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Abstract

Purpose of Review—We present a review of emerging technologies and how these can 

transform personal air pollution exposure assessment and subsequent health research.

Recent Findings—Estimating personal air pollution exposures is currently split broadly into 

methods for modelling exposures for large populations versus measuring exposures for small 

populations. Air pollution sensors, smartphones and air pollution models capitalizing on big/new 

data sources offer tremendous opportunity for unifying these approaches and improving long-term 

personal exposure prediction at scales needed for population-based research. A multi-disciplinary 

approach is needed to combine these technologies to not only estimate personal exposures for 

epidemiological research but also to determine drivers of these exposures and new prevention 

opportunities. While available technologies can revolutionize air pollution exposure research, 

ethical, privacy, logistical and data sciences challenges must be met before widespread 

implementations occur.

Summary—Available technologies and related advances in data science can improve long-term 

personal air pollution exposure estimates at scales needed for population-based research. This will 

advance our ability to evaluate the impacts of air pollution on human health and develop effective 

prevention strategies.
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Introduction

The human health burden from air pollution is extremely large. In 2015, long-term exposure 

to ambient fine particle matter air pollution (PM2.5) was associated with 4.2 million deaths 

and 103.1 million years of healthy life lost (representing 7.6% of global mortality) [1]. 
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While our understanding of the complex relationships between air pollution and human 

health has markedly improved over the last several decades, knowledge gaps and consequent 

uncertainties remain that limit our ability to mitigate the adverse impacts of air pollution.

Exposure assessment is one, if not the greatest, challenge to further understanding and 

reducing air pollution health impacts. Estimating personal air pollution exposures for large 

populations remains an elusive goal, but central to determining health impacts, evaluating 

exposure sources and pathways, detecting susceptible populations and identifying 

intervention opportunities. Recently, the concept of the exposome “the totality of 

environmental exposures from conception onwards” [2], has catalyzed exposure scientists to 

develop new methods to assess a range of personal exposures, using both internal 

biomarkers of disease and external exposure measures. While there is rapidly growing 

potential for internal biomarkers of environmental exposures [3], these remain limited for 

the air pollutants of greatest concern. Exposure scientists must therefore leverage new data 

sources, methods and technologies to better assess external personal air pollution exposures.

The current state of air pollution exposure science can be split broadly into methods for 

modelling exposures for large populations versus measuring exposures for small 

populations. These approaches are not mutually exclusive, as individual measurements are 

used to build and evaluate models, but they differ in their respective study designs, 

applications, strengths, and limitations. Geographic Information Systems (GIS), 

deterministic models (e.g. AIRMOD, RLINE, SHEDS) and remotely sensed data have been 

the foundation of most air pollution modeling efforts to-date [4], leveraging spatial-temporal 

estimates of ambient air pollution concentrations to derive exposure estimates from 

residential locations, typically for large populations. Personal measures of air pollution 

concentrations have been restricted to small sample sizes and short durations of time [5], due 

primarily to sensor limitations and the logistical and cost constraints of sampling large 

numbers of individuals for long periods of time. Both paradigms (modelling and measuring) 

are rapidly evolving with new technologies and large-scale data analytics to provide new 

opportunities for personal exposure assessment methods.

Here we present a high level review of available technologies and related advances in data 

science, and how together they can transform air pollution exposure assessment and health 

research. Several reviews exist focusing on air pollution exposure assessment for 

epidemiological studies [4,6,7], current methods for assessing the exposome [5,8], and 

personal sensor technologies [5,9–12]. We therefore focus our review broadly on 

technological advances that fall under air pollution sensors (for personal measurements), 

smartphones (mHealth and GPS applications), and air pollution models using “big data” (i.e. 

large volumes of poly-dimensional data collected from traditional and novel data sources). 

