Skip to main content

Advertisement

Log in

Biological Aerosol Particles in Polluted Regions

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Biological aerosol particles play a crucial role in the Earth system, particularly in the land/ocean-atmosphere interactions. This paper aims to summarize the up-to-date research progresses on the characteristics, biomarkers as well as the health-related, climatic and ecological effects of biological aerosol particles in polluted regions, especially in East Asia and South Asia.

Recent Findings

The atmospheric abundance, size distribution, and community structure of microorganisms show differences during haze and non-haze conditions. The long-distance transportation of dust-associated microorganisms influences the abundance and community structure of airborne microbes in downwind areas. Wildfire smoke or biomass burning potentially impacts the release, transport and dispersal of microorganisms in the atmosphere. Meteorological conditions and air pollutants likely interact with airborne microorganisms, pollen, and fluorescent biological aerosol particles. Molecular biomarkers including proteins and amino acids, sugars, and lipid compounds have been used to fingerprint the sources of biological aerosols and give important biogeochemical information of atmospheric aerosols. In addition to pathogenic and allergenic microorganisms and pollen, biological aerosol particles indicated by abundant endotoxins and antibiotic resistance genes could have significant impacts on public health. In polluted regions, the potential influences of biological aerosol particles on climate and ecosystems could be more complex.

Summary

We comprehensively summarize the recent research progresses on the characteristics, biomarkers, influencing factors, and effects of biological aerosol particles in polluted regions, mostly in East Asia and South Asia. To further understand the complicated effects of biological aerosol particles in polluted regions, the development and application of novel approaches and techniques as well as in-depth investigations on the roles of biological aerosol particles in atmospheric chemistry, cloud formation, and public health need to be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

APEC:

Asia-Pacific Economic Cooperation

AQI:

Air quality index

ARDRA:

Amplified ribosomal DNA restriction analysis

ARGs:

Antibiotic resistance genes

BB:

Biomass burning

BC:

Black carbon

BCA:

Bicinchoninic acid assay

CAAs:

Combined amino acids

CCN:

Cloud condensation nuclei

CFUs:

Colony-forming units

CPI:

Carbon preference index

D/TGGE:

Denaturing/temperature gradient gel electrophoresis analysis

DNA:

Deoxyribonucleic acid

dsDNA:

Double-stranded deoxyribonucleic acid

EEM:

Excitation-emission matrix

ESI:

Electrospray ionization

EU:

Endotoxin units

FAAs:

Free amino acids

FBAPs :

Fluorescent biological aerosol particles

FS-OC:

Fungal spores-derived organic carbon

FT-ICR MS:

Fourier transform ion cyclotron resonance mass spectrometry

GC-MS:

Gas chromatography - mass spectrometry

HACA:

Hierarchical-agglomerative-cluster-analysis

HPLC-FLD:

High-performance liquid chromatography - fluorescence detector

HULIS:

Humic-like substances

IN:

Ice nuclei

INA:

Ice nucleation-active

INPs:

Ice nucleation particles

ITS:

Internal transcribed space

LAL:

Limulus amebocyte lysate

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

LOD:

Limit of detection

MGEs:

Mobile genetic elements

mVOCs:

Microbial volatile organic compounds

OC:

Organic carbon

PAHs:

Polycyclic aromatic hydrocarbons

PBAPs:

Primary biological aerosol particles

PBL:

Planetary boundary layer

PBS:

Phosphate-buffered solution

PCA:

Principle component analysis

PM2.5 :

Particulate matter with aerodynamic diameter less than 2.5 μm

PMF:

Positive matrix factorization

qPCR:

Quantitative polymerase chain reaction

RH:

Relative humidity

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

SEM/TEM-EDX:

Scanning/transmission electron microscope-energy-dispersive X-ray detector

SIBS:

Spectral intensity bioaerosol sensor

SLF:

Surrogate lung fluid

SP-AMS:

Single particle - aerosol mass spectrometry

STXM-NEXAFS:

Scanning transmission X-ray microscopy - near edge X-ray absorption fine structure spectroscopy

TAAs:

Total hydrolyzed amino acids

T-RLIP/RISA:

Terminal restriction fragment length polymorphisms and ribosomal intergenic spacer analysis

TSP:

Total suspended particles

UV-APS:

Ultraviolet aerodynamic particle sizer

WIBS:

Wideband integrated bioaerosol sensor

References

  1. Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, et al. Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos Res. 2016;182:346–76.

    Article  CAS  Google Scholar 

  2. Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B Chem Phys Meteorol. 2012;64:15598.

    Article  Google Scholar 

  3. Smets W, Moretti S, Denys S, Lebeer S. Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmos Environ. 2016;139:214–21.

    Article  CAS  Google Scholar 

  4. Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, et al. Aerosol health effects from molecular to global scales. Environ Sci Technol. 2017;51(23):13545–67.

    Article  CAS  Google Scholar 

  5. Hu W, Niu H, Murata K, Wu Z, Hu M, Kojima T, et al. Bacteria in atmospheric waters: detection, characteristics and implications. Atmos Environ. 2018;179:201–21.

    Article  CAS  Google Scholar 

  6. Xu Z, Wu Y, Shen F, Chen Q, Tan M, Yao M. Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Technol. 2011;45(11):1337–49.

    Article  CAS  Google Scholar 

  7. Dommergue A, Amato P, Tignat-Perrier R, Magand O, Thollot A, Joly M, et al. Methods to investigate the global atmospheric microbiome. Front Microbiol. 2019;10:243.

    Article  Google Scholar 

  8. Mbareche H, Brisebois E, Veillette M, Duchaine C. Bioaerosol sampling and detection methods based on molecular approaches: no pain no gain. Sci Total Environ. 2017;599–600:2095–104.

    Article  CAS  Google Scholar 

  9. Šantl-Temkiv T, Sikoparija B, Maki T, Carotenuto F, Amato P, Yao M, et al. Bioaerosol Field Measurements: Challenges and Perspectives in Outdoor Studies. Aerosol Sci Technol. 2019. https://doi.org/10.1080/02786826.2019.1676395

    Article  CAS  Google Scholar 

  10. Félix-Rivera H, Hernández-Rivera SP. Raman spectroscopy techniques for the detection of biological samples in suspensions and as aerosol particles: a review. Sens Imaging. 2012;13(1):1–25.

