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Abstract

The hygiene or “Old Friends” hypothesis proposes that the epidemic of inflammatory disease in 

modern urban societies stems at least in part from reduced exposure to microbes that normally 

prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such 

diseases include but are not limited to allergies and asthma; we and others have proposed that the 

markedly reduced exposure to these old friends in modern urban societies may also increase 

vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as 

anxiety and affective disorders, where data are emerging in support of inflammation as a risk 

factor. Here we review recent advances in our understanding of the potential for old friends, 

including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on 

neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving 

bacterially-derived metabolites, bacterial antigens, and helminthic antigens, through which these 

inputs promote immunoregulation. Though findings are encouraging, significant human subjects 

research is required to evaluate the potential impact of old friends, including environmental 

microbial inputs, on biological signatures and clinically meaningful mental health prevention and 

intervention outcomes.
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Introduction

It is firmly established that inflammation can play a causative role in psychiatric disorders 

[reviewed in 1]. Here we summarize major points from the human data, but there is also a 

mass of animal data that falls outside the scope of this review. Raised levels of cytokines are 

found in the blood and cerebrospinal fluid (CSF) of a subset of cases of depression and 

psychosis [1-3], and raised expression is found in the brains of suicide victims [1]. Moreover 

depression is associated with polymorphisms of inflammatory cytokine genes [4], and the 

risk alleles tend to have inflammatory functions within the immune system [5]. The known 

environmental risk factors are also proinflammatory [6]. Recently, using non-invasive 

positron emission tomography (PET) scans, it has been possible to confirm that there is 

activation of microglia (tissue-resident macrophages in the central nervous system (CNS)) in 

depressed and in psychotic subjects [7;8]. Very direct evidence for the contributory role of 

inflammation comes from the observation that some patients become depressed when treated 

with IFN-alpha, an inflammatory cytokine [9]. Finally, antiinflammatory treatments such as 

inhibitors of cycloxygenase, or a neutralizing antibody to tumor necrosis factor (TNF) are 

therapeutic in those patients who have raised inflammatory biomarkers [10;11]. (The same 

subset tends to be resistant to conventional antidepressants [12]). Finally, it has been shown 
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in rodents and monkeys that inflammation occurring during pregnancy can lead to 

abnormalities of brain development and behavior that are reminiscent of autism or 

schizophrenia [13;14], while epidemiological findings suggest that the same is true in 

humans [15].

A second class of evidence that inflammation can play a causative role in psychiatric 

disorders comes from studies of the pathways that link peripheral inflammation to changes 

in CNS function [1]. Cytokines can 1) access the brain via the circumventricular organs 

where there is a reduced blood-brain barrier, 2) be transported into the brain by specific 

transport mechanisms, or 3) cause inflammatory changes in the cells of the blood-brain 

barrier [16]. Other signals are transmitted via the vagus nerve which, in response to 

inflammatory signals in the periphery, drives cytokine release in the CNS [16]. Peripheral 

inflammation also activates enzymes such as indoleamine 2,3-dioxygenase that convert 

tryptophan to N-formylkynurenine, which is then converted to kynurenine. Kynurenine is 

raised in the plasma of depressed suicide attempters [17], and, following entry into the brain, 

it is converted into several metabolites with potent neuropsychiatric effects [18]. Meanwhile 

peripheral TNF somehow drives brain microglia to secrete chemokine (C-C motif) ligand 2 

(CCL2; also referred to as monocyte chemoattractant protein 1 (MCP1), which attracts 

monocytes into the brain [19].

Against this background we now consider how microbial exposures, including 

environmental microbial exposures, influence the regulation of our immune systems in the 

context of the effects of inflammation on CNS function.

The “Old Friends” hypothesis and mental health

The epidemic of inflammatory disease, including allergy and asthma, in modern urban 

societies is increasing dramatically, but underlying biological mechanisms are still 

unexplained. The hygiene or “Old Friends” hypothesis proposes that this epidemic is due at 

least in part to reduced exposure to environmental microorganisms that normally prime 

immunoregulatory circuits and suppress inappropriate inflammation [20]. We and others 

have proposed that reduced exposure to these old friends in modern urban societies may 

increase vulnerability to neurodevelopmental disorders (including autism spectrum disorder 

(ASD), schizophrenia), and stress-related psychiatric disorders such as anxiety and mood 

disorders [21-38]. Exaggerated inflammation is emerging as an important risk factor in all of 

these disorders [21-38]. Immunoregulation, measured as a balanced expansion of effector T 

cell (also called helper T (Th) cell) populations and regulatory T cells (Treg), is known to be 

driven by microbial signals. These signals originate mainly from organisms with which 

mammals co-evolved, including: 1) the symbiotic microbiota residing in the cutaneous and 

mucosal surfaces (e.g., surfaces of the upper airways, lungs, and gastrointestinal tract); 2) 

pathogens associated with the “Old Infections” (for example, helminths) that were present 

throughout life in evolving human hunter-gatherer populations; and 3) organisms from the 

natural environment with which humans were inevitably in daily contact through inhalation 

or ingestion (and so had to be tolerated by the immune system) [25]. Immunoregulation is 

thought to be compromised in developed countries because of reduced contact with these 

three categories of organisms that are necessary for regulation, in the same way that removal 
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of other reliably experienced developmental resources such as sunlight or vitamins cause a 

range of physiological problems [25]. Here we explore our rapidly expanding understanding 

of the potential role for compromised immunoregulation in allergies, neurodevelopmental 

disorders, and stress-related psychiatric disorders, and the diverse mechanisms through 

which exposure to the old friends may increase immunoregulation and suppress 

inappropriate inflammation.

