Skip to main content

Advertisement

Log in

Nanotechnological approach and bio-inspired materials to face degenerative diseases in aging

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The aging of the world population is increasingly claimed as an alarming situation, since an ever-raising number of persons in advanced age but still physically active is expected to suffer from invalidating and degenerative diseases. The impairment of the endogenous healing potential provoked by the aging requires the development of more effective and personalized therapies, based on new biomaterials and devices able to direct the cell fate to stimulate and sustain the regrowth of damaged or diseased tissues. To obtain satisfactory results, also in cases where the cell senescence, typical of the elderly, makes the regeneration process harder and longer, the new solutions have to possess excellent ability to mimic the physiological extracellular environment and thus exert biomimetic stimuli on stem cells. To this purpose, the “biomimetic concept” is today recognized as elective to fabricate bioactive and bioresorbable devices such as hybrid osteochondral scaffolds and bioactive bone cements closely resembling the natural hard tissues and with enhanced regenerative ability. The review will illustrate some recent results related to these new biomimetic materials developed for application in different districts of the musculoskeletal system, namely bony, osteochondral and periodontal regions, and the spine. Further, it will be shown how new bioactive and superparamagnetic calcium phosphate nanoparticles can give enhanced results in cardiac regeneration and cancer therapy. Since tissue regeneration will be a major demand in the incoming decades, the high potential of biomimetic materials and devices is promising to significantly increase the healing rate and improve the clinical outcomes even in aged patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

From [142] with permission from Wiley-VCH

Similar content being viewed by others

References

  1. Gibon E, Lu LY, Nathan K et al (2017) Inflammation, ageing, and bone regeneration. J Orthop Translat 10:28–35

    PubMed  PubMed Central  Google Scholar 

  2. Kenyon CJ (2010) The genetics of ageing (vol 464, pg 504, 2010). Nature 467:622

    CAS  Google Scholar 

  3. Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration—lessons from muscle. Cell Cycle 4:407–410

    CAS  PubMed  Google Scholar 

  4. Wolff JL, Starfield B, Anderson G (2002) Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med 162:2269–2276

    PubMed  Google Scholar 

  5. Freemont AJ, Hoyland JA (2007) Morphology, mechanisms and pathology of musculoskeletal ageing. J Pathol 211:252–259

    CAS  PubMed  Google Scholar 

  6. Gheno R, Cepparo JM, Rosca CE et al (2012) Musculoskeletal disorders in the elderly. J Clin Imaging Sci 2:39

    Google Scholar 

  7. Xue QL (2011) The frailty syndrome: definition and natural history. Clin Geriatr Med 27:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sprio S, Campodoni E, Sandri M et al (2018) A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration. Int J Mol Sci 19:3604

    PubMed Central  Google Scholar 

  9. Sprio S, Ruffini A, Dapporto M et al (2016) New strategies for regeneration of load bearing bones. In: Tampieri A, Sprio S (eds) Bio-inspired regenerative medicine: materials, processes and clinical applications. PAN Stanford Publishing, Singapore, pp 85–117

    Google Scholar 

  10. Tampieri A, Ruffini A, Ballardini A et al (2019) Heterogeneous chemistry in the 3-D state: an original approach to generate bioactive, mechanically-competent bone scaffolds. Biomater Sci 7:307–321

    CAS  Google Scholar 

  11. Tampieri A, Sandri M, Panseri S et al (2016) Biologically-inspired nanomaterials and nano-bio-magnetism: a synergy among new emerging concepts in regenerative medicine. In: Tampieri A, Sprio S (eds) Bio-inspired regenerative medicine: materials, processes and clinical applications. PAN Stanford Publishing, Singapore, pp 1–20

    Google Scholar 

  12. Iafisco M, Sandri M, Panseri S et al (2013) Magnetic bioactive and biodegradable hollow Fe-doped hydroxyapatite coated poly(l-lactic) acid micro-nanospheres. Chem Mater 25:2610–2617