We provide an example of an ongoing study (PURE-AIR) that is attempting to combine new 

technologies and methods to examine air pollution impacts on cardiopulmonary disease in a 

global cohort. Together, these technologies will push the boundary of what is feasible in 

personal air pollution exposure science, epidemiology and prevention. Ultimately, this 

review will provide some guidance for how the field can move forward to capitalize on these 

exciting opportunities.
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Framework

Figure 1 illustrates the conceptual framework of this review and how available technologies 

and related data science can contribute to long-term, large-scale, personal exposure 

assessments. Technologies covered here belong to one or more of the following three 

domains: air pollution sensors, smart phones applications, and air pollution models. All three 

domains provide relevant and unique information to personal air pollution exposure, and 

interact to provide novel exposure information that cannot be derived from each domain 

alone. For example, air pollution models alone cannot capture personal exposures without 

detailed time-activity pattern information and, even then, models applied to smart-phone 

based GPS location data remain models (and not measures) of air pollution concentrations. 

Personal measurements are also unlikely to capture long-term (i.e. years to decades) 

exposures and therefore require integration with air pollution models and time-activity 

patterns. In addition, “contextual characteristics” (i.e. economic, social, environmental, 

cultural, institutional, and political attributes) influence all three domains and the 

relationship between air pollution exposures, health effects, and prevention opportunities. 

Increasing the accuracy of comprehensive long-term personal exposure estimates for large 

populations will therefore depend on the integration of these domains through cross-

disciplinary collaboration. We provide an example from the ongoing PURE-Air study that is 

attempting to integrate these technologies and methods to better estimate air pollution 

exposures and health effects in a global cohort study. We also summarize challenges and 

opportunities that are presented by these technologies.

Air Pollution Sensors

The gold standard of air pollution exposure assessments is personal measurements (with 

high-quality validated instruments ideally over long periods of time). To-date, collecting 

such measures for large populations remains a major challenge due to cost and logistical 

constraints. As such, most personal measurement studies have included relatively small 

sample sizes and/or short time periods [13–16]. For example, in a birth cohort in Sao Paulo, 

Brazil, NO2 and O3 were measured for 366 pregnant women in each trimester for 7–18 days 

using passive personal samplers [17] and in Barcelona, 122 adults were monitored over a 

three week period for black carbon using the micro-aethalometer AE51 [15]. These studies, 

while large for today’s standards, are a long way from our target of personal measurements 

for large study populations (i.e. sufficient sample sizes needed to capture the chronic impacts 

of air pollution) and time-periods relevant to the disease process being studied (i.e. years to 

decades for most chronic diseases).

While the paradigm of air pollution monitoring is changing – from large regulatory fixed-

site stations to smaller mobile sensors [11] - there are still few inexpensive and accessible 

sensors that can measure personal air pollution concentrations accurately [10]. Wearable 

sensors are being developing rapidly as start-up companies attempt to produce inexpensive 

sensors, which cost a fraction of traditional scientific monitors. Available inexpensive 

sensors have been summarized elsewhere [9] and while most are not yet suitable as wearable 

monitors, some are in development. Examples of personal air sensors include the Tzoa 

(http://www.tzoa.com) particle monitor (the consumer version costing ~$140 US); 

Larkin and Hystad Page 3

Curr Environ Health Rep. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.tzoa.com


AIRBEAM (http://aircasting.org) PM2.5 monitor (~$250); Flow (https://plumelabs.com/en/

products/flow) PM2.5, NOX, O3 and VOCs monitor (price tbd); ATMOtube (https://

atmotube.com/) VOCs and CO monitor (price tbd); and the CleanSpace Tag (https://

store.clean.space/) CO monitor (~$55). These types of monitors can be easily worn and 

connect to a smart phone via Bluetooth to stream data online as well as provide warnings 

based on concentration levels.

Given the rapid pace of low-cost air pollution sensor development there is an immediate 

need to ensure the accuracy of new sensors. A current search for “air pollution monitor” in 

crowdsourcing websites such as Indigogo, Kickstarter, or GoFundMe reveal hundreds of 

new air pollution monitors under development. The issue of un-validated air pollution 

sensors has been highlighted in other commentaries [9,18,19] and toolkits proposed for 

evaluating new monitors [20]. Determining the capabilities of new sensors to accurately 

capture pollutant concentrations is essential for ensuring individual measurements are valid 

and can be used for scientific research. The Air Quality Sensor Evaluation Center (AQ-

SPEC) (http://www.aqmd.gov/aq-spec) was created to for this purpose and to inform the 

public about monitor performance. They have tested 19 “low” cost particle monitors and 10 

gaseous sensors against federal reference standards and report extremely variable 

correspondence (with R2 values ranging from 0 to 0.99). The EPA has also developed an Air 

Sensor Toolbox for Citizen Scientist (https://www.epa.gov/air-sensor-toolbox) to provide 

information on how to select and use low-cost portable air sensors.

