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Abstract The model of free charged Bosons in an external constant magnetic field inside a cylinder, one of the
few locally gauge covariant systems amenable to analytic treatment, is rigorously investigated in the semiclassical
approximation. The model was first studied by Schafroth and is suitable for the description of quasi-bound electron
pairs localized in physical space, the so-called Schafroth pairs, which occur in certain compounds. Under the
assumption of existence of a solution of the semiclassical problem for which the ground state (g.s.) expectation
value of the current < �j(�x) > is of the London form, i.e., < �j(�x) >= −c|φ0(�x)|2 �A(�x), where c is a positive
constant, �A the vector potential and φ0 the one-particle g.s. wave function, as well as some regularity assumptions,
the magnetic induction may be proved to decay exponentially from its value on the surface of the cylinder. An
important role is played by a theorem on the pointwise monotonicity of the ground state wave function on the
potential.

Keywords Meissner effect · Ground state · Charged Bosons · Penetration depth · Local gauge invariance ·
Subharmonicity bound

1 Introduction: motivation and synopsis of the paper

The Meissner effect is perhaps the prototypical electrodynamic property of superconductors, and is one of the most
spectacular effects in physics. It may be stated as follows (see, e.g., [20], pg. 162):

Meissner effect If a superconductor sample is submitted to a magnetic (applied) field �H and then cooled to a
temperature T below the transition temperature, there is a critical field Hc(T ) > 0 such that, if | �H | < Hc(T ),
the field is expelled from all points of the sample situated sufficiently far from the surface, i.e., beyond a certain
distance from the surface called the “penetration depth”.

It follows from the above that the Meissner effect is an extreme instance of the magnetic effects found in
substances, called diamagnetic, which are repelled from, e.g., a strong electromagnet with a sharply pointed pole
piece—one might call them complete diamagnets [34]. As such, it is necessarily a quantum phenomenon, because
classical physics explains neither paramagnetism nor diamagnetism in an equilibrium state (thermal or ground
state) [10]. The word “equilibrium” is important here and, therefore, it should be mentioned that, in contrast to
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the vanishing of electrical resistance, the Meissner effect is a phenomenon in thermal equilibrium—see [34], pg.
299 for a full justification of this assertion. An important part of the argument is directly connected to the present
paper and, therefore, we mention it here: the quantum aspect of the theory, when treated semiclassically, depends
only on the expectation value of the current �j(�x) in the equilibrium state < . > (ground state or thermal), see
the forthcoming (2.7), in case the state is an equilibrium state. When no magnetic field is present, this equilibrium
state may be assumed to be invariant under the time reversal operator τ . However, τ( �j(�x)) = −�j(�x), hence
< �j(�x) >=< τ( �j(�x)) >= − < τ( �j(�x)) >= 0. This is Bloch’s theorem (unpublished), cited in [14,34].
Thus, the phenomenon of persistent currents, unlike the Meissner effect, cannot be an equilibrium phenomenon. A
generalization of this statement beyond the semiclassical approximation for systems carrying a current was given
by Sewell [36], see also [39] for the superfluid case.

The theory of Bardeen, Cooper and Schrieffer [12]—see also the textbook accounts, too numerous to cite; we
mention only [9,20,48], which will be directly referred to in this paper—has been very successful in explaining a
variety of phenomena observed in (ordinary) superconductivity, such as the energy of the superconducting ground
state and the energy gap associated with single-particle excitations. An excellent account, to a large extent still
up-to-date, is Schafroth’s review, which appeared shortly before his untimely death [34], of which we quote: “The
most serious failing of the theory of BCS is, however, its failure to account for the electrodynamical properties of
superconductors, such as the Meissner effect and the persistent currents.”

Schafroth’s remark was due to the fact that the BCS model does not satisfy the requirement of local gauge
invariance (or, more properly, local gauge covariance, see Sect. 3): this fact was observed by the authors of [12]
themselves in a footnote in [12]: we shall refer to this problem briefly as the “gauge problem”. Many very renowned
scientists worked on the gauge problem [1–3,21], see also [38], and further references given there. Today, the best
accepted justification seems to be the one byAnderson [1–3], quoted byKadanoff [14] in his recent historical review:
“oscillations of the gap parameter or, equivalently, of the condensate wave function, produces extra states of the
system, states which rescue the gauge invariance of the BCS theory”. The type of oscillation referred to by Kadanoff
is the plasma oscillations, whose inclusion should, according to Anderson, favor the particular gauge adopted by
BCS [12] to study the electrodynamical properties of the ground state. However, as remarked by Schafroth ([34],
pg. 471), since Anderson’s starting point [1,2] was the truncated Hamiltonian of the BCS theory, “whose relation
to the complete Hamiltonian of the metal electrons (which would include the plasma oscillations) is not well-
defined, his considerations can be, at most, of heuristic value”. The more systematic construction of the “collective
excited states” by Bogoliubov [22], with energies lying in the energy gap of single-particle excitations, is spoiled
if one attempts to include the Coulomb interaction [1,2,22], see also the remarks in [34], pp 487–488), showing
that Anderson’s justification of local gauge invariance of the BCS model displays the same kind of instability.
Moreover, the validity of the concept of “approximately gauge invariant” used by him [1,2] is difficult to assess,
and the random-phase approximation [3] (see also [20] for a particularly lucid discussion) does not provide a way
of estimating the errors involved in the approximation. It is certainly impossible to reconcile such approximate
arguments with the fact that the BCS model is regarded as one of the few rigorous (mean-field) models in statistical
mechanics (see, e.g., [44] and references given there).