    Article  Google Scholar 

  11. Fennelly M, Sewell G, Prentice M, O’Connor D, Sodeau J. Review: the use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere. 2017;9(1):1.

    Article  CAS  Google Scholar 

  12. Pöhlker C, Huffman JA, Pöschl U. Autofluorescence of atmospheric bioaerosols-fluorescent biomolecules and potential interferences. Atmos Meas Tech. 2013;5:37–71.

    Article  CAS  Google Scholar 

  13. Moon H-S, Lee J-H, Kwon K, Jung H-I. Review of recent progress in micro-systems for the detection and analysis of airborne microorganisms. Anal Lett. 2012;45(2–3):113–29.

    Article  CAS  Google Scholar 

  14. Wittmaack K, Wehnes H, Heinzmann U, Agerer R. An overview on bioaerosols viewed by scanning electron microscopy. Sci Total Environ. 2005;346(1–3):244–55.

    Article  CAS  Google Scholar 

  15. Hawkins LN, Russell LM. Polysaccharides, proteins, and phytoplankton fragments: four chemically distinct types of marine primary organic aerosol classified by single particle Spectromicroscopy. Adv Meteorol. 2010;2010:1–14.

    Article  Google Scholar 

  16. Russell SC. Microorganism characterization by single particle mass spectrometry. Mass Spectrom Rev. 2009;28(2):376–87.

    Article  CAS  Google Scholar 

  17. Beddows D, Telle H. Prospects of real-time single-particle biological aerosol analysis: a comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry. Spectrochim Acta B At Spectrosc. 2005;60(7):1040–59.

    Article  CAS  Google Scholar 

  18. Frank M, Gard EE, Tobias HJ, Adams KL, Bogan MJ, Coffee KR, et al. Single-Particle Aerosol Mass Spectrometry (SPAMS) for High-Throughput and Rapid Analysis of Biological Aerosols and Single Cells. Rapid Characterization of Microorganisms by Mass Spectrometry. ACS Symposium Series. 1065: American Chemical Society; 2011. pp 161-96. https://doi.org/10.1021/bk-2011-1065.ch010

    Google Scholar 

  19. Núñez A, Amo de Paz G, Rastrojo A, García AM, Alcamí A, Gutiérrez-Bustillo AM, et al. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: metagenomics applied to urban environments. Int Microbiol. 2016;19(2):69–80.

    Google Scholar 

  20. Peccia J, Hernandez M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ. 2006;40(21):3941–61.

    Article  CAS  Google Scholar 

  21. Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang SI, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: a review. J Environ Sci. 2017;51:234–47.

    Article  Google Scholar 

  22. Delort A-M, Vaïtilingom M, Amato P, Sancelme M, Parazols M, Mailhot G, et al. A short overview of the microbial population in clouds: potential roles in atmospheric chemistry and nucleation processes. Atmos Res. 2010;98(2):249–60.

    Article  CAS  Google Scholar 

  23. Xie Z, Fan C, Lu R, Liu P, Wang B, Du S, et al. Characteristics of ambient bioaerosols during haze episodes in China: a review. Environ Pollut. 2018;243:1930–42.

    Article  CAS  Google Scholar 

  24. Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ Int. 2018;113:74–90.

    Article  Google Scholar 

  25. Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci. 2016;7(11):6604–16.

    Article  CAS  Google Scholar 

  26. Deguillaume L, Leriche M, Amato P, Ariya P, Delort A-M, Pöschl U, et al. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences. 2008;5:1073–84.

    Article  CAS  Google Scholar 

  27. Ariya PA, Amyot M. New directions: the role of bioaerosols in atmospheric chemistry and physics. Atmos Environ. 2004;38(8):1231–2.

    Article  CAS  Google Scholar 

  28. Sun J, Ariya PA. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos Environ. 2006;40(5):795–820.

    Article  CAS  Google Scholar 

  29. Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47(3):187–200.

    CAS  Google Scholar 

  30. Górny RL. Microbial aerosols: sources, properties, health effects, exposure assessment—a review. KONA Powder Part J. 2020;37:64-84.

    Article  Google Scholar 

  31. Morris CE, Conen F, Alex Huffman J, Phillips V, Poschl U, Sands DC. Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol. 2014;20(2):341–51.

    Article  Google Scholar 

  32. Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ. 2004;326(1):151–80.

    Article  CAS  Google Scholar 

  33. Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environ Sci Technol. 2014;48(3):1499–507.

  34. Dong L, Qi J, Shao C, Zhong X, Gao D, Cao W, et al. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci Total Environ. 2016;541:1011–8.

    Article  CAS  Google Scholar 

  35. Li Y, Fu H, Wang W, Liu J, Meng Q, Wang W. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi’an, China. Atmos Environ. 2015;122:439–47.

    Article  CAS  Google Scholar 

  36. Lu R, Li Y, Li W, Xie Z, Fan C, Liu P, et al. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Sci Total Environ. 2018;637–638:244–52.

    Article  CAS  Google Scholar 

  37. Qi J, Li M, Zhen Y, Wu L. Characterization of bioaerosol bacterial communities during hazy and foggy weather in Qingdao, China. J Ocean Univ China. 2018;17(3):516–26.

    Article  Google Scholar 

  38. Sun Y, Xu S, Zheng D, Li J, Tian H, Wang Y. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci Total Environ. 2018;637–638:507–16.

    Article  CAS  Google Scholar 

  39. Wei K, Zou Z, Zheng Y, Li J, Shen F, Wu CY, et al. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci Total Environ. 2016;550:751–9.

    Article  CAS  Google Scholar 

  40. Xie Z, Li Y, Lu R, Li W, Fan C, Liu P, et al. Characteristics of total airborne microbes at various air quality levels. J Aerosol Sci. 2017;116:57–65.

    Article  CAS  Google Scholar 

  41. Xu C, Wei M, Chen J, Wang X, Zhu C, Li J, et al. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Sci Total Environ. 2017;580:188–96.

    Article  CAS  Google Scholar 

  42. Yan D, Zhang T, Su J, Zhao LL, Wang H, Fang XM, et al. Structural variation in the bacterial community associated with airborne particulate matter in Beijing, China, during hazy and nonhazy days. Appl Environ Microbiol. 2018;84(9):e00004-18 https://doi.org/10.1128/AEM.00004-18

  43. Zhong S, Zhang L, Jiang X, Gao P. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci Total Environ. 2018;655:202–10.