Once sensors are validated, and the price and ease-of-use are reduced, they are likely to be 

used widely by individuals outside of research studies, supplementing the existing 

measurements available in the quantified-self movement and increasing citizen science air 

pollution monitoring activities [9,21]. For example, CitiSense is a participatory air quality 

monitoring project that is developing a sensor-based citizen’s observatory in several cities 

across Europe [22]. The CleanSpace Community (https://our.clean.space/cleanspace-

movement/) is another initiative that leverages a smartphone app to view local air quality 

data, interfaced with the CleanSpace Tag air monitor, and offers “CleanMiles” for making 

changes to travel behaviors. iSPEX is another citizen science measurement strategy that uses 

a low-cost optical attachment for smartphones to measure aerosol optical thickness and 

contribute these measurements through an app to create fine-scale spatial and temporal maps 

[23]. These studies suggest how the collection of personal air pollution measures might 

eventually be used for large epidemiological analyses once high-quality personal air 

pollution sensors reach the consumer market.

Smartphones

Smartphones will allow for personal air pollution exposure assessments at scales needed for 

population based research by facilitating personal air pollution sensors and GPS time-

activity collection as well as providing a platform for new types of air pollution health 

studies. There are currently 3.8 billion global smartphone users, projected to nearly double 

to 6.8 billion users by 2022 [24]. Seventy-seven % of adult smartphone users in the US have 

downloaded an app, with 29% downloading an app that tracks or manages health [25]. The 

quantified-self movement [26], where individuals use sensors to measure and improve their 

Larkin and Hystad Page 4

Curr Environ Health Rep. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://aircasting.org
https://plumelabs.com/en/products/flow
https://plumelabs.com/en/products/flow
https://atmotube.com/
https://atmotube.com/
https://store.clean.space/
https://store.clean.space/
http://www.aqmd.gov/aq-spec
https://www.epa.gov/air-sensor-toolbox
https://our.clean.space/cleanspace-movement/
https://our.clean.space/cleanspace-movement/


own health and behavior, has also dramatically increased. Smartphones and mHealth 

(defined as all mobile health technologies that can contribute to health research, including 

smartphones, monitors (e.g. Fitbit), electronic health records, etc.) are becoming 

commonplace in all aspects of health research, offering numerous opportunities for 

advancing air pollution exposure assessment and epidemiology.

The most direct application of smartphones to enhancing air pollution exposure estimates 

(beyond facilitating personal exposure measures) is the collection of time-activity patterns 

using GPS. Most users (71%) continuously carry and sleep within arm’s reach of their 

smartphones [27]. The collection and application of GPS data and time-activity patterns for 

air pollution exposure prediction have been documented extensively elsewhere [28]. The key 

distinction to stress here is that the prevalence of smartphones in the general population (and 

growing acceptance of health and research apps) allows for collection of time-activity 

patterns on potentially hundreds of thousands of individuals for long periods of time (i.e. 

months to years). Glasgow et al. [29] demonstrated this utility by collecting GPS locations 

every 5 minutes for 3 months for 42 participants using the smartphone application “Apolus 

(Air, Pollution, Exposure)”. While there are challenges to cleaning and analyzing the volume 

of data collected by GPS [30], Gonzalez et al. [31] examined 100,000 anonymized mobile 

phone users tracked for 6 months and observed a high degree of temporal and spatial 

regularity in time-activity patterns. This suggests that continuous GPS monitoring may not 

be required to assess long-term activity patterns in health studies and that, for example, 

seasonal measurements of a week in duration may capture much of the time-activity 

variation important for air pollution exposures.