Although the basic (gauge covariant) model for superconductivity, the Froehlich electron–phonon system [34],
has so far resisted analysis, a serious alternative to the BCS theory arose when Yang [47] proposed that the property
of off-diagonal long-range-order (ODLRO), introduced by Penrose and Onsager [26] (see [38], 9.3.2, for the precise
definition), provides a characterization of the superconductive phase (see also chapter 5 of [18]). This proposal was
taken up by Sewell [37,38], who provided a simple and elegant proof of the following fact (here roughly stated: for
details, see Prop. 9.3.2, pg 218, of [38] or [37]): when the magnetic induction is uniform and the equilibrium state of
the system is covariant under space translations and local gauge transformations and possesses theODLROproperty,
the magnetic induction vanishes. Further assumptions related to thermodynamic stability ([38], pp. 223–224) imply
the Meissner effect (Prop. 9.4.1, pg. 255, of [38]).

Sewell’s analysis captures the conceptual essence of the Meissner effect, up to one important point: it concerns
only the bulk of the material, i.e., infinite systems. This is due to the fact that the definition of ODLRO involves
a limit whereby the distance between two points tends to infinity (see, again, [38], pg. 218. It, thereby, misses the
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important phenomenon of the penetration depth (see, e.g., [20], pg. 165). It is our objective in the present paper
to fill this gap, at least partially, by revisiting the model of the ground state (g.s) of free charged Bosons in a
constant magnetic field, in the semiclassical approximation. In spite of the simplicity of this model, we believe,
with Schafroth, who first studied it (also for nonzero temperature) [33,34], that it exhibits (in addition to being
locally gauge covariant) several of the essential features of real superconductors.

The subject of the present papermay be considered bymany to bewell understood, even by thosewho are aware of
the “gauge problem”. They would argue that the macroscopic “slippery” wave function �(�x, t), a function varying
appreciably only over distances characteristic to variations of the electromagnetic fields themselves [14,17,18],
provides a justification of theMeissner effect, as shown in several textbook treatments (see [20], pg. 165 or [10], 21-
9). It is, however, the previously mentioned concept of ODLROwhich provides a quantum, i.e., from first principles
justification of the macroscopic wave function (see chapter 5 of [18] or [14]). If one accepts this, there remains,
however, a basic unresolved conceptual problem (not just a question of mathematical rigor!): by the previously
mentioned theorem by Sewell (Prop. 9.3.2. of [38])—a nonperturbative result!—ODLRO implies, together with the
other standard assumptions of space translation and local gauge invariance) that �B = �0. It is, however, essential to
consider a �B �= �0 (with | �B| sufficiently small) to start with, to show that the field is repelled! This shows that the
assumption of a macroscopic wave function is not, a priori, justified.

In Sect. 2, we introduce the model and formulate our basic assumptions (Assumptions A.1, A.2 and B). Section
3 is devoted to local gauge covariance and properties of the current. In Sect. 4, we prove our main results. We leave
to Sect. 5—our comments on some basic physical and mathematical features of the effect, as well as open problems
and some brief remarks on the connection with the Higgs mechanism. In Sect. 6—the conclusion—we discuss what
is, in our view, the main contribution of the paper.

For a reader less interested in the mathematics, we leave the more extensive details of the proof of the main
theorem (Theorem 3) to Appendix A.

2 The model: ground state of a free charged Bose gas in an external constant magnetic field
in the semiclassical approximation

The model we shall revisit was studied by Schafroth [33], as one of the very few locally gauge invariant systems
possibly related to superconductivity. Today, it may be viewed as a model for Schafroth pairs [32] which are known
to occur in certain compounds [16,23], i.e., quasi-bound electron pairs localized in physical space, i.e., for which the
spatial extension of the pair wave function, measured by the coherence length, is small compared with the average
distance between pairs. In this case, all electrons of the band are paired, and the pairs form a dilute Bose gas (see
also the discussion in the book by Enz [9], chapter 4, pg. 180 et seq.). The Hamiltonian may be written (e = 2e0,
e0 being the electron charge):

H( �A) = h̄2

2m

∫
K

(
∇ + ie

h̄
�A(�x)

)
�∗(�x) ·

(
∇ − ie

h̄
�A(�x)

)
�(�x)d �x, (2.1)

where �(�x) and �∗(�x are the basic destruction and creation operators on symmetric Fock space F s(H), with
H = L2(K ) the (one-particle) Hilbert space of square integrable wave functions on the cylinder K , assumed to be
of radius R and height L , centered at the origin, of volume V = πR2L . We refer to, e.g., [20] pg. 91—there the �

are denoted by a—for the �, which satisfy the canonical commutation relations

[�(�x),�∗(�x ′
)] = δ(�x − �x ′

) (2.2.1)

or, in smeared form, with

�( f ) =
∫

d �x f (�x)�(�x) (2.2.2)

[�( f ),�∗(g)] = ( f, g) (2.2.3)
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for f, g ∈ H, and ( f, g) ≡ ∫
d �x f̄ (�x)g(�x) the inner (scalar) product in the Hilbert spaceH, f̄ denoting the complex

conjugate and ∗ the Hermitian conjugate or adjoint. H( �A) is the (self-adjoint) second quantization of a one-particle
operator onH ([20], pg 101), with certain boundary conditions. We shall, however, use an extended version of this
one-particle operator [see the forthcoming (2.8), (2.9)]. The current density operator in this model is [34], pg. 416:

�j(�x) = �jmom(�x) + �jLon, �B(�x) (2.3)

where

�jmom(�x) = − ieh̄

2m
: �∗(�x)∇�(�x) − �(�x)∇�(�x) : (2.4.1)

and

�jLon, �B(�x) = −e2

m
�∗(�x)�(�x) �A(�x) (2.4.2)

Above, : : denotes the Wick or normal product (e.g., [20], pg 100). since (2.4) is the momentum density operator,
we call it the momentum density component of the current; �jLon, �B is the London part ([20], (5.15), pg. 164 et seq.),
about which much will be said later on.