    Article  CAS  Google Scholar 

  44. Zeng X, Kong S, Zheng S, Cheng Y, Wu F, Niu Z, et al. Variation of airborne DNA mass ratio and fungal diversity in fine particles with day-night difference during an entire winter haze evolution process of Central China. Sci Total Environ. 2019;694:133802.

    Article  CAS  Google Scholar 

  45. Li W, Yang J, Zhang D, Li B, Wang E, Yuan H. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and midwinter in Beijing, China. Front Microbiol. 2018;9:1741.

    Article  Google Scholar 

  46. Gao M, Jia R, Qiu T, Han M, Song Y, Wang X. Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmos Environ. 2015;118:203–10.

    Article  CAS  Google Scholar 

  47. Guo Z, Wang Z, Qian L, Zhao Z, Zhang C, Fu Y, et al. Biological and chemical compositions of atmospheric particulate matter during hazardous haze days in Beijing. Environ Sci Pollut Res. 2018;25(34):34540–9.

    Article  CAS  Google Scholar 

  48. Kumar A, Attri AK. Characterization of fungal spores in ambient particulate matter: a study from the Himalayan region. Atmos Environ. 2016;142:182–93.

    Article  CAS  Google Scholar 

  49. Du P, Du R, Ren W, Lu Z, Fu P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci Total Environ. 2017;610–611:308–15.

    Article  CAS  Google Scholar 

  50. Qi Y, Li Y, Xie W, Lu R, Mu F, Bai W, et al. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci Total Environ. 2020;708:135027. https://doi.org/10.1016/j.scitotenv.2019.135027

    Article  CAS  Google Scholar 

  51. Hai VD, Hoang SMT, Hung NTQ, Ky NM, Gwi-Nam B, Ki-hong P, et al. Characteristics of airborne bacteria and fungi in the atmosphere in Ho Chi Minh city, Vietnam - A case study over three years. Int Biodeterior Biodegrad. 2019;145:104819.

    Article  CAS  Google Scholar 

  52. Tsolmon R, Ochirkhuyag L, Sternberg T. Monitoring the source of trans-national dust storms in north east Asia. Int J Digit Earth. 2008;1(1):119–29.

    Article  Google Scholar 

  53. Cha S, Lee D, Jang JH, Lim S, Yang D, Seo T. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Sci Rep. 2016;6:37271.

    Article  CAS  Google Scholar 

  54. Maki T, Bin C, Kai K, Kawai K, Fujita K, Ohara K, et al. Vertical distributions of airborne microorganisms over Asian dust source region of Taklimakan and Gobi Desert. Atmos Environ. 2019;214:116848.

    Article  CAS  Google Scholar 

  55. Yoo K, Han I, Ko KS, Lee TK, Yoo H, Khan MI, et al. Bacillus-dominant airborne bacterial communities identified during Asian dust events. Microb Ecol. 2019;78(3):677–87.

    Article  CAS  Google Scholar 

  56. Yuan H, Zhang D, Shi Y, Li B, Yang J, Yu X, et al. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing. J Environ Sci. 2017;55:33–40.

    Article  Google Scholar 

  57. Maki T, Lee KC, Kawai K, Onishi K, Hong CS, Kurosaki Y, et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J Geophys Res Atmos. 2019;124(10):5579–88.

    Article  Google Scholar 

  58. Schuerger AC, Smith DJ, Griffin DW, Jaffe DA, Wawrik B, Burrows SM, et al. Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America. Aerobiologia. 2018;34(4):425–35.

    Article  Google Scholar 

  59. Maki T, Hara K, Iwata A, Lee KC, Kawai K, Kai K, et al. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos Chem Phys. 2017;17(19):11877–97.

    Article  CAS  Google Scholar 

  60. Qi J, Li M, Gao D, Zhen Y, Zhang D. Impact of dust events on the concentration, property and distribution of atmospheric bioaerosols. Adv Earth Sci. 2018;33(6):568–77.

  61. Yoo K, Yoo H, Lee JM, Shukla SK, Park J. Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci Rep. 2018;8(1):11823.

    Article  CAS  Google Scholar 

  62. Federici E, Petroselli C, Montalbani E, Casagrande C, Ceci E, Moroni B, et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Sci Total Environ. 2018;645:401–10.

    Article  CAS  Google Scholar 

  63. Gat D, Mazar Y, Cytryn E, Rudich Y. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean dust storms. Environ Sci Technol. 2017;51(12):6709–18.

    Article  CAS  Google Scholar 

  64. Zhang H, Chen K, Han F. An increasing threat of wildfire to health. Curr Pollut Rep. 2018;4(1):56–7.

    Article  CAS  Google Scholar 

  65. Mims SA, Mims FM. Fungal spores are transported long distances in smoke from biomass fires. Atmos Environ. 2004;38(5):651–5.

    Article  CAS  Google Scholar 

  66. Yang Y, Chan CY, Tao J, Lin M, Engling G, Zhang Z, et al. Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Sci Total Environ. 2012;431:68–77.

    Article  CAS  Google Scholar 

  67. Camacho I, Góis A, Camacho R, Nóbrega V, Fernandez. The impact of urban and forest fires on the airborne fungal spore aerobiology. Aerobiologia. 2018;34(4):585–92.

    Article  Google Scholar 

  68. Kobziar LN, Pingree MR, Larson H, Dreaden TJ, Green S, Smith JA. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. Ecosphere. 2018;9(11):e02507.

    Article  Google Scholar 

  69. Kobziar LN, Pingree MRA, Watts AC, Nelson KN, Dreaden TJ, Ridout M. Accessing the life in smoke: a new application of unmanned aircraft systems (UAS) to sample wildland fire bioaerosol emissions and their environment. Fire. 2019;2(4):56.

    Article  Google Scholar 

  70. Tyagi P, Kawamura K, Fu P, Bikkina S, Kanaya Y, Wang Z. Impact of biomass burning on soil microorganisms and plant metabolites: a view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai. J Geophys Res Biogeosci. 2016;121(10):2684–99.