Comorbidity of allergy, anxiety, and affective disorders

The hygiene hypothesis originated in epidemiologic studies of allergy. As originally 

envisaged by Strachan [39], the hygiene hypothesis proposed that lower incidence of 

infection in early childhood could be an explanation for the rapid rise in allergic diseases, 

such as asthma and hay fever, documented during the 20th century. Allergic or atopic 

disorders including allergic rhinitis, allergic asthma, eczema, and food allergies are prevalent 

and potentially disabling conditions [40]. These disorders are all increasing in prevalence in 

developed countries [40]. The “Old Friends” hypothesis was proposed to emphasize that we 

no longer believe that exposure to childhood infections or outright pathogens per se is 

beneficial but rather that lack of exposure to symbiotic organisms, as well as the “Old 

Infections”, is harmful [20]. Indeed, hygiene is important for prevention of serious 

infections. Epidemiological and clinical studies report a high incidence of anxiety and 

increased levels of emotional reactivity in individuals suffering from allergies [41-46]. This 

comorbidity is evidenced by the fact that the incidence of anxiety disorders among 

individuals with allergies is more than double with respect to the general population 

[41;44;47;48]. Moreover, studies in mice report that intranasal (i.n.) or aerosolized allergen 

exposure in sensitized animals results in the activation of limbic brain regions and anxiety-

like behavioral responses [49;50]. While these studies have not quantified normalized 

antigenic exposures from airborne allergens, they suggest a strong association between 

allergy and anxiety disorders, consistent with a potential role for inadequate 

immunoregulation and exaggerated inflammation in both conditions.

Inadequate immunoregulation as a risk factor for neurodevelopmental and 
neuropsychiatric disorders

Results from animal models and clinical studies are consistent with the idea that inadequate 

immunoregulation increases risk for development of neurodevelopmental disorders, 

including ASD [51-54]. Elevated serum levels of the proinflammatory cytokine, interleukin 

(interleukin)-17A (IL-17A, produced by IL-17-expressing T cells, called Th17 cells, as well 

as a number of families of innate lymphoid cells (ILCs)) [55], have been noted in children 

with autism and were furthermore associated with symptom severity [53]. Th17 cells are 

involved in infection, autoimmunity, and inflammation, especially in skin or mucosal 

surfaces of the lungs and gut [56;57]. A Th17 bias may emerge during fetal development, as 

recent studies in mice have shown that maternal retinoic acid receptor–related orphan 

nuclear receptor γt (RORγt)–dependent Th17 cells and IL-17A mediate abnormal cortical 

development and an autism-like phenotype of offspring in a maternal immune activation 

model [51].
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Importantly, for the thesis of this review, recent studies have demonstrated that the gut 

microbiota has the capacity to induce a specific population of Treg, the RORγt+ subset of 

Treg [58;59]. Loss of RORγ+ (there are two isoforms of RORγ, RORγt and RORγ) Tregs 

results in enhanced production of interleukin 17 (IL-17) and interferon-γ in the colons of 

otherwise unchallenged mice, and increases in chemically-induced colitis, indicating a 

decreased ability of colonic Tregs lacking RORγ to regulate inflammatory responses [58]. In 

germ-free mice, introduction of specific bacterial species are sufficient to increase RORγ+ 

Tregs to levels observed in their conventionally raised specific pathogen-free counterparts 

[58]. Thus, Choi and colleagues [51] argue that therapeutic targeting of Th17 cells in 

vulnerable pregnant mothers may reduce the risk of bearing children with inflammation-

dependent ASD-like phenotypes, and specific immunoregulatory bacteria have the ability to 

shift the balance of RORγ+ T cells from a Th17 to a Treg bias. A window of vulnerability 

may coincide with a predicted window of time during the late second trimester and early 

third trimester associated with increased risk of autism following maternal infections [60], 

maternal exposures to stressors [61], and maternal exposures to environmental pollutants 

[62]. This time frame coincides with a critical window of Treg development in the fetus, 

including the emergence, seeding, and expansion of Treg populations and Th17 cells (from 

12 weeks of gestation until early postnatal development, with some continued development 

out to 2 years of age) [63]. Together with the finding that maternal stress is associated with 

an infant microbiota with a biological signature of increased potential for inflammation [64], 

immunoregulatory or antiinflammatory approaches may have value for both prevention and 

treatment of ASD. Consistent with this hypothesis, treatment with the antiinflammatory 

flavonoid, luteolin, results in a significant improvement in functioning in children with ASD 

[65], in association with decreases in plasma concentrations of biomarkers of inflammation 

[66].