Let (�eρ, �eθ , �ez) be a positively oriented orthonormal basis adapted to cylindrical coordinates. We assume that the
magnetic induction �B is uniform outside the cylinder, i.e., that the system is embedded in R2 × [−L/2, L/2], and
�B(ρ, θ, z) = B�ez for ρ ≥ R (2.5)

where B is a positive constant. The semiclassical (static) model will be defined by (2.5), together with the set of
Maxwell equations for the magnetic induction �B (using the MKS system):

(∇ · �B)(�x) = 0 (2.6.1)

(∇ × �B)(�x) = μ0

(

 �B, �j(�x)
 �B

)
(2.6.2)

where

�B(�x) = (∇ × �A)(�x) (2.6.3)

and
 �B is the ground state of H( �A), assumed unique (see later). Note that the g.s.
 �B depends itself on the solution
to (2.6). At present, no existence theorem for the semiclassical model is known (see also further Remarks in Sect.
5), and we shall have to assume:

Assumption A.1
For any 0 < B < ∞, the semiclassical model has a unique solution of the form

�A(�x) =
{ Bρ

2 �eθ if ρ ≥ R
a(ρ)�eθ if ρ ≤ R ,

(2.7)

Equation (2.1) (with K now replaced by the extended region) implies that the state |
 �B) is of the form

|
 �B) = �∗(φ0)
N |
0)

(N !)1/2 (2.8.1)

where |
0) is the Fock vacuum (no-particle state), and φ0 denotes the normalized ground state wave function of
the one-particle operator

H1
�A ≡ ( �p − e �A(�x))2

2m
(2.8.2)

which, in correspondence to the embedding in R2 × [−L/2, L/2] above, will be considered as an operator on

He ≡ L2(R2, dμ(ρ, θ)) ⊗ L2((−L/2, L/2)) (2.9.1)
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The Meissner effect in the ground state 205

with

dμ(ρ, θ) = dμ(ρ)dθ with dμ(ρ) = ρdρ (2.9.2)

We assume that Neumann boundary conditions are imposed at z = ±L/2. H1
�A may be written

H1
�A =

⊕
k∈Z

H1
�A(k) (2.10.1)

where

H1
�A(k) = h̄2

2m

(
− ∂2

∂ρ2 − ∂

ρ∂ρ
+ |k + ρα(ρ)|2

ρ2 − ∂2

∂z2

)
(2.10.2)

with α(ρ) given by

α(ρ) =
{

eρB
2h̄ if ρ ≥ R ,

ea(ρ)
h̄ if ρ ≤ R ,

(2.10.3)

corresponding to the decomposition of the one-particle Hilbert space HK = ⊕k∈ZH(k)
K , with H(k)

K = H(k) ⊗
L2((−L/2, L/2); dz) ,H(k) being the Hilbert space spanned by the orthonormal basis

{�k, j (ρ, θ) = (2π)−1/2 exp(ikθ)� j (ρ)} j∈N, (2.10.4)

where {� j (ρ)} j∈N is any orthonormal basis of L2((0, R); ρdρ), the latter denoting the Hilbert space of square
integrable functions f (ρ) relative to the measure ρdρ on R+, with the inner product

< f, g >=
∫ R

0
ρ f̄ (ρ)g(ρ)dρ (2.10.5)

H1
�A(k) is a positive self-adjoint operator with purely discrete spectrum and a unique positive g.s. eigenfunction

φ0,e,k under mild conditions on a(·) (see [29], Theorem X.28, pg. 185 for self-adjointness, [29], Theorem XIII.47,
pg. 207, for discrete spectrum and uniqueness of the g.s.).

In (2.10.2), (2.10.3), ρa(ρ) = f (B) is a function of the applied constant field, and (2.10.2) implies that in the g.s.
|k + f (B)| must be minimized. Thus, k = k(B), and for large B it should be large and negative. For B sufficiently
small, however, if k(·) is a continuous function, we have k(B) = 0. In the latter case, the g.s. wave function φ0,e of
H1

�A, given by (2.8.2), satisfies

∂φ0,e(ρ, θ, z)∂θ = 0 (2.9.3)

Unfortunately, the continuity of k(B) seems to be very difficult to prove. Alternatively, since (2.6.2), (2.8.1) and
(2.8.2) show that the pair (φ0,e, �B) is coupled, an assumption only on the smallness of f (B) cannot be made
independently of φ0,e. We thus pose

Assumption A.2 There exists a 0 < B0 < ∞ such that, if B < B0, a solution of the semiclassical problem
satisfying (2.9.3) exists.

Remark 1 We shall see in Lemma 1 that Assumption A.2 is equivalent to the assumption of existence of a solution
of the semiclassical problem for which only the London form (2.4.2) of the current contributes to the r.h.s. of (2.6.2).

Under Assumption A.2, the g.s. of H1
�A lies in the k = 0 subspace, and the corresponding eigenfunction is

φ0,e,k(ρ) = φ0,e(ρ)
1

L1/2 (2.9.4)

We shall need a last regularity assumption.