    CAS  Google Scholar 

  71. Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. Size distribution of bioaerosols from biomass burning emissions: characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol Environ Saf. 2018;171:37–46.

    Article  CAS  Google Scholar 

  72. Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Sci Total Environ. 2019;651:2727–39.

    Article  CAS  Google Scholar 

  73. Rajput P, Anjum MH, Gupta T. One year record of bioaerosols and particles concentration in Indo-Gangetic plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ Pollut. 2017;224:98–106.

    Article  CAS  Google Scholar 

  74. Adekanmbi OH, Alebiosu OS, Adeiga AA. Aerofloral investigation and allergenic potentials of two dominant airborne pollen types at selected sites in South-Western Nigeria. Aerobiologia. 2018;35(1):27–44.

    Article  Google Scholar 

  75. Basak T, Chakraborty A, Bhattacharya K. Identification of airborne pollen allergens from two avenue trees of India. Int J Environ Health Res. 2019;29(4):414–29.

    Article  CAS  Google Scholar 

  76. Stickley A, Sheng Ng CF, Konishi S, Koyanagi A, Watanabe C. Airborne pollen and suicide mortality in Tokyo, 2001-2011. Environ Res. 2017;155:134–40.

    Article  CAS  Google Scholar 

  77. Buters JTM, Antunes C, Galveias A, Bergmann KC, Thibaudon M, Galan C, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018;8:9.

    Article  CAS  Google Scholar 

  78. Kishikawa R, Koto E, Oshikawa C. Regional distribution of allergic tree pollen in Japan. J Geogr Nat Disast. 2016;s6:003.

    Article  Google Scholar 

  79. Phosri A, Ueda K, Tasmin S, Kishikawa R, Hayashi M, Hara K, et al. Interactive effects of specific fine particulate matter compositions and airborne pollen on frequency of clinic visits for pollinosis in Fukuoka, Japan. Environ Res. 2017;156:411–9.

    Article  CAS  Google Scholar 

  80. Ouyang Y, Xu Z, Fan E, Li Y, Zhang L. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen. Int Forum Allergy Rhinol. 2016;6(1):95–100.

    Article  Google Scholar 

  81. Rahman A, Luo C, Khan MHR, Ke J, Thilakanayaka V, Kumar S. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China. Atmos Environ. 2019;212:290–304.

  82. Rahman A, Luo C, Chen B, Haberle S, MHR K, Jiang W, et al. Regional and seasonal variation of airborne pollen and spores among the cities of South China. Acta Ecol Sin. 2019. https://doi.org/10.1016/j.chnaes.2019.05.012

  83. Takahashi Y, Kawashima S, Suzuki Y, Ohta N, Kakehata S. Enrichment of airborne Japanese cedar (Cryptomeria japonica) pollen in mountain ranges when passing through a front accompanying temperate low pressure. Aerobiologia. 2017;34(1):105–10.

    Article  Google Scholar 

  84. Fang Y, Ma C, Bunting MJ, Ding A, Lu H, Sun W. Airborne pollen concentration in Nanjing, eastern China, and its relationship with meteorological factors. J Geophys Res Atmos. 2018;123(19):10,842–10,56.

    Article  CAS  Google Scholar 

  85. Li J, Li YC, Zhang Z, Li Y, Wang CY. The dispersion characteristics of airborne pollen in the Shijiazhuang (China) urban area and its relationship with meteorological factors. Aerobiologia. 2017;34(1):89–104.

    Article  Google Scholar 

  86. Chen L, Chen Y, Chen L, Gu W, Peng C, Luo S, et al. Hygroscopic properties of 11 pollen species in China. ACS Earth Space Chem. 2019;3:2678–83.

    Article  CAS  Google Scholar 

  87. Tang M, Gu W, Ma Q, Li YJ, Zhong C, Li S, et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature. Atmos Chem Phys. 2019;19(4):2247–58.

    Article  CAS  Google Scholar 

  88. Yue S, Ren L, Song T, Li L, Xie Q, Li W, et al. Abundance and diurnal trends of fluorescent bioaerosols in the troposphere over Mt. Tai, China, in spring. J Geophys Res Atmos. 2019;124(7):4158–73.

    Article  Google Scholar 

  89. Yu X, Wang Z, Zhang M, Kuhn U, Xie Z, Cheng Y, et al. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles. Atmos Chem Phys. 2016;16(17):11337–48.

    Article  CAS  Google Scholar 

  90. Wei K, Zheng Y, Li J, Shen F, Zou Z, Fan H, et al. Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions. Sci Bull. 2015;60(16):1439–47.

    Article  CAS  Google Scholar 

  91. Ma Y, Wang Z, Yang D, Diao Y, Wang W, Zhang H, et al. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer. Sci Total Environ. 2018;656:447–57.

    Article  CAS  Google Scholar 

  92. Yue S, Ren H, Fan S, Wei L, Zhao J, Bao M, et al. High abundance of fluorescent biological aerosol particles in winter in Beijing, China. ACS Earth Space Chem. 2017;1(8):493–502.

    Article  CAS  Google Scholar 

  93. Yue S, Ren H, Fan S, Sun Y, Wang Z, Fu P. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci Rep. 2016;6:29618.

    Article  CAS  Google Scholar 

  94. Eglinton G, Scott P, Belsky T, Burlingame AL, Calvin M. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science. 1964;145(3629):263–4.

    Article  CAS  Google Scholar 

  95. Bianchi TS, Canuel EA. Chemical biomarkers in aquatic ecosystems. Princeton: Princeton University Press; 2011.

    Book  Google Scholar 

  96. Xie S, Liang B, Guo J, Yi Y, Evershed RP, Maddy D, et al. Biomarkers and the related global change. Quat Sci. 2003;23(5):521–8.

    Google Scholar 

  97. Abe RY, Akutsu Y, Kagemoto H. Protein amino acids as markers for biological sources in urban aerosols. Environ Chem Lett. 2015;14(1):155–61.

    Article  CAS  Google Scholar 

  98. Helin A, Sietiö O-M, Heinonsalo J, Bäck J, Riekkola M-L, Parshintsev J. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions. Atmos Chem Phys. 2017;17(21):13089–101.

    Article  CAS  Google Scholar 

  99. Feltracco M, Barbaro E, Kirchgeorg T, Spolaor A, Turetta C, Zangrando R, et al. Free and combined L- and D-amino acids in Arctic aerosol. Chemosphere. 2018;220:412–21.