    CAS  Google Scholar 

  13. Sprio S, Tampieri A, Landi E et al (2008) Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C Biomimet Supramol Syst 28:179–187

    CAS  Google Scholar 

  14. Tampieri A, Sprio S, Sandri M et al (2011) Mimicking natural bio-mineralization processes: a new tool for osteochondral scaffold development. Trends Biotechnol 29:526–535

    CAS  PubMed  Google Scholar 

  15. Tampieri A, Celotti G, Landi E et al (2003) Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 67:618–625

    PubMed  Google Scholar 

  16. Tampieri A, Sandri M, Landi E et al (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29:3539–3546

    CAS  PubMed  Google Scholar 

  17. Sprio S, Ruffini A, Valentini F et al (2011) Biomimesis and biomorphic transformations: new concepts applied to bone regeneration. J Biotechnol 156:347–355

    CAS  PubMed  Google Scholar 

  18. Sprio S, Sandri M, Iafisco M et al (2016) Bio-inspired assembling/mineralization process as a flexible approach to develop new smart scaffolds for the regeneration of complex anatomical regions. J Eur Ceram Soc 36:2857–2867

    CAS  Google Scholar 

  19. Murray CJ, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223

    PubMed  Google Scholar 

  20. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196

    PubMed  PubMed Central  Google Scholar 

  21. Kingsbury DJ, Bader-Meunier B, Patel G et al (2014) Safety, effectiveness, and pharmacokinetics of adalimumab in children with polyarticular juvenile idiopathic arthritis aged 2 to 4 years. Clin Rheumatol 33:1433–1441

    PubMed  PubMed Central  Google Scholar 

  22. Buckwalter JA, Woo SL, Goldberg VM et al (1993) Soft-tissue aging and musculoskeletal function. J Bone Joint Surg Am 75:1533–1548

    CAS  PubMed  Google Scholar 

  23. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    CAS  PubMed  Google Scholar 

  24. Hutmacher D, Hutmacher D, Teoh S et al (2000) Design and fabrication of a 3D scaffold for tissue engineering bone. In: Agrawal C, Parr J, Lin S (eds) Synthetic bioabsorbable polymers for implants. ASTM International, West Conshohocken, PA, pp 152–167. https://doi.org/10.1520/stp15307s

    Chapter  Google Scholar 

  25. Martin I, Obradovic B, Treppo S et al (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147

    CAS  PubMed  Google Scholar 

  26. Barbour KE, Helmick CG, Boring M et al (2017) Vital Signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2013–2015. MMWR Morb Mortal Wkly Rep 66:246–253

    PubMed  PubMed Central  Google Scholar 

  27. Ethgen O, Reginster JY (2004) Degenerative musculoskeletal disease. Ann Rheum Dis 63:1–3

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hootman JM, Helmick CG, Barbour KE et al (2016) Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol 68:1582–1587

    PubMed  PubMed Central  Google Scholar 

  29. Wang H, Bai J, He B et al (2016) Osteoarthritis and the risk of cardiovascular disease: a meta-analysis of observational studies. Sci Rep 6:39672

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Veronese N, Stubbs B, Solmi M et al (2017) Association between lower limb osteoarthritis and incidence of depressive symptoms: data from the osteoarthritis initiative. Age Ageing 46:470–476

    PubMed  Google Scholar 

  31. Cacciatore F, Della-Morte D, Basile C et al (2014) Long-term mortality in frail elderly subjects with osteoarthritis. Rheumatology (Oxford) 53:293–299

    Google Scholar 

  32. Castell MV, van der Pas S, Otero A et al (2015) Osteoarthritis and frailty in elderly individuals across six European countries: results from the European Project on OSteoArthritis (EPOSA). BMC Musculoskelet Disord 16:359