Assumption B B1)a(·) ∈ C1(0,∞) is such that �B, defined by (2.6.3) is continuous and uniformly bounded in
ρ ∈ [0,∞). Furthermore, we have that: B2) φ0,e,k(ρ) has a continuous derivative φ

′
0,e,k(ρ).

Concerning Assumption B1, we do not expect better than continuity for �B, and boundedness is physically
imperative. Assumption B2 is part of the usual assumptions in Sturm–Liouville theory [46]. Continuity of φ

′
0,e,k(ρ)

is used in (A.15) of Theorem A.1. The restriction of φ0,e,k to the cylinder satisfies one of the classical boundary
conditions
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∂ f

∂n
= σ f,

where ∂ f
∂n denotes the inward normal derivative, the boundary ∂K being piecewise differentiable in the case of the

cylinder ([7], pg. 55), with σ ∈ (−∞,∞). The case σ = ∞, corresponding to Dirichlet boundary conditions, is
excluded by the strict positivity of the g.s. wave function. It is, however, difficult to say a priori which of these will
take place, given that the “potential” a(·) is not known explicitly. This is one of the advantages of the extended
framework. For the Gaussian, i.e., the uniform induction, σ , is positive and proportional to R.

Amajor issue in theMeissner effect and, indeed, in any phenomenon involving currents is local gauge invariance,
our next topic.

3 Local gauge covariance, its role in the semiclassical model, and properties of the current

In classical field theory, local gauge invariance or the gauge principle ([20], Ch. 8, pg. 304, [42], 4.2, pg. 174) allows
one to deduce the form of the field–matter interactions, whereby, specializing to global (space–time independent)
transformations, local current conservation is obtained ([42], 4.2, pg. 174). In the quantum case, local gauge
transformations may be defined by

�∗(�x) → �∗(�x) exp(ieα(�x)/h̄) (3.1.1)

�(�x) → �(�x) exp(−ieα(�x)/h̄) (3.1.2)

�A(�x) → �A(�x) + ∇α(�x) (3.2)

or, in the smeared form (2.2.2),

U−1
α �∗( f )Uα = �∗(exp(iα) f ) (3.3)

with Uα the unitary operator on Fock space given by

Uα = exp

(
−i

∫
K
d �xα(�x)ρ(�x)

)
(3.4)

and ρ the density operator

ρ(�x) = �∗(�x)�(�x) (3.5)

(this is analogous to [20], pg. 107). Local gauge covariance is defined in the quantum case by ([34], (13.31), pg.
410)

U−1
α H( �A)Uα = H( �A + ∇α) (3.6)

which is readily seen [using (2.2.1) to be satisfied by the Hamiltonian H( �A) given by (2.1)]. Specializing to
�x-independent (global) gauge transformations leads to current conservation

∂ρ(�x, t)
∂t

+ ∇ · �j(�x, t) = 0 (3.7)

with the time-dependent operators defined by the Heisenberg picture evolution under H( �A), the operators at zero
time being given by (2.3)–(2.4) and (3.5). We have ∂ρ(�x,t)

∂t = i[H( �A), ρ(�x, t)], from which (
 �B,
∂ρ
∂t 
 �B) = 0 and,

thus, by (3.7),

∇ · (
 �B, �j(�x)
 �B) = 0 (3.8)

(3.8) is, of course, a necessary condition for the validity of (2.7), the basic equation of the semiclassical theory.
It should be remarked that equations (2.6) should be considered in the distributional sense, i.e., as functionals on
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�D(�), the space of vector-valued functions whose components are C∞ functions with compact support in (some
open region) � (see, e.g., [13], pp 47–51), with the boundary conditions also taken in the distributional sense. This
is specially important here, because even in the simple case (2.3)–(2.4.2), the current is not an operator when taken
pointwise, and, thus, (3.7) and (3.8) are formal calculations, which may bemade rigorous by employing the smeared
forms ρ → ρ( f ), �j → �j( f ), where f is a smooth function of compact support in R3; (∇ · �j)( f ) = −�j · (∇ f ). We
shall assume all components of �f ∈ �D(�) equal to a certain f . TheMaxwell equation (2.6.2) ismore precisely stated
in the form (∇ × �B)( f ) = μ0(
 �B, �j( f )
 �B); taking a sequence { f �x

n }n≥1, with f �x
n → δ(�x) in the distributional

sense, we may obtain (2.6.2) in the form

(∇ × �B)(�x) = μ0 lim
n→∞

(

 �B, �j( f �x

n )
 �B
)

(2.6.2’)

in case the limit on the r.h.s. of (2.6.2) exists, which will be seen to hold shortly.
We now come back to (2.10.4) and, provisionally, consider φ0,e(ρ, θ) instead of φ0,e,k . The restriction of

φ0,e(ρ, θ) to the cylinder will be denoted by φK
0,e(ρ, θ); the variable z will not play any further role beyond

(2.9.4) and will be omitted. We have:

Lemma 1 Assume that φK
0,e(ρ, θ) is independent of θ , i.e., satisfies

∂φK
0,e

∂θ
= 0 (3.9)

Then,

lim
n→∞

(

 �B, �j

(
f �x0
n

)

 �B

)
=

(

 �B, �jLon, �B(�x0)
 �B

)
= −e2N |φK

0,e(ρ0)|2
m

a(ρ)�eθ (3.10)

for any �x0 = (ρ0, θ0) ∈ K.