    Article  CAS  Google Scholar 

  100. Matos JTV, Duarte RMBO, Duarte AC. Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: a critical review. TrAC Trends Anal Chem. 2016;75:97–107.

    Article  CAS  Google Scholar 

  101. Marsh A, Miles REH, Rovelli G, Cowling AG, Nandy L, Dutcher CS, et al. Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids. Atmos Chem Phys. 2017;17(9):5583–99.

    Article  CAS  Google Scholar 

  102. Li X, Hede T, Tu Y, Leck C, Ågren H. Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations. Tellus Ser B Chem Phys Meteorol. 2013;65(1):20476.

    Article  CAS  Google Scholar 

  103. Yan G, Kim G, Kim J, Jeong Y-S, Kim YI. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: implications on bacterial contributions to atmospheric organic matter. Geochim Cosmochim Acta. 2015;153:1–14.

    Article  CAS  Google Scholar 

  104. Kang H, Xie Z, Hu Q. Ambient protein concentration in PM10 in Hefei, Central China. Atmos Environ. 2012;54:73–9.

    Article  CAS  Google Scholar 

  105. Song T, Wang S, Zhang Y, Song J, Liu F, Fu P, et al. Proteins and amino acids in fine particulate matter in rural Guangzhou, southern China: seasonal cycles, sources, and atmospheric processes. Environ Sci Technol. 2017;51(12):6773–81.

    Article  CAS  Google Scholar 

  106. Ren L, Bai H, Yu X, Wu F, Yue S, Ren H, et al. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China. Atmos Res. 2018;203:28–35.

    Article  CAS  Google Scholar 

  107. Wang S, Song T, Shiraiwa M, Song J, Ren H, Ren L, et al. Occurrence of aerosol proteinaceous matter in urban Beijing: an investigation on composition, sources, and atmospheric processes during the “APEC Blue” period. Environ Sci Technol. 2019;53(13):7380–90.

    Article  CAS  Google Scholar 

  108. Zhao W, Fu P, Yue S, Li L, Xie Q, Zhu C, et al. Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmos Environ. 2019;213:608–19.

    Article  CAS  Google Scholar 

  109. Qin J, Zhang L, Zhou X, Duan J, Mu S, Xiao K, et al. Fluorescence fingerprinting properties for exploring water-soluble organic compounds in PM2.5 in an industrial city of northwest China. Atmos Environ. 2018;184:203–11.

    Article  CAS  Google Scholar 

  110. Wu G, Ram K, Fu P, Wang W, Zhang Y, Liu X, et al. Water-soluble brown carbon in atmospheric aerosols from Godavari (Nepal), a regional representative of South Asia. Environ Sci Technol. 2019;53(7):3471–9.

    Article  CAS  Google Scholar 

  111. Huang X, Kao SJ, Lin J, Qin X, Deng C. Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols. PLoS One. 2018;13(11):e0206488.

    Article  CAS  Google Scholar 

  112. Di Filippo P, Pomata D, Riccardi C, Buiarelli F, Gallo V, Quaranta A. Free and combined amino acids in size-segregated atmospheric aerosol samples. Atmos Environ. 2014;98:179–89.

    Article  CAS  Google Scholar 

  113. Maria SF, Russell LM, Gilles MK, Myneni SCB. Organic aerosol growth mechanisms and their climate-forcing implications. Science. 2004;306(5703):1921–4.

    Article  CAS  Google Scholar 

  114. Khan MS, Deguchi Y, Matsumoto T, Nagaoka H, Yamagishi N, Wakabayashi K, et al. Relationship of Asian dust events with atmospheric endotoxin and protein levels in Sasebo and Kyoto, Japan, in spring. Biol Pharm Bull. 2019;42(10):1713–9.

    Article  CAS  Google Scholar 

  115. Ho KF, Ho SSH, Huang R-J, Liu SX, Cao J-J, Zhang T, et al. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmos Environ. 2015;106:252–61.

    Article  CAS  Google Scholar 

  116. Barbaro E, Kirchgeorg T, Zangrando R, Vecchiato M, Piazza R, Barbante C, et al. Sugars in Antarctic aerosol. Atmos Environ. 2015;118:135–44.

    Article  CAS  Google Scholar 

  117. Li L, Ren L, Ren H, Yue S, Xie Q, Zhao W, et al. Molecular characterization and seasonal variation in primary and secondary organic aerosols in Beijing, China. J Geophys Res Atmos. 2018;123:12394–412.

    Article  CAS  Google Scholar 

  118. Liang L, Engling G, Du Z, Cheng Y, Duan F, Liu X, et al. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere. 2016;150:365–77.

    Article  CAS  Google Scholar 

  119. Li X, Chen M, Le HP, Wang F, Guo Z, Iinuma Y, et al. Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: impact of biological and biomass burning sources. Atmos Environ. 2016;143:1–14.

    Article  CAS  Google Scholar 

  120. Li X, Wen T, Xin J, Liu Z, Liu S, Li D, et al. Spatial and seasonal variations of sugars (alcohol) in China: emerging results from the CARE-China network. Atmos Environ. 2019;209:136–43.

    Article  CAS  Google Scholar 

  121. Kang M, Ren L, Ren H, Zhao Y, Kawamura K, Zhang H, et al. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: insights from saccharides and n-alkanes. Environ Pollut. 2018;243:1579–87.

    Article  CAS  Google Scholar 

  122. Kang M, Fu P, Kawamura K, Yang F, Zhang H, Zang Z, et al. Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmos Chem Phys. 2018;18(19):13947–67.

    Article  CAS  Google Scholar 

  123. Wan X, Kang S, Rupakheti M, Zhang Q, Tripathee L, Guo J, et al. Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmos Chem Phys. 2019;19(5):2725–47.

    Article  CAS  Google Scholar 

  124. Wang X, Shen Z, Liu F, Lu D, Tao J, Lei Y, et al. Saccharides in summer and winter PM2.5 over Xi'an, northwestern China: sources, and yearly variations of biomass burning contribution to PM2.5. Atmos Res. 2018;214:410–7.

  125. Ren L, Fu P, He Y, Hou J, Chen J, Pavuluri CM, et al. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Sci Rep. 2016;6:27481.