    PubMed  PubMed Central  Google Scholar 

  33. Henderson I, Lavigne P, Valenzuela H et al (2007) Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 455:253–261

    PubMed  Google Scholar 

  34. Knutsen G, Engebretsen L, Ludvigsen TC et al (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-a:455–464

    Google Scholar 

  35. Kraeutler MJ, Belk JW, Purcell JM et al (2018) Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. Am J Sports Med 46:995–999

    PubMed  Google Scholar 

  36. Niemeyer P, Albrecht D, Andereya S et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435

    CAS  PubMed  Google Scholar 

  37. Zhang W, Ouyang H, Dass CR et al (2016) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4:15040

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao T, Ho KH, Teoh SH (2003) Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 9:S103–S112

    CAS  PubMed  Google Scholar 

  39. Chen J, Chen H, Li P et al (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805

    CAS  PubMed  Google Scholar 

  40. Panseri S, Russo A, Giavaresi G et al (2012) Innovative magnetic scaffolds for orthopedic tissue engineering. J Biomed Mater Res A 100:2278–2286

    CAS  PubMed  Google Scholar 

  41. Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116–124

    PubMed  Google Scholar 

  42. Berruto M, Delcogliano M, de Caro F et al (2014) Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med 42:1607–1617

    PubMed  Google Scholar 

  43. Calabrese G, Gulino R, Giuffrida R et al (2017) In vivo evaluation of biocompatibility and chondrogenic potential of a cell-free collagen-based scaffold. Front Physiol 8:984

    PubMed  PubMed Central  Google Scholar 

  44. Di Martino A, Kon E, Perdisa F et al (2015) Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: results at 24 months of follow-up. Injury 46:S33–S38

    PubMed  Google Scholar 

  45. Filardo G, Kon E, Di Martino A et al (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41:1786–1793

    PubMed  Google Scholar 

  46. Grigolo B, Cavallo C, Desando G et al (2015) Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. J Mater Sci Mater Med 26:173

    PubMed  Google Scholar 

  47. Kon E, Filardo G (2018) A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg 26:2704–2715

    Google Scholar 

  48. Kon E, Filardo G, Di Martino A et al (2014) Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 42:158–165

    PubMed  Google Scholar 

  49. Kon E, Filardo G, Perdisa F et al (2014) A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. J Mater Sci Mater Med 25:2437–2444

    CAS  PubMed  Google Scholar 

  50. Kon E, Filardo G, Venieri G et al (2014) Tibial plateau lesions. Surface reconstruction with a biomimetic osteochondral scaffold: results at 2 years of follow-up. Injury 45:S121–S125

    PubMed  Google Scholar 

  51. Zhang Y, Pizzute T, Pei M (2014) Anti-inflammatory strategies in cartilage repair. Tissue Eng Part B Rev 20:655–668

    PubMed  PubMed Central  Google Scholar 

  52. Haumschild MS, Haumschild RJ (2009) The importance of oral health in long-term care. J Am Med Dir Assoc 10:667–671

    PubMed  Google Scholar 

  53. Williams RC, Barnett AH, Claffey N et al (2008) The potential impact of periodontal disease on general health: a consensus view. Curr Med Res Opin 24:1635–1643

    CAS  PubMed  Google Scholar 

  54. Dye BA (2012) Global periodontal disease epidemiology. Periodontol 58:10–25

    Google Scholar 

  55. Hajishengallis G (2010) Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol 25:25–37

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bartold PM, McCulloch CA, Narayanan AS et al (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 24:253–269

    CAS  PubMed  Google Scholar 

  57. Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    CAS  PubMed  Google Scholar 

  58. Maeda H, Tomokiyo A, Wada N et al (2014) Regeneration of the periodontium for preservation of the damaged tooth. Histol Histopathol 29:1249–1262

    CAS  PubMed  Google Scholar 

  59. Bodineau A, Folliguet M, Seguier S (2009) Tissular senescence and modifications of oral ecosystem in the elderly: risk factors for mucosal pathologies. Curr Aging Sci 2:109–120