Proof We use (2.6.2′) and write
(

 �B, (�∗∇�eθ �)( f �x0

n )
 �B
)

= −
(
�

(
f �x0
n

)

 �B, �(−∇�eθ f

�x0
n )
 �B

)

Using (2.2.3) and (2.8.1),

�(
(
∇�eθ f

�x0
n

)
|
 �B) = N 1/2

(
∇θ f

�x0
n , φK

0,e

) �∗(φK
0,e)

N−1

((N − 1)!)1/2 |
0)

Since f �x0
n is a smooth approximation of compact support to δ(ρ − ρ0)(1/ρ)δ(θ − θ0), an integration by parts,

together with (3.9), yields (∇�eθ f
�x0
n , φK

0,e) = 0.
Similarly

(
 �B, (: �∇�eθ �
∗ :)( f �x0

n )
 �B) = (
 �B, (∇�eθ �
∗�)( f �x0

n )
 �B) = 0

and thus

lim
n→∞(
 �B, �jmom( f �x0

n )
 �B) = 0 (3.11)

A similar, but even simpler, Fock space computation, together with (3.11), yields (3.10). ��
The standard choice of operators�,�∗, satisfying (2.2.1), implies a choice of phase α(�x) = 0 in (3.1.1), (3.1.2).

Alternatively, from (3.3), this choice corresponds to a choice of a real ground state wave function φ0. Choosing a
different α = α(�x) instead, one obtains from (2.4.1) an additional term on the r.h.s. of (3.11),

lim
n→∞

(

 �B, �jmom( f �x0

n )
 �B
)

= e2N

m
|φK

0,e(ρ0)|2(∇α)(�x0) (3.12.1)
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from which

lim
n→∞

(

 �B, �j( f �x0

n )
 �B
)

= −e2N

m
|φK

0,e(ρ0)|2( �A(�x0) − (∇α)(�x0)) (3.12.2)

The additional transformation (3.2) yields back the original form (3.10) and, therefore, the result (3.10), under the
assumption (3.9), is gauge invariant, although the splitting (2.3)–(2.4) is not. For this reason, (2.4.2) should be
written more precisely:

�jLon, �B(�x) = −e2

m
�∗(�x)�(�x)( �A(�x) − (∇α)(�x)), (2.4.2’)

where ∇α is a gauge function which balances the gauge non-invariance of �A, in order that a gauge invariant
combination results.

4 Main results: the London form of the current and the Meissner effect

We start our considerations recalling, once again, (2.10.1)–(2.10.4). By the choice (2.7) for the vector potential,
which we have shown in Sect. 3 not to entail any loss of generality, only the �eθ -component of the gradient appears
in (2.4.1), which acts on the exp(ikθ)-part in (2.10.4). From (2.10.2), it is clear that, for B sufficiently large, the
ground state will lie in a sector of large (in this case negative) k, not in the sector k = 0 in (2.10.4). Thus, Lemma
1 does not apply and both components in (2.3) contribute to the current, and these should cancel each other, being,
thus, consistent with ∇ × �B = �0 in Eq. (2.6.2′), and a constant �B = B�ez penetrating the sample.

Assume, provisionally, that

a(ρ) = ρB

2
(4.1)

in (2.10.3). When, however, B decreases beyond the value given by

a ≡ λR2 < 1/2 (4.2)

with

λ = eB

2h̄
(4.3)

it follows from the simple inequality

|k + eBρ2

2h̄ |2
ρ2 ≥ min

k∈{0,−1}
|k + eBρ2

2h̄ |2
ρ2 ≥

(
eB

2h̄

)2

ρ2 = λ2ρ2 (4.4)

that H1
�A(k), given by (2.8.2), satisfies

H1
�A(k) ≥ V 1 − h̄2

2m

∂2

∂z2
(4.5)

where

V 1 = h̄2

2m

(
− ∂2

∂ρ2 − ∂

ρ∂ρ
+ λ2ρ2

)
(4.6)

is the harmonic oscillator Hamiltonian in two dimensions. Not unexpectedly, the ground state eigenfunction φG is
a Gaussian, with

φG(ρ, θ, z)2 = φG(ρ)2 = h(ρ)

πR2L
(4.7.1)

with
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h(ρ) = λR2

1 − exp(−λR2)
exp(−λρ2) (4.7.2)

and corresponding eigenvalue

E0 = h̄2λ

m
. (4.8)

Thus, we see that, under assumption (4.1), (3.9) applies, and the fact that the r.h.s. of (3.10) is nonzero (as long as
�B �= �0) conflicts with the assumption that �B = B�ez inside the sample, which implies ∇ × �B = �0 . This shows
that the provisional assumption (4.1) is incorrect, and that the field inside the sample is inhomogeneous. We must,
therefore, come back to the general Ansatz (2.7). For the inhomogeneous problem, the corresponding radial operator
is

Q1 =
⊕
k∈Z

Q1(k) (4.10.1)

where

Q1(k) ≡ h̄2

2m

[
− ∂2

∂ρ2 − ∂

ρ∂ρ
+ |k + ρα(ρ)|2

ρ2

]
(4.10.2)

α being given by (2.10.3). We also write explicitly the operator corresponding to k = 0,

Q1(0) ≡ h̄2

2m

[
− ∂2

∂ρ2 − ∂

ρ∂ρ
+ α(ρ)2

]
(4.10.3)

Its ground state eigenfunction φ0,e may be written in analogy to (4.7) as:

φ0,e(ρ)2 = g(ρ)

πR2L
(4.10.4)

Note that the normalization (4.10.4) does not mean, of course, that g does not depend on the parameter R—(4.7.2)
shows that this is not true in the homogeneous case—but, by Assumption B2, we have that

g(·) is continuous in [0,∞) and 0 ≤ min
0≤ρ≤R

g(ρ) ≤ 1 (4.10.5)

By (2.7), (2.6.3) and Assumption B.1,

∂(ρa(ρ))