Alterations in T cell number and function have also consistently been detected in patients 

with schizophrenia [67]. Researchers have subsequently proposed that maternal immune 

activation, induced by intrauterine infection and additional factors, could facilitate the 

preferential generation of Th17 cells and subsequent priming of neuroinflammatory 

processes, ultimately contributing to the neuroprogression in schizophrenia [68]. A meta-

analysis found that treatment with nonsteroidal antiinflammatory drugs (NSAID) could be a 

potential treatment strategy to reduce symptom severity in schizophrenia [69]. Recent non-

human primate studies using 1st and 2nd trimester infection with a viral mimic of double 

stranded RNA have demonstrated behavioral abnormalities in offspring resembling both 

ASD and schizophrenia [70;71]. Further, abnormal neuronal dendritic formations were 

characterized in association with the behavioral changes observed in the non-human primate 

model of maternal immune activation [72], suggesting developmental changes in offspring 

associated with inadequate immunoregulation during pregnancy. Thus, an argument can be 

made supporting a role for inflammatory insults, particularly Th17-driven inflammation in 

the skin or mucosal surfaces of the lungs and gut, as risk factors for neurodevelopmental and 

neuropsychiatric disorders. Furthermore, an argument can be made that prophylactic 

exposure of the mother to Treg-promoting and Th17-reducing commensal or environmental 

bacteria may reduce that risk.
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Inadequate immunoregulation as a risk factor for stress-related mental health disorders

Human and animal studies are consistent with the hypothesis that inadequate 

immunoregulation increases risk for development of stress-related psychiatric disorders 

[25;73;74]. That is, chronic low-grade inflammation (a potential consequence of chronic 

infection, psychosocial stress, trauma, exposure to environmental pollutants or toxins, 

autoimmune processes, chronic allergy) is associated with increased risk for mental 

disorders [75;76]. In prospective studies, high baseline plasma concentration of C-reactive 

protein (CRP; an acute-phase protein and pattern recognition receptor that is induced in 

response to inflammation), measured before deployment in military personnel, was 

associated with increased likelihood of posttraumatic stress disorder (PTSD) symptoms after 

deployment, suggesting that inflammation before trauma exposure may predispose 

individuals to PTSD symptoms [73]. Similar findings were evident in a gene expression 

study in soldiers pre- and post-deployment (Breen et al. 2015), where results indicated that 

genes involved in networks of innate immunity and interferon signalling are overexpressed 

in PTSD cases pre-deployment, suggesting causality (Breen et al., 2015). Furthermore, 

increased circulating levels of the proinflammatory cytokine IL-6 immediately following 

trauma exposure predict the later development of PTSD symptoms [77]. Although not 

confirmed in all studies, low-grade inflammation has been associated with PTSD, as 

indicated by elevated serum CRP, IL-1β, and IL-6 [78-80]. Moreover, patients with PTSD 

show enhanced spontaneous secretion of IL-1β, IL-6 and tumor necrosis factor (TNF) by 

isolated peripheral blood mononuclear cells, which correlates with symptom severity 

[81;82]. Consistent with these findings, subjects with PTSD also have higher risk for 

autoimmune disease, including inflammatory bowel disease and rheumatoid arthritis [83], 

while genome-wide association studies in PTSD cohorts have revealed association with 

ANKRD55 [84], a gene associated with several autoimmune and inflammatory disorders, 

including multiple sclerosis [85;86], type 2 diabetes mellitus [87], celiac disease [88], and 

rheumatoid arthritis [89].

Similar findings have been documented for developing depressive symptoms. For example, a 

study of over 3,000 individuals showed that elevated baseline plasma CRP or IL-6 predicted 

cognitive symptoms of depression measured 12 years later [90]. Moreover, in a study 

published early in 2014, elevated plasma concentrations of IL-6 in 9-year old children 

predicted depressive symptoms measured at age 18 [91]. Therefore, it is reasonable that 

exposures to immunoregulatory or antiinflammatory bacteria may be useful for the 

prevention or treatment of symptoms of PTSD or major depression. Consistent with this 

hypothesis, the glucocorticoid antiinflammatory hydrocortisone decreases the risk of 

subsequent PTSD if administered immediately after trauma exposure [92]. Furthermore, 

treatment of depressed patients with standard antidepressants plus an antiinflammatory 

compound was reported to decrease depressive symptoms more than antidepressants with a 

placebo [11;93].