    PubMed  Google Scholar 

  60. Lee CH, Hajibandeh J, Suzuki T et al (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20:1342–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bortolomai I, Sandri M, Draghici E et al (2019) Gene modification and three-dimensional scaffolds as novel tools to allow the use of postnatal thymic epithelial cells for thymus regeneration approaches. Stem Cells Transl Med 8(10):1107–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Krishnakumar GS, Gostynska N, Dapporto M et al (2018) Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine. Int J Biol Macromol 106:739–748

    CAS  PubMed  Google Scholar 

  63. Sandri M, Filardo G, Kon E et al (2016) Fabrication and pilot in vivo study of a collagen-BDDGE-elastin core-shell scaffold for tendon regeneration. Front Bioeng Biotechnol 4:52

    PubMed  PubMed Central  Google Scholar 

  64. Goncalves PF, Sallum EA, Sallum AW et al (2005) Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz J Oral Sci 4:651–658

    Google Scholar 

  65. Ho SP, Yu B, Yun W et al (2009) Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. Acta Biomater 5:707–718

    CAS  PubMed  Google Scholar 

  66. Valentijn AJ, Zouq N, Gilmore AP (2004) Anoikis. Biochem Soc Trans 32:421–425

    CAS  PubMed  Google Scholar 

  67. Arora A, Kothari A, Katti DS (2015) Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. J Mech Behav Biomed Mater 51:169–183

    CAS  PubMed  Google Scholar 

  68. Scarano A, Lorusso F, Staiti G et al (2017) Sinus augmentation with biomimetic nanostructured matrix: tomographic, radiological, histological and histomorphometrical results after 6 months in humans. Front Physiol 8:565

    PubMed  PubMed Central  Google Scholar 

  69. Panseri S, Russo A, Sartori M et al (2013) Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone 56:432–439

    CAS  PubMed  Google Scholar 

  70. Wright NC, Looker AC, Saag KG et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    PubMed  Google Scholar 

  71. Willson T, Nelson SD, Newbold J et al (2015) The clinical epidemiology of male osteoporosis: a review of the recent literature. Clin Epidemiol 7:65–76

    PubMed  PubMed Central  Google Scholar 

  72. Foundation NO (2014) 54 Million Americans affected by osteoporosis and low bone mass. https://www.nof.org/news/54-million-americans-affected-by-osteoporosis-and-low-bone-mass/. Accessed 2 June 2014

  73. Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Therap Adv Musculoskelet Dis 4:61–76

    CAS  Google Scholar 

  74. Griffith JF (2015) Identifying osteoporotic vertebral fracture. Quant Imaging Med Surg 5:592–602

    PubMed  PubMed Central  Google Scholar 

  75. Tu KN, Lie JD, Wan CKV et al (2018) Osteoporosis: a review of treatment options. P & T 43:92–104

    Google Scholar 

  76. Denaro V, Longo UG, Maffulli N et al (2009) Vertebroplasty and kyphoplasty. Clin Cases Miner Bone Metabol 6:125–130

    Google Scholar 

  77. Movrin I, Vengust R, Komadina R (2010) Adjacent vertebral fractures after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a comparison of balloon kyphoplasty and vertebroplasty. Arch Orthop Trauma Surg 130:1157–1166

    CAS  PubMed  Google Scholar 

  78. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113:102–110

    CAS  PubMed  Google Scholar 

  79. Horák P, Skácelová M, Kazi A (2017) Role of strontium ranelate in the therapy of osteoporosis. Curr Opin Pharmacol. https://doi.org/10.23937/2469-5726/1510050

    Article  Google Scholar 

  80. Society NO (2017) Drug treatments for osteoporosis: strontium ranelate (Protelos). https://theros.org.uk/media/1596/drugtreatments-for-osteoporosis-strontium-ranelate-january-2016.pdf

  81. Schumacher M, Gelinsky M (2015) Strontium modified calcium phosphate cements—approaches towards targeted stimulation of bone turnover. J Mater Chem B 3:4626–4640