ρ∂ρ
= B(ρ) (4.11.1)

from which we may choose

a(ρ) =
∫ ρ

0 dρ
′
ρ

′
B(ρ

′
)

ρ
(4.11.2)

We now invoke Assumption A.2 and assume that B < B0. By Lemma 1, together with (4.11.1) and (4.11.2), (2.6.2′)
leads to the integrodifferential equation

ρ
dB

dρ
= νg(ρ)

∫ ρ

0
dρ

′
ρ

′
B(ρ

′
) (4.11.3)

and (2.5), to the boundary condition

B(R) = B (4.11.4)

Above,

ν = e2dμ0

m
(4.12.1)

where

d = N

V
(4.12.2)
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is the density of particles. The Hamiltonian is Q1(0), given by (4.10.3), and g(ρ) is defined by (4.10.4).
We write (4.2), (4.3), which were introduced in connection with the homogeneous case, in the form

B(R) = B ∈ (0, Hc(R)) (4.13.1)

with

Hc(R) ≡ h̄

eR2 (4.13.2)

We have

Theorem 1 Let

B < min{B0, Hc(R)}. (4.15)

Then, under Assumptions A.1 and B, a necessary and sufficient condition for the existence of the solution specified
in Assumption A.2 is the inequality

0 ≤ B(ρ) ≤ B (4.16.1)

which, by (4.11.2), is equivalent to the inequality

0 ≤ a(ρ) ≤ ρB

2
(4.16.2)

where B(·) denotes the unique bounded solution of (4.11.3), (4.11.4) which follows from Assumptions A.1 and A.2.
Moreover,

B(·) is monotonically decreasing in the interval [0, R] (4.16.3)

Moreover, Assumptions A.1 and A.2 are equivalent to the statement that only the London part of the current (2.4.2′)
contributes to the expectation value on the r.h.s. of the Maxwell equation (2.6.2′). In the present context, this
expectation value is of the form

(

 �B, �jLon, �B(�x)
 �B

)
= −e2

m
N |φ0,e(ρ)|2 �A(�x) (4.16.4)

with φ0,e independent of θ , and

�A(�x) = a(ρ)�eθ (4.16.5)

where a(·) is given by (4.11.2), with B(·) the unique solution of (4.11.3), (4.11.4).

Proof We write (4.11.3) and (4.11.4) together in the form

B(ρ) = B − ν

∫ R

ρ

dug(u)/u
∫ u

0
dvvB(v) (4.17)

or

(AB)(ρ) ≡ B − ν

∫ R

ρ

dug(u)/u
∫ u

0
dvvB(v) = B(ρ) (4.18)

where A is an operator from the complete metric space MB,a of continuous functions h : [R − a, R] → R such
that

0 ≤ h(ρ) ≤ B (4.19)

and

||h1 − h2|| ≡ max
ρ−R≤a

|h1(ρ) − h2(ρ)| (4.20)
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Using, now, (4.10.5), let L be such that

max
0≤ρ≤R

[νg(ρ)] ≤ L (4.21)

and a be fixed and chosen such that

a < min

{
1/L ,

1

LB

}
. (4.22)

Then, it follows from the definition (4.18), the positivity of g, and (4.19) that A maps MB,a into itself and is a
contraction from MB,a to itself, i.e.,

||A(h1 − h2)|| < ||h1 − h2|| for h1, h2 ∈ MB,a (4.23)

Thus, denoting by B the constant function, equal to B for all ρ ∈ [0, R], (4.17) has a unique solution in the space
MB,a , which may be uniquely extended to the whole interval [0, R] by the contraction mapping principle (see, e.g.,
[4], Theor. 2, Ch. 4, pg. 209).

Assume, now, that only (4.16.1) and (4.13.1), (4.13.2) hold. The ground state of Q1, given by (4.10.1), (4.10.2),
lies in the k = 0 subspace, because

|k + eρa(ρ)
h̄ |2

ρ2 ≥ min
k∈{0,−1}

|k + eρa(ρ)
h̄ |2

ρ2 ≥ e2a(ρ)2

h̄2
(4.24.1)

because, by (4.16.2) and (4.13.1), (4.13.2), supρ∈[0,R]
eρa(ρ)

h̄ < 1/2. This implies (2.9.3).
The equivalence of (4.16.4) and (4.16.5) to Assumption A.2 follows from the fact that, on one hand, if (2.9.3) is

assumed, only the London part of the current (2.4.2′) contributes to the r.h.s. of (2.6.2′) by Lemma 1. The converse
follows from the fact that on the r.h.s. of (4.16.4) the wave functionmust be θ -independent, a consequence of (2.6.2′)
and (2.7). Finally, (4.16.3) follows from (4.16.1) and (4.11.3). ��
Corollary 1 Assumptions A.1, A.2 and B imply inequalities (4.16.1) and (4.16.2).

Coming back to the operator Q1(0), given by (4.10.3). Its lowest eigenvalue Ẽ0 satisfies, by theminimax principle
and (4.16.2),

0 ≤ Ẽ0 ≤ E0 (4.24.3)

where E0 is given by (4.8). We note further that α(ρ)2, given by (2.10.3), satisfies

0 ≤ α(ρ)2 ≤ e2ρ2B2

4h̄2
(4.24.4)

By (4.10.3), α(ρ)2 acts like a positive potential in R2, which is bounded by a harmonic potential. We summarize
some known results on Q1(0):

Theorem 2 Under Assumption B1, Q1(0) is essentially self-adjoint on C∞
0 (R2), and has a non-degenerate strictly

positive ground state, with wave function φ0,e satisfying the estimate: for any a > 0 , there exists Ca > 0 such that

|φ0,e(ρ)| ≤ Ca exp(−aρ) (4.25)

Proof See [28], TheoremX.28, pg. 184; [29], TheoremXIII.67, pg. 249. (4.26) follows from [29], TheoremXIII.67,
pg. 249, together with the method of proof of [29], Theorem XIII.70, pg. 251. ��
Remark 2 It is expected from (2.7) that φ0,e decays like a Gaussian at infinity.