“Old Friends” with immunoregulatory potential

The previous paragraphs show how anxiety and affective disorders are comorbid with 

chronic inflammatory conditions, and are epidemiologically linked to persistent 
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inflammation, even in the absence of any clinically apparent inflammatory condition. The 

latter situation is evidence of failing immunoregulation. Similarly, we also described how 

failing immunoregulation during pregnancy, in animals and humans, can lead to 

neurodevelopmental problems in the fetus mediated by excessive inflammation. We now 

discuss, within each of the microbiological categories that constitute the old friends, the 

organisms that have been shown to have immunoregulatory properties that might be 

exploited for prevention of, or as therapies for, psychiatric conditions.

Commensal or mutualistic microorganisms with immunoregulatory potential

Much of the focus on the interface between the human microbiome and potential positive 

human health outcomes has been put on commensal or mutualistic organisms, particularly 

those associated with the gut microbiome. Two recent studies have shed light on the 

potential for commensal gut microorganisms to influence immunoregulatory circuits 

[58;59]. These two studies demonstrated that the gut microbiota induces expansion of a 

specific subset of cells, known as the RORγt+ Treg in the lamina propria of the 

gastrointestinal tract. They then used chemical inhibitors and genetic manipulation to block 

the function of these Treg, and demonstrated that they have broad antiinflammatory effects 

in several models of colitis. They also noted that this cell type is severely depleted in germ-

free or antibiotic-treated mice [58;59]. However, reconstituting the gut microbiota could 

restore expansion of these Treg. Importantly, oral administration of a single microbial 

species was sufficient to increase the frequency of RORγt+ Treg within the colon of germ-

free mice, in some cases to levels observed in specific-pathogen-free control mice, which 

have a typical microbiota. Commensal bacteria that increase RORγt+ Treg include several 

species belonging to the phylum Firmicutes, a phylum with a large number of probiotic 

species, to include Clostridium histolyticum, C. ramosum, Enterococcus faecium, 

Lactobacillus casei, L. rhamnosus, and Staphylococcus saprophyticus. However, species 

from other phyla were also effective, including Bifidobacterium breve (Actinobacteria), 

Bacteroides thetaiotaomicron and Parabacteroides johnsonii (Bacteroidetes), Fusobacterium 
mortiferum, and F. nucleatum (Fusobacteria), and Acinetobacteria lwoffi (Proteobacteria). 

As mentioned above, loss of RORγ+ Tregs results in enhanced production of colonic IL-17 

and interferon-γ and increases in chemically-induced colitis, indicating a decreased ability 

of colonic Tregs lacking RORγ to regulate inflammatory responses [58]. Thus, commensal 

bacteria from diverse phyla have the capacity to induce Treg (Table 1). Many of these same 

probiotic species have been shown to have stress-protective and mental health benefits in 

rodent and human studies (Table 1). The mechanisms through which bacteria from such 

diverse phyla can induce immunoregulatory pathways are not clear, but a number of 

candidate mechanisms are discussed below.

“Old Infections” with immunoregulatory potential

A number of “Old Infections” can induce immunoregulation. For example, humans co-

evolved with Helicobacter pylori for tens of thousands of years. H. pylori is found in higher 

abundance in rural Papua New Guineans [94] and was recently found in previously 

uncontacted Amazonian Amerindians [95], as well as in the 5300-year old Iceman [96]. H. 
pylori is potently immunoregulatory, and consequently has protective effects in allergy and 

chronic inflammatory disorders [97;98]. Additional “Old Infections” include hepatitis A 
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virus (HAV), Toxoplasma gondii (T. gondii), Salmonella, gut helminths and blood 

nematodes, and Mycobacterium tuberculosis [6;99]. A common feature of many of these 

“Old Infections” is that they bind the C-type lectin receptor, dendritic cell-specific 

intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN; also referred to as 

cluster of differentiation 209 (CD209)) on dendritic cells (DC), in many cases using the 

receptor to gain entry into immune cells and subvert the host immune response [100-105]. 

Interactions between “Old Infections” and DC-SIGN can induce immunoregulatory 

responses [101;104], and the central feature of pathogens that can interact with DC-SIGN is 

that they cause chronic infections that can last a lifetime, persistence that is often dependent 

on a suppression of Th1 and concomitant shift to Th2 immunity [103].

Environmental microorganisms with immunoregulatory potential

In addition to commensal and mutualistic microorganisms and the “Old Infections”, 

environmental microorganisms also induce immunoregulation following ingestion [106] or 

inhalation [107;108]. These organisms have been referred to as “pseudocommensals” 

because they would have been present in large numbers throughout mammalian evolution, 

even if they do not colonize the gut [20;109]. Our understanding of the “Old Friends” 

hypothesis has been informed by studies using heat-inactivated and viable environmental 

bacteria, particularly soil-derived bacteria belonging to the genus Mycobacterium, which can 

be viewed as a case study of the potential for environmental microorganisms to influence 

immunoregulatory circuits and prevent inflammatory disease [110]. While it has long been 

believed that mycobacteria are not normally present in the human microbiome or the built 

environment in developed countries, recent studies reveal that a broad spectrum of 

Mycobacteria spp. are systemic residents of operating metropolitan water distribution 

systems [111;112]. To what extent these and other microbes impact humans through 

common infrastructure exposures, however, remains unknown. Another recent study has 

defined the hidden ‘non-tuberculous mycobacteriome’, with approximately 50 prevalent and 

abundant mycobacterial operational taxonomic units, in the nostrils, buccal mucosa, 

oropharynx, and dental plaque of healthy subjects [113], a distribution that may reflect the 

environmental origin of these microorganisms. Together, (1) disruption of the commensal 

microbes, (2) a reduction in “Old Infections”, and (3) diminished contact with 

immunoregulatory environmental microbes have the potential to increase vulnerability to 

allergic and inflammatory disorders, as well as mental health disorders, where chronic 

inflammation is emerging as an associated risk factor.