Smartphones can also serve as the primary platform for new air pollution health studies, 

including recruiting participants, obtaining electronic consent, collecting survey and 

biometric data, assessing outcomes, and transmitting data for linkage to other databases, 

such as medical health records. As an example, one of the key components of the NIH 

precision medicine cohort initiative [32], which aims to recruit one million participants, is a 

patient technology systems center, which “…taps into converging trends of increased 

connectivity, through social media and mobile devices, and Americans’ growing desire to be 

active partners in medical research” (Pg 793, [32]). New open-source platforms for creating 

smart phone apps and mHealth applications are being developed to ease access to these 

technologies. For example, the open-source Apple ResearchKit (https://www.apple.com/

researchkit/) allows individual researchers to create a research app, use code from previous 

apps and leverage the awareness and reputation of the Apple ResearchKit community for 

recruiting participants.

In the air pollution field, the Asthma Mobile Health Study (AMHS) (http://

apps.icahn.mssm.edu/asthma/) was created using this platform to examine asthma triggers 

(including local air pollution concentrations) and treatment. The AMHS app was 

downloaded nearly 50,000 times in the 6 months after its launch. The study was able to 

demonstrate the utility of conducting a new study entirely through a smart phone app, 

successfully linking asthma symptoms to changes in heat, pollen and air pollution, including 

the 2015 wildfires in Washington State [33]. However, this study also documented several 

challenges that can inform future air pollution studies using smartphones for epidemiology. 
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These included selection bias, retention, reporting bias, and privacy concerns. Of the 50,000 

downloads of the AMHS app, 8,524 individuals completed the consent process and only 

2,317 individuals were classified as robust users [33]. Not surprisingly, these individuals 

tended to be younger, whiter, wealthier and more educated when compared to the CDC 

asthma registry [33]. Based on their experience with the AMHS app, Chan et al. [33] 

concluded that studies conducted entirely through smartphone applications are best suited 

for studies requiring rapid enrollment, pose minimal risks, examine hypothesis with short 

time-frames, require frequent data collecting, use passive data collection (e.g. GPS), do not 

seek representative samples, and use an analysis plan that accounts for attrition and missing 

data. Several of these fit well within an air pollution context, while several others do not.

Air Pollution Models

It is unlikely that personal air measurements and individual GPS data will be collected 

continuously over the time-periods needed to capture chronic (i.e. decade long) air pollution 

exposures. As a result, environmental models of air pollution concentrations are needed to 

predict long-term exposures. The current modelling approaches for air pollution exposure 

assessment have been covered thoroughly in other reviews [4,6,7]. Briefly, one of the 

greatest strengths of the air pollution modelling domain is the ability to leverage multiple 

sources of data, and with the advent of “big data” there are numerous opportunities to 

advance air pollution modelling.

One particular data source that is changing rapidly with new technological developments is 

remote-sensed air pollution data. The availability and resolution of remotely sensed data has 

grown exponentially in the last decade and has expanded the geographic coverage of many 

spatial models by providing estimates of air pollution where there have previously been no 

or very sparse ground-level data. Satellite-based estimates of PM2.5, that have been 

calibrated to ground-based monitored data, are now available for every location on earth at a 

~1x1km resolution [34]. These satellite-derived measures of air pollution can also be 

combined with detailed land use characteristics, such as emissions sources (e.g. roads, 

population density, land use, etc.) to model fine-scale spatiotemporal air pollution patterns. 

For example, we developed a global model of NO2 concentrations at a 100m x100m 

resolution (using satellite estimates and land use variables) that predicts 54% of the NO2 

variation from 5,220 air monitors in 58 countries [35]. Satellite-based air pollution exposure 

estimates are likely to continue to improve for the foreseeable future, as new technologies 

are increasing the spatial and temporal resolution of new satellites, including the European 

Space Agency Sentinel-5 and Sentinel-5P, scheduled to launch in September 2017.

