and electro-oxidation processes. J Water Process Eng. Elsevier Ltd; 2020;33.

  118. Loaiza-Ambuludi S, Panizza M, Oturan N, Özcan A, Oturan MA. Electro-Fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. J Electroanal Chem [Internet]. 2013;702:31–6 Available from: http://www.sciencedirect.com/science/article/pii/S1572665713002300.

    Article  CAS  Google Scholar 

  119. Salazar C, Contreras N, Mansilla HD, Yáñez J, Salazar R. Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode. J Hazard Mater. 2016;319:84–92.

    Article  CAS  Google Scholar 

  120. Özcan A, Atılır Özcan A, Demirci Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chem Eng J. Elsevier B.V.; 2016;304:518–26.

  121. Kaur R, Kushwaha JP, Singh N. Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: evaluation and mechanistic approach. Chemosphere [Internet]. 2018;193:685–94 Available from: http://www.sciencedirect.com/science/article/pii/S0045653517318428.

    Article  CAS  Google Scholar 

  122. Orimolade BO, Zwane BN, Koiki BA, Rivallin M, Bechelany M, Mabuba N, et al. Coupling cathodic electro-Fenton with anodic photo-electrochemical oxidation: a feasibility study on the mineralization of paracetamol. J Environ Chem Eng [Internet]. 2020;8:104394. Available from: http://www.sciencedirect.com/science/article/pii/S2213343720307430

  123. Gonzaga IMD, Moratalla A, Eguiluz KIB, Salazar-Banda GR, Cañizares P, Rodrigo MA, et al. Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Sci Total Environ [Internet]. 2020;736:139536. Available from: http://www.sciencedirect.com/science/article/pii/S0048969720330539

  124. Feng L, Serna-Galvis EA, Oturan N, Giannakis S, Torres-Palma RA, Oturan MA. Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. J Environ Chem Eng. 2019;7:103400.

    Article  CAS  Google Scholar 

  125. Liu S, Zhao X, Sun H, Li R, Fang Y, Huang Y. The degradation of tetracycline in a photo-electro-Fenton system. Chem Eng J [Internet]. 2013;231:441–8 Available from: http://www.sciencedirect.com/science/article/pii/S1385894713009649.

    Article  CAS  Google Scholar 

  126. Haidar M, Dirany A, Sirés I, Oturan N, Oturan MA. Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere. Elsevier Ltd; 2013;91:1304–9.

  127. Zhang G, Huang G, Yang C, Chen S, Xu Y, Zhang S, et al. Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants. J Environ Chem Eng [Internet]. 2020;104742. Available from: http://www.sciencedirect.com/science/article/pii/S2213343720310915

  128. Clematis D, Cerisola G, Panizza M. Electrochemical oxidation of a synthetic dye using a BDD anode with a solid polymer electrolyte. Electrochem commun. Elsevier Inc.; 2017;75:21–4.

  129. da Silva SW, Bordignon GL, Viegas C, Rodrigues MAS, Arenzon A, Bernardes AM. Treatment of solutions containing nonylphenol ethoxylate by photoelectrooxidation. Chemosphere. Elsevier Ltd; 2015;119:S101–8.

  130. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA. Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol. 2012;46:4074–82.

    Article  CAS  Google Scholar 

  131. Lin H, Niu J, Xu J, Li Y, Pan Y. Electrochemical mineralization of sulfamethoxazole by Ti/SnO 2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim Acta. 2013;97:167–74.

    Article  CAS  Google Scholar 

  132. Le TXH, Nguyen T Van, Amadou Yacouba Z, Zoungrana L, Avril F, Nguyen DL, et al. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media. Chemosphere. Elsevier Ltd; 2017;172:1–9.

  133. Petrovic M, Barceló D. Liquid chromatography-mass spectrometry in the analysis of emerging environmental contaminants. Anal Bioanal Chem. 2006;385:422–4.