Diverse molecular mechanisms through which “Old Friends” induce 

antiinflammatory and immunoregulatory effects

Bacterially derived metabolites that induce immunoregulatory responses

Tryptophan and bacterially- and host-derived tryptophan metabolites—
Evidence suggests that commensal bacteria are important for the extraction, synthesis or 

absorption of some amino acids, including tryptophan. In particular, plasma tryptophan and 

N-acetyltryptophan concentrations in conventionally reared mice are 40% and 60% lower, 

respectively, compared to germ-free mice [114], suggesting that the gut microbiota plays an 
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important role in metabolism of tryptophan. A subset of enteric bacteria expresses 

tryptophanase, which converts tryptophan to indole, pyruvate, and ammonia. Meanwhile, it 

is becoming increasingly clear that tryptophan and diverse tryptophan metabolites (both 

bacterially-derived and host-derived) have immunomodulatory effects. Tryptophan 

influences proliferation of T cells by regulating passage through the gap 1 (G1) phase of the 

cell cycle [115]. Tryptophan depletion, secondary to activation of indoleamine-2,3-

dioxygenase, regulates immune tolerance of the fetus and regulates immune responses in 

models of skin allograft rejection, tumor growth and autoimmune encephalomyelitis [116] 

and chemically-induced colitis [117]. The tryptophan metabolite melatonin induces Treg via 

actions on melatonin receptors (MT1) [118]. Interactions between bacterially-driven and 

host-driven tryptophan metabolism are important for host defense. For example, CD4+ T 

cells defend against certain pathogens, including Chlamydia and Leishmania, by starving the 

pathogens of tryptophan. In those cases, tryptophan starvation works well, since those 

pathogens are natural tryptophan auxotrophs (lack the ability to synthesize tryptophan). 

Mycobacterium tuberculosis, on the other hand, is capable of synthesizing tryptophan, and it 

is protected from this mechanism of host defense; a small molecule inhibitor of M. 
tuberculosis tryptophan synthesis turns M. tuberculosis into an auxotroph and restores the 

efficacy of host-mediated tryptophan depletion [119]. Perhaps just as important, even 

probiotic species such as Lactobacillus spp. are capable of tryptophan biosynthesis and 

metabolism and generate tryptophan metabolites that activate the aryl hydrocarbon receptor 

(Ahr), resulting in immunoregulation and mucosal protection from damage [120]. 

Immunoregulatory bacterially-derived tryptophan metabolites that serve as Ahr agonists 

include tryptamine, indol-3-acetaldehyde, indole-3-acetic acid, indole-3-aldehyde, and 

kynurenine [120]. Other bacterially derived tryptophan metabolites that interact with Ahr 

include indole, 3-methyl-indole, indoxyl sulfate, 6-formylindolo[3,2b] carbazole, and 

kynurenic acid [121]. Activation of Ahr can either induce functional Treg cells that suppress 

inflammation, or enhance Th17 cell differentiation and increase inflammation, depending on 

the specific nature of the agonist [122;123]. Specifically, Ahr induces RORγt+ Tregs [124], 

consistent with studies discussed above demonstrating that specific species within the gut 

microbiota can induce RORγt+ Tregs and mucosal immune tolerance [58;59]. Thus, the 

microbiota, acting via synthesis of tryptophan and generation of tryptophan metabolites that 

interact with Ahr, regulates both Treg and Th17 cell differentiation in a ligand-specific 

fashion, constituting a unique target for therapeutic immunomodulation.

Short chain fatty acids (SCFAs)—Short chain fatty acids (SCFAs), including acetate, 

propionate, and butyrate, are produced by bacteria in the gut during fermentation of 

insoluble fiber from dietary plant matter [125]. SCFAs support the growth of probiotic 

Bifidobacterium and Lactobacillus species. Furthermore, SCFAs have antiinflammatory 

effects by regulating the release of cytokines and chemokines from immune cells [126-128]. 