    CAS  PubMed  Google Scholar 

  82. Montesi M, Panseri S, Dapporto M et al (2017) Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate. PLoS One 12:e0172100

    PubMed  PubMed Central  Google Scholar 

  83. Perez RA, Kim H-W, Ginebra M-P (2012) Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 3:2041731412439555

    PubMed  PubMed Central  Google Scholar 

  84. Sprio S, Dapporto M, Montesi M et al (2016) Novel osteointegrative Sr-substituted apatitic cements enriched with alginate. Materials (Basel) 9:763

    Google Scholar 

  85. Xu HHK, Wang P, Wang L et al (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yun MH (2015) Changes in regenerative capacity through lifespan. Int J Mol Sci 16:25392–25432

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Maredziak M, Marycz K, Tomaszewski KA et al (2016) The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int 2016, Article ID 2152435

  88. Yun YR, Jang JH, Jeon E et al (2012) Administration of growth factors for bone regeneration. Regen Med 7:369–385

    CAS  PubMed  Google Scholar 

  89. Wang Z, Wang Z, Lu WW et al (2017) Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. Npg Asia Mater 9:e435

    CAS  Google Scholar 

  90. Hou R, Zhang G, Du G et al (2013) Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids Surf B Biointerfaces 103:318–325

    CAS  PubMed  Google Scholar 

  91. Meng J, Xiao B, Zhang Y et al (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655

    PubMed  PubMed Central  Google Scholar 

  92. Meng J, Zhang Y, Qi X et al (2010) Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells. Nanoscale 2:2565–2569

    CAS  PubMed  Google Scholar 

  93. Mertens ME, Hermann A, Buhren A et al (2014) Iron oxide-labeled collagen scaffolds for non-invasive MR imaging in tissue engineering. Adv Funct Mater 24:754–762

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shan D, Shi Y, Duan S et al (2013) Electrospun magnetic poly(L-lactide) (PLLA) nanofibers by incorporating PLLA-stabilized Fe3O4 nanoparticles. Mater Sci Eng C Mater Biol Appl 33:3498–3505

    CAS  PubMed  Google Scholar 

  95. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    CAS  PubMed  Google Scholar 

  96. Singh N, Jenkins GJ, Asadi R et al (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Google Scholar 

  97. Tampieri A, D’Alessandro T, Sandri M et al (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851

    CAS  PubMed  Google Scholar 

  98. Panseri S, Cunha C, D’Alessandro T et al (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10:32

    CAS  Google Scholar 

  99. Clavijo-Jordan V, Kodibagkar VD, Beeman SC et al (2012) Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:345–365

    CAS  PubMed  Google Scholar 

  100. Assiotis A, Sachinis NP, Chalidis BE (2012) Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res 7:24

    PubMed  PubMed Central  Google Scholar 

  101. Chalidis B, Sachinis N, Assiotis A et al (2011) Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol 24:17–20

    CAS  PubMed  Google Scholar 

  102. Glazer PA, Heilmann MR, Lotz JC et al (1997) Use of electromagnetic fields in a spinal fusion. A rabbit model. Spine (Phila Pa 1976) 22:2351–2356

    CAS  Google Scholar 

  103. Grace KL, Revell WJ, Brookes M (1998) The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopedics 21:297–302

    CAS  PubMed  Google Scholar 

  104. Yan QC, Tomita N, Ikada Y (1998) Effects of static magnetic field on bone formation of rat femurs. Med Eng Phys 20:397–402

    CAS  PubMed  Google Scholar 

  105. Sprio S, Panseri S, Adamiano A et al (2017) Porous hydroxyapatite-magnetite composites as carriers for guided bone regeneration. Front Nanosci Nanotechnol 3:1–9

    Google Scholar 

  106. Russo A, Bianchi M, Sartori M et al (2018) Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res B Appl Biomater 106:546–554

    CAS  PubMed  Google Scholar 

  107. Tampieri A, Iafisco M, Sandri M et al (2014) Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process. ACS Appl Mater Interfaces 6:15697–15707