With the availability of big data sources, such as satellite air pollution estimates, new data 

integration and modeling methods are needed. Machine learning is one such method that is 

being used, for example, to combine remote sensed data, meteorology, and ground based 

observations to predict daily PM2.5 from 1997 to 2015 globally [36]. Such nonlinear and 

nonparametric modelling approaches present numerous advantages over traditional linear 

regression based methods for resolving the spatial and temporal variability of air pollution 

concentrations. Deep learning approaches are also being developed for air pollution 

predictions [37] and applications of deep learning to high resolution satellite imagery, 
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combined with other ground based images, will likely enhance our ability to predict air 

pollution [38], as well as ease the ongoing refinements of these predictions. Similar 

approaches have already been developed to predict poverty from satellite imagery [39]. 

Ultimately, new data mining techniques are providing newer, larger, more varied, and more 

highly resolved datasets of ambient air pollution, as well as the characteristics that predict 

these exposures, to inform the advanced modelling of spatial-temporal air pollution 

concentrations.

The amount of ground-level air monitoring data available to calibrate ambient air pollution 

exposure models is expanding rapidly. For example, hourly Air Quality Index data can now 

be viewed from regulatory monitoring data from 9,000 stations in 800 major cities from 70 

countries (http://aqicn.org/map/world/). Non-traditional measurement sources are also 

contributing new measurement data that can improve the accuracy of air pollution models. 

Citizen science initiatives like the CitiSense, CleanSpace Community, and the iSPEX 

monitoring initiative summarized above are examples of community sourced air quality data. 

Air monitors have also been attached to multiple mobile agents in the environment, 

including Google Street View cars [40]. These measurements provide information on local 

sources that are often missed by regulatory monitoring stations, which tend to capture 

regional population exposures. In the future, these types of community-sourced and mobile 

measurements can further reduce error in spatio-temporal models by targeting measurement 

collection to high priority space-time locations, increasing representation during model 

building and contributing to more robust model evaluations.

Contextual Characteristics

Contextual characteristics (i.e. economic, social, environmental, cultural, institutional, and 

political attributes of a place) are essential to consider when evaluating the relationship 

between air pollution and health, as well as for translating research into policy and 

prevention. Technological changes have transformed our ability to look upstream at the 

contextual conditions that influence individual behaviors, air pollution concentrations and 

exposures, health impacts (and health disparities) and prevention opportunities.

Smart cities/communities can be viewed as the contextual equivalent of the quantified self-

concept [41], where cities use sensors and big data to quantify community characteristics, 

many of which are important to air pollution [42,43]. New data streams include those from 

connected infrastructure, autonomous vehicles, street view imagery, citizen science 

monitoring networks, and cellular data to name a few. For example, Geo-referenced Google 

Street View imagery analyzed with machine learning or deep learning algorithms can be 

used to derive a wealth a contextual characteristics important to air pollution exposures, such 

as vehicle congestion, vehicle fleet mix, street canyons, street vegetation buffers, pedestrian 

traffic, and other important modifiers of air pollution exposures. Cellular network data can 

also be used to quantify population time-activity patterns and population mobility to 

improve air pollution exposure estimates [44,45]. In addition, the amount of data now 

available for cities provides opportunities to evaluate multiple environmental and social 

exposures together (rather than in isolation). Quantifying exposures that are spatially 

Larkin and Hystad Page 7

Curr Environ Health Rep. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://aqicn.org/map/world/


correlated with air pollution (e.g. noise, green space, poverty, exercise, etc.) is an important 

step towards understanding cumulative exposures and new prevention opportunities.

The internet and social media are additional data streams that can further capture the 

complex social and political contextual characteristics of communities that may influence air 

pollution exposure and control. For example, from January to March 2017, we’ve collected 

more than 15 million tweets (text messages posted on the social media platform Twitter) 

related to air pollution in more than 30 languages. Tweets can be linked to air quality 

concentrations from regulatory monitors to examine personal views and sentiment about air 

quality, self-described change in physical and mental state, and changes in behaviors 

attributed to air quality conditions. More than 1/3 of these tweets also contained images that 

can be evaluated for pollution-related characteristics as described for Google Street View 

imagery above. Although not widely utilized in air pollution research, the internet and social 

media have been successfully used to capture context in other health studies [42,43]. Such 

measures of societal context are rarely included in air pollution research, despite air 

pollution risk awareness, regulations, air pollution forecasts/notifications, support for clean 

air and pollution mitigation directly [48] or indirectly [49,50] influencing the physical and 

psychological impacts of air pollution on human health.