Of particular importance, propionate and acetate can directly induce colonic Tregs and their 

suppressive capacity via activation of G protein coupled receptor (GPCR) 43, encoded by 

the free fatty acid receptor 2 gene (Ffar2) [129;130]. This is one of the primary routes by 

which Clostridia affect Treg populations [131]. Furthermore, butyrate, which is also a 

metabolite of Clostridia species, potentiates DCs to induce Treg through inhibition of 

histone deacetylase (HDAC) and may induce epigenetic changes [131].
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Microbial molecules that induce immunoregulatory responses

A number of bacterial antigens have been identified that increase immunoregulatory circuits, 

predominantly by interactions with the pattern recognition receptor (PRR) DC-SIGN on 

DCs. DC-SIGN ligation interferes with toll-like receptor-mediated inflammatory responses, 

resulting in decreases in nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) signaling, decreases in IL-6, TNF, and IL-12, concurrently with increases in IL-10 

[101]. Activation of DC-SIGN in DCs may be a common mechanism through which 

bacterial antigens derived from the old friends bias T cell differentiation toward a Treg 

phenotype (Table 1). Examples of such molecules, together with their sources, receptors and 

mode of action are listed in Table 2.

Other immunoregulatory molecules from “Old Infections”—In addition to the 

heterogeneous group of molecules described above there is mounting interest in microbial 

products that imitate the LewisX trisaccharide motif (Figure 1).

Lewis-X+lipopolysaccharide (LPS)—The lipopolysaccharide (LPS) Lewis (Le) 

antigens of H. pylori are able to bind DC-SIGN in gastric DCs and block Th1 development 

[103;104]. Conversely, Le− H. pylori induce strong Th1 responses [103;104]. Although the 

specific mechanisms are not clear, H. pylori potently drives Treg responses [98].

Helminthic parasite antigens—The Lewis-X+ soluble egg antigen (SEA) from the 

helminthic parasite Shistosoma mansoni binds DC-SIGN and induces expansion of Th2 and 

Treg responses [103;132]. Sole Th2 antiinflammatory immunomodulators apparently 

emerged when metazoan parasites invaded vertebrates. Indeed, Th2 immunity may have 

been developed as a repair response to tissue and organ damage resulting from inflammatory 

processes directed towards relatively large parasites like helminths [133]. Hence, to prevent 

an inflammatory Th1 immunity, parasitic helminths produced compounds that mimic those 

that the host makes to avert inflammatory responses that would interfere with tissue healing 

or cause fetal rejection in mammals; agents that besides inducing Th2, inhibit, but do not 

abrogate, Th1 immunity [134]. The main family of helminth-derived immunomodulators 

contains as a pharmacophore the sugar fucose (Fuc); these immunomodulators, which are 

glycans, structurally and functionally imitate the LewisX trisaccharide motif, like lacto-N-

fucopentaose III (LNFPIII), a LewisX-containing immunomodulatory glycan found in 

human milk [135;136] and SEA from S. mansoni (Fig. 1 A,B). The sugar Fuc is rare in both 

vertebrates and bacteria and is involved in ontogenesis and some immunological functions, 

like acting as a Th2 immune modulator. The success of the immunological mimicry 

developed by helminths is shown by the long-term relationship between the parasite and its 

host. Fucosylated glycans exert their sole Th2 immune modulatory effects by binding to DC-

SIGN, which binds oligosaccharides carrying either mannosyl or fucosyl residues [137]. 

Any inflammation induced by parasite infection must be tightly regulated and evidence 

suggests that this function is mediated by induction of Treg by diverse parasites [138].
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Membranous cells (M cells) transfer intact gut microorganisms from the 
bronchopulmonary and intestinal lumens and present them to antigen presenting cells

In order for bacterial antigens, such as the glycans described above, to influence DC 

function and induce immunoregulatory responses, it is necessary for the bacteria to have 

direct contact with antigen presenting cells, raising the question of how bacteria in the 

airways or gastrointestinal tract come into direct contact with these cells. Antigen presenting 

cells, e.g. alveolar macrophages and CD11c+ DCs, are common in the airways [139], but 

host mechanisms also ensure that microorganisms in both the airways and gastrointestinal 

tract can be transferred from the airway or gastrointestinal tract lumen into the body for 

presentation to antigen-presenting cells. This function is performed in part by microfold or 

membranous cells (M cells), which are found in both the airways and gastrointestinal tract. 

M cells in the airways have been documented as entry sites for M. tuberculosis in mice 

[140]. Similar reports have been made for M cell recognition of mycobacteria in the 

gastrointestinal tract. Regarding studies involving oral inoculation with mycobacteria, 

Fujimura wrote that in “1-hour post-inoculated specimens, bacteria were found adhering 

specifically to M cells, and the microfolds of the M cells were seen to stretch like tentacles 

toward the bacteria and to catch them.” [141]. Mycobacteria are translocated into M cells, 

and are subsequently presented to mucosal macrophages and DCs [141]. Although we have 

focused primarily on the mucosal membranes of the airways and gastrointestinal tract, 

evidence suggests an important dialogue between the skin microbiota and immune function 

as well, which should be explored further [142-144].