    CAS  PubMed  Google Scholar 

  108. Banobre-Lopez M, Pineiro-Redondo Y, De Santis R et al (2011) Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J Appl Phys 109:07

    Google Scholar 

  109. Gloria A, Russo T, D’Amora U et al (2013) Magnetic poly(epsilon-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 10:20120833

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nappini S, Bonini M, Bombelli FB et al (2011) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037

    CAS  Google Scholar 

  111. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Plouffe BD, Murthy SK, Lewis LH (2015) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Progress Phys Phys Soc (Great Britain) 78:016601

    Google Scholar 

  113. Sprio S, Sandri M, Iafisco M et al (2014) 9—composite biomedical foams for engineering bone tissue. In: Netti PA (ed) Biomedical foams for tissue engineering applications. Woodhead, Sawston, pp 249–280. https://doi.org/10.1533/9780857097033.2.249

    Chapter  Google Scholar 

  114. Ganguly R, Puri IK (2010) Microfluidic transport in magnetic MEMS and bioMEMS. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:382–399

    CAS  PubMed  Google Scholar 

  115. Amer MH, Rose FRAJ, Shakesheff KM et al (2017) Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regener Med 2:23

    Google Scholar 

  116. Yohan D, Chithrani BD (2014) Applications of nanoparticles in nanomedicine. J Biomed Nanotechnol 10:2371–2392

    CAS  PubMed  Google Scholar 

  117. Wu K, Su D, Liu J et al (2018) Magnetic nanoparticles in nanomedicine. arXiv e-prints

  118. Dilnawaz F, Singh A, Mohanty C et al (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706

    CAS  PubMed  Google Scholar 

  119. Schellenberger E, Schnorr J, Reutelingsperger C et al (2008) Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 4:225–230

    CAS  PubMed  Google Scholar 

  120. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    CAS  PubMed  Google Scholar 

  121. Yiu HH, McBain SC, Lethbridge ZA et al (2010) Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J Biomed Mater Res A 92:386–392

    PubMed  Google Scholar 

  122. Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47:5362–5365

    CAS  PubMed  Google Scholar 

  123. Patil RM, Thorat ND, Shete PB et al (2018) Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 13:63–72

    PubMed  PubMed Central  Google Scholar 

  124. Iannotti V, Adamiano A, Ausanio G et al (2017) Fe-doping-induced magnetism in nano-hydroxyapatites. Inorg Chem 56:4446–4458

    Google Scholar 

  125. Adamiano A, Wu VM, Carella F et al (2019) Magnetic calcium phosphates nanocomposites for the intracellular hyperthermia of cancers of bone and brain. Nanomedicine (Lond) 14:1267–1289

    CAS  Google Scholar 

  126. Marrella A, Iafisco M, Adamiano A et al (2018) A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. J R Soc Interface 15:20180236

    PubMed  PubMed Central  Google Scholar 

  127. Organization WH (2018) Global strategy for women’s, children’s and adolescents’ health (2016–2030): Data portal

  128. Lelieveld J, Klingmuller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yazdanyar A, Newman AB (2009) The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 25:563–577

    PubMed  PubMed Central  Google Scholar 

  130. Zhang YJ, Yang SH, Li MH et al (2014) Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy. Clin Exp Pharmacol Physiol 41:995–1002

    CAS  PubMed  Google Scholar 

  131. Huang Z, Han Z, Ye B et al (2015) Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol 762:1–10

    CAS  PubMed  Google Scholar 

  132. Allijn IE, Czarny BMS, Wang X et al (2017) Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J Control Rel 247:127–133

    CAS  Google Scholar 

  133. Zhuge Y, Zheng ZF, Xie MQ et al (2016) Preparation of liposomal amiodarone and investigation of its cardiomyocyte-targeting ability in cardiac radiofrequency ablation rat model. Int J Nanomed 11:2359–2367