(4.16.3) allows for an arbitrarily slow decay inside the sample, but the characteristic property of the Meissner
effect is the exponential decay of the magnetic induction. For this purpose, a concrete representation of B(·) is
required, which is provided by:
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Theorem 3 Under Assumptions A.1, A.2 and B, there exists a number 0 < p < ∞ such that, if
√

νb > p (4.26)

then

B(b) ≤ B exp[−
√

ν
∫ R
b dρ(g(ρ))1/2

2
] ≤ B exp[−c

√
ν(R − b)] (4.27.1)

where g(·) is defined by (4.10.4), and

c = 0.4389. (4.27.2)

The proof of this theorem is given in Appendix A (Theorems A.1 and A.2). To give an idea what is involved in the
proof, consider the case

g(ρ) = constant = s > 0

in (4.11.3). Differentiating (4.11.3), we get

ρ
d2B

dρ2 + dB

dρ
= νsρB(ρ)

which, upon division by ρ, becomes

d2B

dρ2 + dB

ρdρ
− νsB(ρ) = 0 (4.27.3)

Equation (4.27.3), together with the boundary condition (4.11.4), has the unique bounded solution

B(ρ) = BI0[(νs)1/2ρ]
I0[(νs)1/2R] (4.27.4)

where I0 is the modified Bessel function of zero order ([5], pg. 374). Since, asymptotically, I0(z) ∼ exp(z) as
z → ∞ ([5], pg. 377), (4.27.4) implies that the solution decays exponentially. The proof in Appendix A follows this
idea closely. The quantity ν, given by (4.12.1), is such that

√
ν =

√
e2d

ε0c2m
= δ−1 (4.27.5)

Thus,

δ =
√

ε0mc2

de2
(4.27.6)

is the ”penetration depth”. It is independent of the size of the sample and, with physical data, of the order of 1000
Angstrom, agreeing precisely with the literature ([20], pg. 165). It is to be noted that, as usual, with macroscopic
data, one is within the asymptotic domain (4.26). For example, with R = 10 cm, b = R − 10δ, say, b/δ = 106,
in the secure domain of asymptoticity of I0, with a decay of exp(−10). Note, however, that these considerations
depend on the fact that the constant s in (4.27.1) is a number of order one, or, more precisely (see theorems A.1 and
A.2 in Appendix A) that the minimum of the function g(·) on [0, R] is of order one. Recalling (4.10.5), we have by
Theorem 2 that

0 < min
ρ∈[0,R] g(ρ) ≤ 1 (4.27.7)

The lower bound in (4.27.7) may, however, depend on R (e.g., be O(1/R)), or, in principle, be a ridiculously small
R- independent number. Both alternatives would be inconclusive regarding a physically reasonable [i.e., of δ of
order (4.27.6)] exponential decay.
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The situation is saved, however, by the subharmonic comparison theorem due to Deift, Hunziker, Simon and
Vock [24], which we state in the case of special interest to us:

Theorem 4 Let W ≥ V ≥ 0 on Rn, f and g be continuous, �| f | ≤ V | f |, and �|g| ≥ W |g| in the distributional
sense. If f and g → 0 as x → ∞, then |g| ≤ | f | on Rn.

In the case of ground states, | f | = f , |g| = g and Theorem 4 may be stated as a theorem on the monotony of
the g.s. wave function in the potential, see [43], 4.3.32, pg. 232. To sketch the proof for the reader’s convenience,
let D = {x ∈ Rn; g > f }. On D, �(g − f ) ≥ Wg − V f ≥ 0, and thus g − f is subharmonic (see, e.g., [19], 9.2,
9.3), and thus attains its maximum on the boundary of D, which extends to infinity. Since f = g → 0 as x → ∞,
continuity implies that g cannot exceed f on D and, therefore, D is empty.

Let, now,

A ≡ Q1(0) − E0 + Ẽ0

2
(4.28.1)

and

B ≡ V 1 − E0 + Ẽ0

2
(4.28.2)

with V 1 given by (4.6), Q1(0) by (4.10.3), E0 by (4.8) and Ẽ0 the g.s. eigenvalue of Q1(0), satisfying (4.24.3).

Theorem 5 Under Assumptions A.1, A.2 and B for 0 ≤ ρ ≤ R,

g(ρ) ≥ h(ρ) (4.28.3)

where g and h are defined by (4.10.4) and (4.7), respectively. Further

min
0≤ρ≤R

(g(ρ))1/2 ≥ 0.8779 (4.28.4)

Proof By (4.28.1) and (4.28.2),φ0,e is the g. s. eigenfunction of A, andφG the g.s. eigenfunction of B, corresponding

to the eigenvalues E0−Ẽ0
2 and Ẽ0−E0

2 , respectively. Thus, identifying V (ρ) = α2(ρ), W (ρ) = eρ2B2

4h̄2
(see (4.24.4)),

we have 0 ≤ V ≤ W by (4.16.2) and corollary 1. Further, with f = φ0,e, g = φG , we find � f − V f ≤ 0,
�g − Wg ≥ 0. It follows by Theorems 2 and 4 that (4.28.3) holds. By (4.8) and (4.2), (4.3), for a = 1/2,
(h(R))1/2 = 0.8779 ≤ (h(ρ))1/2 ≤ (h(0))1/2 = 1.1272, and (h(ρ)1/2 grows monotonically when a decreases.
This yields (4.28.4). ��

Employing Theorem 5, the reader will find a complete proof of Theorem 3 in Appendix A (Theorems A.1 and
A.2).