    Article  CAS  Google Scholar 

  126. Wang M, Huang R-J, Cao J, Dai W, Zhou J, Lin C, et al. Determination of n-alkanes, polycyclic aromatic hydrocarbons and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches. Atmos Meas Tech. 2019;12(9):4779–89.

    Article  CAS  Google Scholar 

  127. Kang M, Yang F, Ren H, Zhao W, Zhao Y, Li L, et al. Influence of continental organic aerosols to the marine atmosphere over the East China Sea: insights from lipids, PAHs and phthalates. Sci Total Environ. 2017;607–608:339–50.

    Article  CAS  Google Scholar 

  128. Kang M, Fu P, Aggarwal SG, Kumar S, Zhao Y, Sun Y, et al. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India. Environ Pollut. 2016;219:957–66.

    Article  CAS  Google Scholar 

  129. Ho KF, Huang RJ, Kawamura K, Tachibana E, Lee SC, Ho SSH, et al. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. Atmos Chem Phys. 2015;15(6):3111–23.

    Article  CAS  Google Scholar 

  130. Wu P, Bi R, Duan S, Jin H, Chen J, Hao Q, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers. J Geophys Res Biogeosci. 2015;121:109–25.

    Article  CAS  Google Scholar 

  131. Tyagi P, Kawamura K, Bikkina S, Mochizuki T, Aoki K. Hydroxy fatty acids in snow pit samples from Mount Tateyama in Central Japan: implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. J Geophys Res Atmos. 2016;121(22):13641–60.

    Article  CAS  Google Scholar 

  132. Tyagi P, Yamamoto S, Kawamura K. Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of gram-negative bacteria by Asian winter monsoon. Biogeosciences. 2015;12(23):7071–80.

    Article  CAS  Google Scholar 

  133. Gangamma S. Characteristics of airborne bacteria in Mumbai urban environment. Sci Total Environ. 2014;488–489:70–4.

    Article  CAS  Google Scholar 

  134. Guan T, Yao M, Wang J, Fang Y, Hu S, Wang Y, et al. Airborne endotoxin in fine particulate matter in Beijing. Atmos Environ. 2014;97:35–42.

    Article  CAS  Google Scholar 

  135. Liu H, Zhang Z, Wen N, Wang C. Determination and risk assessment of airborne endotoxin concentrations in a university campus. J Aerosol Sci. 2018;115:146–57.

    Article  CAS  Google Scholar 

  136. Rolph C, Gwyther C, Tyrrel S, Nasir Z, Drew G, Jackson S, et al. Sources of airborne endotoxins in ambient air and exposure of nearby communities—a review. Atmosphere. 2018;9(10):375.

    Article  CAS  Google Scholar 

  137. Lang-Yona N, Lehahn Y, Herut B, Burshtein N, Rudich Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci Total Environ. 2014;499:311–8.

    Article  CAS  Google Scholar 

  138. Moretti S, Smets W, Oerlemans E, Blust R, Lebeer S. The abundance of urban endotoxins as measured with an impinger-based sampling strategy. Aerobiologia. 2018;34:487–96.

    Article  Google Scholar 

  139. Hwang SH, Park DU. Ambient endotoxin and chemical pollutant (PM10, PM2.5, and O3) levels in South Korea. Aerosol Air Qual Res. 2019;19(4):786–93.

  140. Kallawicha K, Lung S-CC, Chuang Y-C, Wu C-D, Chen T-H, Tsai Y-J, et al. Spatiotemporal distributions and land-use regression models of ambient bacteria and endotoxins in the greater Taipei area. Aerosol Air Qual Res. 2015;15(4):1448–59.

    Article  CAS  Google Scholar 

  141. Shen F, Niu M, Zhou F, Wu Y, Zhu T. Culturability, metabolic activity and composition of ambient bacterial aerosols in a surrogate lung fluid. Sci Total Environ. 2019;690:76–84.

    Article  CAS  Google Scholar 

  142. Jin L, Xie J, Wong CKC, Chan SKY, Abbaszade G, Schnelle-Kreis J, et al. Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China. Environ Sci Technol. 2019;53(5):2881–91.

    Article  CAS  Google Scholar 

  143. Zhong J, Urch B, Speck M, Coull BA, Koutrakis P, Thorne PS, et al. Endotoxin and β-1,3-D-glucan in concentrated ambient particles induce rapid increase in blood pressure in controlled human exposures. Hypertension. 2015;66(3):509–16.

    Article  CAS  Google Scholar 

  144. Lu Y, Su S, Jin W, Wang B, Li N, Shen H, et al. Characteristics and cellular effects of ambient particulate matter from Beijing. Environ Pollut. 2014;191:63–9.

    Article  CAS  Google Scholar 

  145. Humphreys G, Fleck F. United Nations meeting on antimicrobial resistance. Bull World Health Org. 2016;94(9):638-9.

  146. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4(1):54.

    Article  Google Scholar 

  147. Hu J, Zhao F, Zhang XX, Li K, Li C, Ye L, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Sci Total Environ. 2018;615:1332–40.

    Article  CAS  Google Scholar 

  148. Mao Y, Ding P, Wang Y, Ding C, Wu L, Zheng P, et al. Comparison of culturable antibiotic-resistant bacteria in polluted and non-polluted air in Beijing, China. Environ Int. 2019;131:104936.

    Article  CAS  Google Scholar 

  149. Xie S, Gu AZ, Cen T, Li D, Chen J. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. Sci Total Environ. 2019;683:116–23.

    Article  CAS  Google Scholar 

  150. Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, et al. Global survey of antibiotic resistance genes in air. Environ Sci Technol. 2018;52:10975–84.

    Article  CAS  Google Scholar 

  151. Zhang T, Li X, Wang M, Chen H, Yang Y, Chen QL, et al. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ Int. 2019;127:333–9.

    Article  CAS  Google Scholar 

  152. Xie J, Jin L, He T, Chen B, Luo X, Feng B, et al. Bacteria and antibiotic resistance genes (ARGs) in PM2.5 from China: implications for human exposure. Environ Sci Technol. 2019;53(2):963–72.

    Article  CAS  Google Scholar 

  153. Xie J, Jin L, Luo X, Zhao Z, Li X. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites. Environ Sci Technol Lett. 2018;5(2):74–9.