    CAS  Google Scholar 

  134. Somasuntharam I, Boopathy AV, Khan RS et al (2013) Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 34:7790–7798

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Di Mauro V, Iafisco M, Salvarani N et al (2016) Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine (Lond) 11:891–906

    Google Scholar 

  136. Miragoli M, Ceriotti P, Iafisco M et al (2018) Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 10:eaan6205

    PubMed  Google Scholar 

  137. Group. USCSW (2013) US cancer statistics: 1999–2009 incidence and mortality web-based report. https://www.cdc.gov/cancer/uscs/index.htm

  138. Pedersen JK, Engholm G, Skytthe A et al (2016) Cancer and aging: epidemiology and methodological challenges. Acta Oncol 55:7–12

    PubMed  PubMed Central  Google Scholar 

  139. White MC, Holman DM, Boehm JE et al (2014) Age and cancer risk a potentially modifiable relationship. Am J Prev Med 46:S7–S15

    PubMed  PubMed Central  Google Scholar 

  140. Al-Kattan A, Girod-Fullana S, Charvillat C et al (2012) Biomimetic nanocrystalline apatites: emerging perspectives in cancer diagnosis and treatment. Int J Pharm 423:26–36

    CAS  PubMed  Google Scholar 

  141. Zheng C, Xu J, Yao XP et al (2011) Polyphosphazene nanoparticles for cytoplasmic release of doxorubicin with improved cytotoxicity against Dox-resistant tumor cells. J Colloid Interface Sci 355:374–382

    CAS  PubMed  Google Scholar 

  142. Farbod K, Sariibrahimoglu K, Curci A et al (2016) Controlled release of chemotherapeutic platinum-bisphosphonate complexes from injectable calcium phosphate cements. Tissue Eng Part A 22:788–800

    CAS  PubMed  Google Scholar 

  143. Palazzo B, Iafisco M, Laforgia M et al (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Func Mater 17:2180–2188

    CAS  Google Scholar 

  144. Iafisco M, Palazzo B, Marchetti M et al (2009) Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. J Mater Chem 19:8385–8392

    CAS  Google Scholar 

  145. Iafisco M, Palazzo B, Martra G et al (2012) Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates. Nanoscale 4:206–217

    CAS  PubMed  Google Scholar 

  146. Rodriguez-Ruiz I, Delgado-Lopez JM, Duran-Olivencia MA et al (2013) pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir 29:8213–8221

    CAS  PubMed  Google Scholar 

  147. Iafisco M, Drouet C, Adamiano A et al (2016) Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. J Mater Chem B 4:57–70

    CAS  PubMed  Google Scholar 

  148. Sarda S, Iafisco M, Pascaud-Mathieu P et al (2018) Interaction of folic acid with nanocrystalline apatites and extension to methotrexate (antifolate) in view of anticancer applications. Langmuir 34:12036–12048

    CAS  PubMed  Google Scholar 

  149. Iafisco M, Delgado-Lopez JM, Varoni EM et al (2013) Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 9:3834–3844

    CAS  PubMed  Google Scholar 

Download references

Funding

The work has received funding from the EU’s H2020 Research and Innovation Programme under the Grant Agreement no. 720834, and from the National Research Council of Italy (CNR), Research Project “Aging: molecular and technological innovations for improving the health of the elderly population” (Prot. MIUR 2867 25.11.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sprio.

Ethics declarations

Conflict of interest

The Authors declare no conflicts of interest with the content of the present manuscript.

Ethical statement

The information presented in this review, particularly the one related to in vitro and in vivo tests, is entirely published in previous literature, therefore no relevant issues exists in respect to Compliance with Ethical Standards, Ethical Approval and Informed Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tampieri, A., Sandri, M., Iafisco, M. et al. Nanotechnological approach and bio-inspired materials to face degenerative diseases in aging. Aging Clin Exp Res 33, 805–821 (2021). https://doi.org/10.1007/s40520-019-01365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-019-01365-6

Keywords

Navigation