Case Example: The PURE-Air Study

An example of integrating the three domains highlighted above (smartphones, sensors and 

air models) to estimate personal air pollution exposures is occurring in the ongoing 

Prospective Urban and Rural Epidemiology (PURE) study (http://health.oregonstate.edu/

labs/spatial-health/research/pure-air). The PURE cohort includes ~225,000 adults aged 35–

70 years at recruitment living in 850 communities in 25 countries. The PURE-Air study is 

funded to examine the associations between air pollution and cardiopulmonary disease.

To measure household and personal exposures we are using a new filter-based PM2.5 

monitor, the Ultrasonic Personal Air Samper (UPAS) [51]. Forty-eight hour measurements 

are being collected for 4,000 households and personal PM2.5 for 1,200 individuals living in 

10 countries with over 10% of households using solid fuel use for cooking. The UPAS 

sampler is small, easy to use and relatively inexpensive compared to existing monitors, 

allowing for large numbers of monitors to be shipped to existing field teams for data 

collection. A smartphone interface allows field staff to program monitors, download run-log 

and GPS data, and automatically send these data to our secure servers where they are 

checked for errors. Even this initiative, however, is designed primarily for building exposure 

models for the entire cohort of ~200,000 individuals to examine cardiovascular disease risk, 

although direct analysis of measured PM2.5 will be conducted. Individuals also wear a 

passive silicone wristband sampler that measures exposure to 1,200 organic chemicals [52].

Figure 2 illustrates the PURE study communities and the global distribution of PM2.5 

(estimated from satellite data fused with ground based monitoring data [34]) and NO2 

(estimates from a global LUR model [35]). The PM2.5 and NO2 concentrations in Beijing 

and 48-hour GPS data (collected from the UPAS air pollution monitor) for one participant 

are shown. Three other individuals’ time-activity spaces are also illustrated. All of these 
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time-activity patterns are from the same PURE study community, highlighting the variability 

in time-activity patterns (and resulting exposure differences) for individuals living in the 

same community. Household and personal PM2.5 measurements and GPS data will be 

integrated with models of ambient PM2.5 and NO2 concentrations and with baseline and 

follow-up questionnaire data on household characteristics and fuel cooking types to predict 

long-term air pollution exposures. The geographic scale, sample size, and types of 

measurements being collected in the PURE-Air study are only possible through the rapid 

technological changes occurring in our field and would not have been possible even five 

years ago. Nevertheless, this study is only a step in the right direction towards what we have 

proposed here – that technology can facilitate long-term personal air pollution exposure 

estimates at scales needed for population-based research

Challenges and Opportunities

The greatest barrier to estimating long-term personal air pollution exposures remains data 

science approaches for dealing with large, dynamic, multi-level data. Technological 

advances are driving the big data revolution as well as the accompanying advancements in 

data sciences that are needed to process these data. Estimating personal air pollution 

exposures through the integration of smart phone and air monitoring data streams, modeling 

of air pollution concentrations, and characterization of the contextual characteristics relevant 

to air pollution and health research will require complex and powerful data processing 

approaches. Recent advances in general purpose computing on graphics processing units 

(GPGPU) hardware and software have dramatically reduced the time required for terabyte-

level data processing. In addition, online platforms are reducing the barriers to accessing and 

processing huge amounts of data, such as the Google Earth Engine, which provides a 

platform for petabyte-scale analysis of global satellite data (https://

earthengine.google.com/).

The fields of healthcare and personalized medicine were early adopters of large scale data 

analytics [53]. It is very likely that personal exposure assessment and environmental 

epidemiology will similarly benefit from large scale data science developments. We can 

reduce barriers to new data science approaches by sharing data processing scripts as open 

source code in creative commons communities such as Github (see the authors’ Github page 

at https://github.com/larkinandy/LUR-NO2-Model for example code from the global NO2 

model development), which will help identify, evaluate, reproduce, and validate successful 

methods. The rapid adoption of open source code sharing by the data science community 

will increase transparency and reproducibility [54], reducing barriers to more complex (and 

integrated) exposure assessment approaches.