Antiinflammatory and immunoregulatory interventions

Anti-inflammatory agents such as inhibitors of cycloxygenase, or a neutralizing antibody to 

TNF are significantly therapeutic in those patients who have raised inflammatory biomarkers 

[10;11]. Can we therefore exploit the anti-inflammatory properties of immunoregulation-

inducing microorganisms? Extensive investigation of animal models has shown that 

administration of immunoregulatory probiotics and some other manipulations of the 

microbiota have profound effects on the development and function of the brain. This work 

has been reviewed recently and will not be described here [145;146], though examples 

where microbial agents were used in therapeutic models are given in Table 1. Human studies 

are rare, but there is direct evidence that large doses of probiotics can modulate the human 

brain. Women were given a milk product fermented with a complex mixture of probiotics 

twice daily for 4 weeks [147]. Magnetic resonance imaging was used before and after the 

intervention to measure resting brain activity and the brain response to images of emotional 

faces. Compared to subjects who had not taken the probiotic, changes in the intrinsic activity 

of resting brain and in the emotional response were demonstrated [147]. In another 

randomized, double-blind, placebo-controlled study it was found that when normal 

volunteers consumed a probiotic formulation (Lactobacillus helveticus R0052 and 

Bifidobacterium longum R0175) for 30 days, anxiolytic effects were detected by several 

validated questionnaires [148]. In a very recent study, Clostridium butyricum or placebo 

were administered orally every morning and evening from 2 weeks before laryngectomy. 

Hamilton anxiety scores of placebo recipients increased as the surgery approached, but these 

scores decreased in those taking the probiotic [149]. Finally, recent studies in humans 
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demonstrate that administration of the immunoregulatory probiotic, Lactobacillus casei, for 

8 weeks reduced gastrointestinal symptoms and decreased perceived stress in medical 

students preparing for a standardized exam [150].

However, as we make clear in this review, orally ingested probiotics are not the only possible 

approach. An environmental soil saprophyte already known to induce Treg in mice [24] was 

tried as an immunotherapeutic in a human cancer trial [151]. While there was no 

prolongation of survival it was noted that immunotherapy recipients had improved cognitive 

functioning and emotional health [151]. More recently the same organism, administered 

subcutaneously as a killed preparation, has been tested in an animal model where exposure 

to chronic psychosocial stress induces expansion of Helicobacter spp. [152], pathobionts, 

that are known to induce colitis in individuals with inadequate immunoregulation [153;154]. 

Pre-immunisation with the environmental saprophyte blocked stress-induced colitis, blocked 

stress-induced exaggeration of chemically-induced colitis, and reduced anxiety-related 

behaviors in stressed mice. Remarkably, these effects were dependent upon the induction of 

Treg [152].

Conclusions

Exaggerated inflammation is emerging as a risk factor for neurodevelopmental and 

neuropsychiatric disorders, such as ASD and schizophrenia, and stress-related psychiatric 

disorders, including PTSD and major depression. Antiinflammatory interventions have 

shown some promise in treating these conditions. Meanwhile, there is increasing evidence 

that the microbiota associated with mucosal membranes in the airways and gastrointestinal 

tract have potential for antiinflammatory and long-term immunoregulatory effects on the 

host immune system. Thus, bioimmunomodulatory approaches hold promise for the 

prevention and treatment of these disorders. Here we have highlighted the potential 

mechanisms through which the microbiota, including microbial inputs from the 

environment, may elicit antiinflammatory and immunoregulatory responses. The evidence 

suggests that both bacterial metabolites and bacterial and helminthic antigens have potential 

for antiinflammatory and immunoregulatory effects that may have value in the prevention 

and/or treatment of neurodevelopmental, neuropsychiatric, and stress-related mental health 

disorders.
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Figure 1. 
Structures of the LewisX trisaccharide motif and its helminth-derived analogue lacto-n-

fucopentaose III (LNFPIII).
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Table 1
Immunoregulatory microorganisms with beneficial effects in mental health studies

Phylum/
Microorganism

Model Environmental
Sources

Mental health relevant
findings

Immunoregulation

Actinobacteria

Mycobacterium
vaccae

Human Environmental
saprophyte (soil,
mud, water,
grasses, decaying
organic matter)
[155-161]

Increased cognitive
function, decreased pain
in patients with advanced
non-small-cell lung
cancer [151]

↑DCreg [162]

Mouse Activation of brain
serotonergic systems and
antidepressant-like
behavioral effects [163];
decreased
anxiety/increased
cognitive function [164]

↑Treg [110]

Promotion of proactive
behavioral responses to
psychosocial stress;
prevention of stress-
induced colitis and stress-
induced exaggeration of
chemically-induced
colitis; reduction of
anxiety-like behavior in
stressed mice [152]

Bifidobacterium
breve

Mouse Human
commensal

Increased cognitive
function [165]; decreased
anxiety-related behaviors
[166]

↑Rorγ+ Helios− Treg [58]

Bifidobacterium
infantis

Rat Human
commensal

Reversal of depressive-
like behavior following
maternal separation [167]

↑Treg [168]

Bifidobacterium
longum

Human Human
commensal

Decreased anxiety and
depressive symptoms in
healthy volunteers
(administered with L.
helveticus) [148;169]