    Article  CAS  Google Scholar 

  154. Wang Y, Wang C, Song L. Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: exposure risk to human. Sci Total Environ. 2019;694:133750.

    Article  CAS  Google Scholar 

  155. Yang Y, Zhou R, Chen B, Zhang T, Hu L, Zou S. Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. Chemosphere. 2018;213:463–71.

    Article  CAS  Google Scholar 

  156. Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M, Cziczo DJ, et al. Overview of ice nucleating particles. Meteorol Monogr. 2017;58:1–33.

    Article  Google Scholar 

  157. Rajput P, Chauhan AS, Gupta T. Bioaerosols over the Indo-Gangetic plain: influence of biomass burning emission and ambient meteorology. In: Gupta T, Agarwal AK, Agarwal RA, Labhsetwar NK, editors. Environmental contaminants: measurement, modelling and control. Singapore: Springer Singapore; 2018. p. 93–121.

    Chapter  Google Scholar 

  158. Wurzler S, Bott A, Gruber S, Diehl K, Matthias-Maser S. The influence of biological aerosol particles on cloud microphysics: numerical case studies using new experimental data. J Aerosol Sci. 1999;30(30):811–2(2).

    Article  Google Scholar 

  159. Bauer H, Giebl H, Hitzenberger R, Kasper-Giebl A, Reischl G, Zibuschka F, et al. Airborne bacteria as cloud condensation nuclei. J Geophys Res. 2003;108(D21):4658.

    Article  CAS  Google Scholar 

  160. Lu Z, Du P, Du R, Liang Z, Qin S, Li Z, et al. The diversity and role of bacterial ice nuclei in rainwater from mountain sites in China. Aerosol Air Qual Res. 2016;16:640–52.

    Article  CAS  Google Scholar 

  161. Hoose C, Kristjánsson JE, Chen J-P, Hazra A. A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J Atmos Sci. 2010;67(8):2483–503.

    Article  Google Scholar 

  162. Burrows SM, Hoose C, Pöschl U, Lawrence MG. Ice nuclei in marine air: biogenic particles or dust? Atmos Chem Phys. 2013;13(1):245–67.

    Article  CAS  Google Scholar 

  163. Kumar VA, Pandithurai G, Kulkarni G, Hazra A, Patil SS, Dudhambe SD, et al. Atmospheric ice nuclei concentration measurements over a high altitude-station in the Western Ghats, India. Atmos Res. 2020;235:104795.

    Article  CAS  Google Scholar 

  164. Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science. 2013;339(6127):1572–8.

    Article  CAS  Google Scholar 

  165. Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, et al. In situ detection of biological particles in cloud ice-crystals. Nat Geosci. 2009;2(6):398–401.

    Article  CAS  Google Scholar 

  166. Joly M, Amato P, Deguillaume L, Monier M, Hoose C, Delort AM. Quantification of ice nuclei active at near 0 °C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station. Atmos Chem Phys. 2014;14(15):8185–95.

    Article  CAS  Google Scholar 

  167. Joly M, Amato P, Sancelme M, Vinatier V, Abrantes M, Deguillaume L, et al. Survival of microbial isolates from clouds toward simulated atmospheric stress factors. Atmos Environ. 2015;117:92–8.

    Article  CAS  Google Scholar 

  168. Akila M, Priyamvada H, Ravikrishna R, Gunthe SS. Characterization of bacterial diversity and ice-nucleating ability during different monsoon seasons over a southern tropical Indian region. Atmos Environ. 2018;191:387–94.

    Article  CAS  Google Scholar 

  169. Yadav S, Venezia RE, Paerl RW, Petters MD. Characterization of ice-nucleating particles over northern India. J Geophys Res Atmos. 2019;124(19):10467–82.

    Article  CAS  Google Scholar 

  170. Hu W, Murata K, Horikawa Y, Naganuma A, Zhang D. Bacterial community composition in rainwater associated with synoptic weather in an area downwind of the Asian continent. Sci Total Environ. 2017;601–602:1775–84.

    Article  CAS  Google Scholar 

  171. Hu W, Murata K, Toyonaga S, Zhang D. Bacterial abundance and viability in rainwater associated with cyclones, stationary fronts and typhoons in southwestern Japan. Atmos Environ. 2017;167:104–15.

    Article  CAS  Google Scholar 

  172. Xu C, Wei M, Chen J, Sui X, Zhu C, Li J, et al. Investigation of diverse bacteria in cloud water at Mt. Tai, China. Sci Total Environ. 2017;580:258–65.

    Article  CAS  Google Scholar 

  173. Wei M, Xu C, Chen J, Zhu C, Li J, Lv G. Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes. Atmos Chem Phys. 2017;17(8):5253–70.

    Article  CAS  Google Scholar 

  174. Hanlon R, Powers C, Failor K, Monteil CL, Vinatzer BA, Schmale DG. Microbial ice nucleators scavenged from the atmosphere during simulated rain events. Atmos Environ. 2017;163:182–9.

    Article  CAS  Google Scholar 

  175. Bi K, McMeeking GR, Ding DP, Levin EJT, DeMott PJ, Zhao DL, et al. Measurements of ice nucleating particles in Beijing, China. J Geophys Res Atmos. 2019;124:8065–75.

    Article  Google Scholar 

  176. Chen J, Wu Z, Augustin-Bauditz S, Grawe S, Hartmann M, Pei X, et al. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos Chem Phys. 2018;18(5):3523–39.

    Article  CAS  Google Scholar 

  177. Jiang H, Yin Y, Wang X, Gao R, Yuan L, Chen K, et al. The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmos Res. 2016;181:72–80.

    Article  Google Scholar 

  178. Reicher N, Budke C, Eickhoff L, Raveh-Rubin S, Kaplan-Ashiri I, Koop T, et al. Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean. Atmos Chem Phys. 2019;19(17):11143–58.

    Article  CAS  Google Scholar 

  179. Haarig M, Walser A, Ansmann A, Dollner M, Althausen D, Sauer D, et al. Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan air layer over Barbados from polarization lidar and airborne in situ measurements. Atmos Chem Phys. 2019;19(22):13773–88.