The technological advances we highlighted here also have important implications for 

precision medicine/health. The convergence of epidemiology and personal medicine/health 

is occurring rapidly [55], but how air pollution exposure assessment (and environmental 

exposures more generally) will fit into this equation has not been adequately explored. Most 

precision medicine/health initiatives do not include environmental components beyond 

common biomarkers (e.g. lead, metals), but delivery of these initiatives through apps makes 

GPS data collection possible (to inform modelled air pollution exposures estimates), as well 
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as the inclusion of low-cost air pollution sensors. Clearly, however, robust methods (e.g. air 

pollution sensors, exposure algorithms, etc.) will be needed to ensure reliable information is 

used to characterize and communicate the exposures to individuals.

Within both mHealth and precision medicine/health paradigms, individuals as passive 

participants in environment health studies (having information drawn from them) will 

change to individuals being active suppliers of information, choosing how and with whom to 

share their data. This will require providing valuable (and actionable) knowledge back to 

participants to ensure they stay engaged and interested in a research study. This will demand 

more personal environmental exposure assessments that can inform risk communication and 

behavioral changes to reduce exposures. Providing participants with their air pollution 

exposures, comparisons to their cohort or local community, and advice to reduce exposures 

will therefore be an important component to any mHealth or precision environmental health 

based initiative. This will present methodological challenges for etiology research, given that 

the research study itself may promote behavioral changes and air pollution reductions. This, 

however, offers exciting opportunities to evaluate prevention opportunities, which to-date 

have been limited primarily to air quality advisories.

Ethical and privacy issues remain major concerns that demand thorough examination. 

Several reviews and commentaries address these issues in detail [56–59]. In terms of the 

domains reviewed here, there are specific ethical and privacy concerns that should be 

highlighted. Concerns surrounding GPS data collection, storage and analyses present 

obvious privacy issues that need to be addressed. Equity issues surrounding smart phone, 

personal sensor and personalized health availability will also present ethical issues, 

considering low socio-economic groups experience the largest burden from air pollution, but 

have the least resources to capitalize on these new technologies. This will also present a 

major issue in the generalizability of results derived from these types of technologies and 

under certain circumstances could even jeopardize the findings of the study due to selection 

bias. As air pollution exposure science moves further towards personal measures, 

differentiating between public versus commercial usage of the data will become imperative, 

as such differences have important ethical implications. Finally, there are concerns that 

personalized exposure science may distract from population health approaches to reducing 

air pollution health impacts.

Conclusions

Estimating personal air pollution exposures is currently split broadly into methods for 

modelling exposures for large populations versus measuring exposures for small 

populations. Air pollution sensors, smart phones and modelling air pollution concentrations 

using big/new data offers tremendous opportunities for unifying these approaches and 

improving long-term personal air pollution exposure prediction at scales needed for 

population-based research. A multi-disciplinary approach is needed to not only estimate 

personal exposures for epidemiological research but also to determine drivers of these 

exposures and new prevention opportunities. While available technologies can revolutionize 

air pollution research, ethical, privacy, logistical and data science challenges need to be met 

before widespread applications occur.
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Figure 1. 
Conceptual framing of technologies and related advances in data science and how together 

these can improve long-term personal air pollution exposure estimates at scales needed for 

population-based research.
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Figure 2. 
Global maps of PM2.5 (estimated from satellite data fused with ground based monitoring 

data [34]) and NO2 (estimated from a global LUR model [32]) concentrations and the 

location of PURE study communities. Beijing is highlighted with an example of a 48-hour 

GPS time-activity pattern from one PURE participant. Time-activity patterns for three 

additional PURE participants are shown (all from the same PURE communities), 

highlighting potential differences in exposures for individuals based on mobility. Personal 

PM2.5 exposures were measured with the UPAS air pollution monitor and individuals wore a 

passive silicone wristband sampler to measure exposure to organic chemicals. A total of 
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4,000 households and 1,200 individuals living in 10 countries will participate in air 

monitoring.
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