    Article  CAS  Google Scholar 

  134. Ternes T, Bonerz M, Schmidt T. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry [Internet]. J Chromatogr A. 2001. Available from: www.elsevier.com/locate/chroma

  135. Zou R, Angelidaki I, Yang X, Tang K, Andersen HR, Zhang Y. Degradation of pharmaceuticals from wastewater in a 20-L continuous flow bio-electro-Fenton (BEF) system. Sci Total Environ. 2020;727:138684.

    Article  CAS  Google Scholar 

  136. Garcia-Segura S, Nienhauser AB, Fajardo AS, Bansal R, Coonrod CL, Fortner JD, et al. Disparities between experimental and environmental conditions: research steps toward making electrochemical water treatment a reality. Curr Opin Electrochem. Elsevier B.V.; 2020. p. 9–16.

  137. Garcia-Rodriguez O, Mousset E, Olvera-Vargas H, Lefebvre O. Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from lab- to full-scale. Crit Rev Environ Sci Technol. Bellwether Publishing, Ltd.; 2020;

  138. Ikehata K, Li Y. Ozone-based processes. Adv Oxid Process Wastewater Treat Emerg Green Chem Technol. Elsevier Inc.; 2018. p. 115–34.

  139. Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, et al. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Environ. 2013;461–462:480–98.

    Article  Google Scholar 

  140. Akmehmet Balcıoğlu I, Ötker M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere [Internet]. 2003;50:85–95 Available from: www.elsevier.com/locate/chemosphere.

    Article  Google Scholar 

  141. da Silva S, Venzke CD, Welter JB, Schneider DE, Ferreira JZ, Rodrigues MAS, et al. Electrooxidation using Nb/BDD as post-treatment of a reverse osmosis concentrate in the petrochemical industry. Int J Environ Res Public Health. MDPI AG; 2019;16.

  142. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci. Total Environ. 2017;595:601–14.

    Article  CAS  Google Scholar 

  143. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. Elsevier Ltd; 2013. p. 1268–87.

  144. Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.

    Article  CAS  Google Scholar 

  145. Debroux JF, Soller JA, Plumlee MH, Kennedy LJ. Human health risk assessment of non-regulated xenobiotics in recycled water: a review. Hum Ecol Risk Assess. 2012;18:517–46.

    Article  CAS  Google Scholar 

  146. Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, et al. Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J. Environ. Manage. 2019;237:408–23.

    Article  Google Scholar 

  147. da Silva SW, Heberle ANA, Santos AP, Rodrigues MASAS, Pérez-Herranz V, Bernardes AM, et al. Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect. Environ Technol. Taylor & Francis; 2018;40:1–11.

  148. Joo SH, Tansel B. Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manage. Academic Press; 2015. p. 322–35.

  149. Bagastyo AY, Batstone DJ, Rabaey K, Radjenovic J. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Water Res. Elsevier Ltd; 2013;47:242–50.

  150. Fernandes A, Chamem O, Pacheco MJ, Ciríaco L, Zairi M, Lopes A. Performance of electrochemical processes in the treatment of reverse osmosis concentrates of sanitary landfill leachate. Molecules. MDPI AG; 2019;24.

  151. Radjenovic J, Bagastyo A, Rozendal RA, Mu Y, Keller J, Rabaey K. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Res. Elsevier Ltd; 2011;45:1579–86.

  152. Stirling R, Walker WS, Westerhoff P, Garcia-Segura S. Techno-economic analysis to identify key innovations required for electrochemical oxidation as point-of-use treatment systems. Electrochim Acta. Elsevier Ltd; 2020;338.

Download references

Acknowledgements

The authors are grateful to the Brazilian funding agencies (FAPERGS, SEBRAE/RS, CAPES, and CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Moura Bernardes.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.W., Welter, J.B., Albornoz, L.L. et al. Advanced Electrochemical Oxidation Processes in the Treatment of Pharmaceutical Containing Water and Wastewater: a Review. Curr Pollution Rep 7, 146–159 (2021). https://doi.org/10.1007/s40726-021-00176-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00176-6

Keywords

Navigation