    Article  CAS  Google Scholar 

  180. Zhao B, Wang Y, Gu Y, Liou K-N, Jiang JH, Fan J, et al. Ice nucleation by aerosols from anthropogenic pollution. Nat Geosci. 2019;12:602–7.

    Article  CAS  Google Scholar 

  181. O’Sullivan D, Murray BJ, Ross JF, Webb ME. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles. Atmos Chem Phys. 2016;16(12):7879–87.

    Article  CAS  Google Scholar 

  182. Fankhauser AM, Antonio DD, Krell AM, Alston SJ, Banta S, McNeill VF. Constraining the impact of bacteria on the aqueous atmospheric chemistry of small organic compounds. ACS Earth Space Chem. 2019;3(8):1485–91.

    Article  CAS  Google Scholar 

  183. Zhang T, Li X, Wang M, Chen H, Yao M. Microbial aerosol chemistry characteristics in highly polluted air. Sci China Chem. 2019;62:1051–63.

    Article  CAS  Google Scholar 

  184. Hu W, Murata K, Fukuyama S, Kawai Y, Oka E, Uematsu M, et al. Concentration and viability of airborne Bacteria over the Kuroshio extension region in the northwestern Pacific Ocean: data from three cruises. J Geophys Res Atmos. 2017;122:12892–905.

    CAS  Google Scholar 

  185. Delort AM, Vaïtilingom M, Joly M, Amato P, Wirgot N, Lallement A, et al. Clouds: A Transient and Stressing Habitat for Microorganisms. In: Chénard C, Lauro FM, editors. Microbial Ecology of Extreme Environments. Cham: Springer International Publishing; 2017. pp 215-45. https://doi.org/10.1007/978-3-319-51686-8_10

    Chapter  Google Scholar 

  186. Amato P, Joly M, Besaury L, Oudart A, Taib N, Mone AI, et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One. 2017;12(8):e0182869.

    Article  CAS  Google Scholar 

  187. Eyal R, Galit O, Adina P, Barak H. Contribution of airborne microbes to bacterial production and N2-fixation in seawater upon aerosol deposition. Geophys Res Lett. 2016;43(2):719–27.

    Article  CAS  Google Scholar 

  188. Peter H, Hörtnagl P, Reche I, Sommaruga R. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ Microbiol Rep. 2014;6(6):618–24.

    Article  Google Scholar 

  189. Mayol E, Arrieta JM, Jimenez MA, Martinez-Asensio A, Garcias-Bonet N, Dachs J, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat Commun. 2017;8(1):201.

    Article  CAS  Google Scholar 

  190. Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B, Leyronas C, et al. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences. 2011;8(1):17–25.

    Article  CAS  Google Scholar 

  191. Morris CE, Sands DC. Impacts of microbial aerosols on natural and agro-ecosystems: immigration, invasions, and their consequences. In: Delort AM, Amato P, editors. Microbiology of Aerosols. Hoboken: Wiley; 2017.

    Google Scholar 

  192. Wuyts K, Smets W, Lebeer S, Samson R. Green infrastructure and atmospheric pollution shape diversity and composition of phyllosphere bacterial communities in an urban landscape. FEMS Microbiol Ecol. 2020;96(1):fiz173.

    Google Scholar 

  193. Li Y, Sun H, Wu Z, Li H, Sun Q. Urban traffic changes the biodiversity, abundance, and activity of phyllospheric nitrogen-fixing bacteria. Environ Sci Pollut Res. 2019;26(16):16097–104.

    Article  CAS  Google Scholar 

  194. Zhao D, Liu G, Wang X, Daraz U, Sun Q. Abundance of human pathogen genes in the phyllosphere of four landscape plants. J Environ Manag. 2020;255:109933.

    Article  CAS  Google Scholar 

  195. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, et al. The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci. 2015;16(10):25576–604.

    Article  CAS  Google Scholar 

  196. Franzetti A, Gandolfi I, Bestetti G, Padoa Schioppa E, Canedoli C, Brambilla D, et al. Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area. J Hazard Mater. 2019;384:121021.

    Article  CAS  Google Scholar 

  197. Könemann T, Savage N, Klimach T, Walter D, Fröhlich-Nowoisky J, Su H, et al. Spectral intensity bioaerosol sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time. Atmos Meas Tech. 2019;12(2):1337–63.

    Article  CAS  Google Scholar 

  198. Liu Y, Pan Y. Application of FT-ICR MS for the study of protein complexes. Appl Spectrosc Rev. 2009;44(3):231–44.

    Article  CAS  Google Scholar 

  199. Lakshmanan R, Wolff JJ, Alvarado R, Loo JA. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Proteomics. 2014;14(10):1271–82.

    Article  CAS  Google Scholar 

  200. Tolmachev AV, Robinson EW, Wu S, Pasa-Tolic L, Smith RD. FT-ICR MS optimization for the analysis of intact proteins. Int J Mass Spectrom. 2009;281(1–3):32–8.

    Article  CAS  Google Scholar 

  201. Liu F, Lai S, Reinmuth-Selzle K, Scheel JF, Frohlich-Nowoisky J, Despres VR, et al. Metaproteomic analysis of atmospheric aerosol samples. Anal Bioanal Chem. 2016;408(23):6337–48.

    Article  CAS  Google Scholar 

  202. Konstantinidis KT. Do airborne microbes matter for atmospheric chemistry and cloud formation? Environ Microbiol. 2014;16(6):1482–4.

    Article  Google Scholar 

  203. Du R, Du P, Lu Z, Ren W, Liang Z, Qin S, et al. Evidence for a missing source of efficient ice nuclei. Sci Rep. 2017;7:39673.

    Article  CAS  Google Scholar 

  204. O'Sullivan D, Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, et al. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci Rep. 2015;5:8082.

    Article  CAS  Google Scholar 

  205. Šantl-Temkiv T, Sahyoun M, Finster K, Hartmann S, Augustin-Bauditz S, Stratmann F, et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos Environ. 2015;109:105–17.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 41805118 and 41625014), the Tianjin Municipal Natural Science Foundation (No. 18JCYBJC42200), and the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 18K02ESPCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingqing Fu.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wang, Z., Huang, S. et al. Biological Aerosol Particles in Polluted Regions. Curr Pollution Rep 6, 65–89 (2020). https://doi.org/10.1007/s40726-020-00138-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00138-4

Keywords

Navigation