Mouse Decreased-colitis
associated anxiety
[170;171]; increased
cognitive function (1714)
[165]; decreased stress,
anxiety- and depression-
related behaviors [166]

↑Treg and functional
Treg responses [172]

Bacteroidetes

Bacteroides
fragilis

Mouse Human
commensal

Developmental protection
from some of the
behavioral symptoms
associated with Autism
Spectrum Disorder [54]

↑Treg [173]

Firmicutes

Clostridium
butyricum

Human Endospore-
forming soil
bacterium

Anxiolytic effects [149]

Enterococcus
faecium

Mouse Human
commensal,
wetlands [174]

Increased brain
antioxidant markers [175]
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Phylum/
Microorganism

Model Environmental
Sources

Mental health relevant
findings

Immunoregulation

Lactobacillus
casei

Human Human
commensal,
fermented foods
[176]

Improvement in anxiety
symptoms in patients
with chronic fatigue
syndrome [177];
improved mood [178]

↑Rorγ+ Helios− Treg [58]

Decreased perceived
stress in medical students
preparing for a
nationwide exam [150]

Lactobacillus
fermentum

Rat Human
commensal, raw
vegetables [179],
fermented foods
[176;180]

Decreased anxiety and
inhibition of antibiotic-
induced cognitive
impairment [181]

↑Treg [182]

Lactobacillus
helveticus

Human Fermented foods
[176]

Decreased anxiety and
depressive symptoms in
healthy volunteers
(administered with B.
longum) [148;169];
increased cognitive
function (IDCC3801)
[183]

Rat Improved cognitive
function, decreased
anxiety-related behavior
[184]; prevention of
stress-induced cognitive
impairment and anxiety-
and depressive-like
responses [185]

Mouse Decreased anxiety-related
behavior [186]; improved
cognitive function,
decreased anxiety-related
behavior (administered
with L. rhamnosus)
[187;188]

↑Treg (with L. rhamnosus
[189]

Lactobacillus
pentosus

Mouse Fermented foods
[176]

Improved cognitive
function [190]

Lactobacillus
reuteri

Human Human
commensal,
fermented foods
[176]

Increased workplace
healthiness [191]

↑Treg [192]

Lactobacillus
rhamnosus

Mouse Human
commensal,
fermented foods
[176]

Vagus nerve dependent
alterations in GABA
receptor mRNA
expression in brain,
reduced anxiety- and
depression-related
behavior[193]; improved
cognitive function,
decreased anxiety-related
behavior (administered
with L. helveticus)
[187;188]

↑Rorγ+ Helios− Treg [58];
↑Treg (with L. helveticus)
[189]

Immunoregulatory probiotics that induce Rorγ+Helios− Tregs, but have not been tested in the context of mental health, F. mortiferum, A. lwoffii, 
L. casei, E. faecium, F. nucleatum, P. johnsonii, L. rhamnosus, C. histolyticum, B. thetaiotaomicron, S. saprophyticus, C. ramosum [58].

Adapted from Hoisington et al. [31], with permission.
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Table 2
Microbial molecules that induced immunoregulatory responses

Molecule Source Receptor Actions

Polysaccharide A
(PSA)

Bacteroides
fragilis

Unclear in mice,
DC-SIGN on
human DC [194]

Expands Treg population [195]

Surface layer
protein A (SlpA)

Lactobacillus
acidophilus

DC-SIGN More IL-10 and less IL-12 p70
[196]

Mannose-capped
lipoarabinomannan

Mycobacterium
tuberculosis

mannose
receptor (MR),
dectin-2, DC-
SIGN, TLR2
[101;197;198]

Expansion of Treg through a
prostaglandin E2-dependent
mechanism [199]

60 kDa
chaperonin-1
(Cpn60.1); Heat
shock 60 kDa
protein (Hsp60)

M. tuberculosis
& homologous
molecules from
microbiota
[200]

DC-SIGN,
TLR2 and
others?

Expand Treg [201-204]

DnaK; also known
as Hsp70, GroP,
GrpF, Seg

M. tuberculosis
& homologous
molecules from
microbiota

DC-SIGN and
others? [200]

Drive immunoregulatory
pathways? [204]

Glyceraldehyde-3
phosphate
dehydrogenase
(GAPDH)

Mycobacteria
and homologous
molecules from
microbiota
[205]

DC-SIGN [200] Reduce proinflammatory
cytokines and chemokines [206]

Lipoarabinomanna
n carrier protein
LprG

M. tuberculosis DC-SIGN [200] Binds to triacylated glycolipids
and increases their agonist activity
at TLR2 [101;207]

Lewis-X+

lipopolysaccharide
(LPS)

Helicobacter
pylori

DC-SIGN
[103;104]

Drives Treg responses [98].

Lewis-X+ soluble
egg antigen (SEA)

Schistosoma
mansoni

DC-SIGN [137] Drive expansion of Th2 and Treg
responses [103;132]
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