4.1 The Meissner effect

Let

�B(ρ) = B�ez for ρ ≥ R (4.29.1)

denote, as before, the induction field at the boundary and outside the cylinder. For B satisfying (4.2), (4.3), the
magnetic induction inside the cylinder is nonhomogeneous and, therefore, the magnetization M(�x) at T = 0 is
defined up to a gradient by the formula of classical magnetostatics

�jLon, �B(�x) = ∇ × �M(�x) (4.29.2)

The thermodynamic formula for the magnetization

�M = − ∂EN
0

V ∂B
�ez (4.29.3)
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where

EN
0 = N Ẽ0 (4.29.4)

is the ground state energy of the system of N particles, requires a uniform source induction field, but should agree,
by (4.29.1), with the boundary value of �M(�x), which we denote by �M(R). By (4.29.3) and (4.29.4), we thus obtain

�M(R) = −dτ �ez (4.30.1)

where

τ ≡
(

∂ Ẽ0

∂B

)

B=0

(4.30.2)

By the minimax principle, Ẽ0 grows with B, and thus τ ≥ 0. We assume

0 < τ and τ is strictly increasing in B (4.30.3)

We recall the defining relation for the (applied) magnetic field �H ,

�B = μ0 �M + �H (4.31)

and let

�H = H �ez (4.32)

We also define the quantity

H0 = μ0dτ (4.33)

Proposition 1 The Meissner effect Let Hc,R denote the r.h.s. of (4.15). The following assertions hold: (a) if
H0 < H < H0 + Hc,R there is exponential decay of the magnetic induction B inside the sample, starting from a
boundary value B f ∈ (0, Hc,R); (b) B = 0 for all H ≤ H0; (c)for H > (H0 + Hc,R), B = H − H0.

Proof (a) follows directly from Theorem 3. For H = H0, the boundary value of the magnetic induction is B =
B f = 0 by (4.31). The magnetic induction B remains zero for H < H0, because, assuming B �= 0, (4.31) and
(4.30.3) yield a negative boundary value B, contradicting the assumption (2.5). This concludes the proof of (b), and
(c) follows immediately from (4.31). ��

Proposition 1 implies that the critical field Hc(0), for zero temperature, defined in the description of theMeissner
effect given in the introduction, equals

Hc(0) = H0 + Hc,R (4.34)

Even if Hc,R is not optimal, it is expected that Hc,R = o(R) as R → ∞, i.e., it should vanish in the thermodynamic

limit, being a ”finite-size correction” to the thermodynamic results ( �H0 = H0
�B

| �B| ):

�B( �H) = 0 if | �H | < H0 and = �H − �H0 if | �H | > | �H0| (4.35)

obtained by Schafroth ([34], pg. 425; [33], (5.12), pg. 471). He uses, however, a homogeneous field throughout
and, therefore, his formulas do not seem to have a bearing to the actual problem. Although assumption (4.30.3)
may be argued to be generically true, its verification is nontrivial. The formula for the magnetization implies that
the ”active field” �H ′

is identified with the microscopic field, i.e., the magnetic induction �B. This is made plausible
by Schafroth ([33], pg 471).
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5 Basic features, the connection to the Higgs effect and open problems

In this paper, we presented a proof, under Assumptions A.1, A.2 and B, of the Meissner effect in a (necessarily)
gauge covariant model, that of the ground state of free charged Bosons in a constant external magnetic field, in the
semiclassical approximation. We summarize here what we found to be the essential basic features underlying the
effect, which, in spite of the simplicity of the model, may also be expected to hold in a (still open) more realistic
gauge-covariant model with interactions.

Two basic features are: (a) the pairing mechanism: Bosons versus Fermions; (b) finite-size corrections to thermo-
dynamics, surface current and magnetization, the form of the penetration depth and the analogy to charge screening.

Concerning (a), we note that the effect depends crucially on the Bosonic character of the ground state |
 �B)

given by (2.8.1). Although only bosons are considered in this paper, they are interpreted as Schrafoth pairs, i.e.,
bound states of two fermions, in the applications (see the introduction and the beginning of Sect. 2). We may thus
ask what happens with single fermions. For free Fermions in a constant magnetic field, the expectation values of
the momentum-density and London parts of the current (2.4.1) and (2.4.2′) almost cancel each other, leaving out a
weak diamagnetism (see, e.g., [48], pg. 344: a proof proceeds along the same lines by which Landau diamagnetism
is proved, see [48], pg. 285). Therefore, the ”pairing phenomenon” in this sense is expected to be crucial.

Point (b) appears in the statement of the Meissner effect, a.) of proposition 1: the effect appears as a finite-size
correction to the thermodynamics (4.35). There is an analogy to the charge-screening phenomenon ([20], pg. 142):
(only) an infinite extended system, being an infinite reservoir of particles, accounts for an excess or deficiency of
a local charge, not being in contradiction with the conservation of the number of particles. For a finite system,
the creation of a polarization cloud around a given charge is accompanied by an accumulation of opposite charges
at the surface of the system (surface polarization, see fig. 4.2 of [20], pg. 143). In close analogy, the estimate
(4.27.1) of Theorem 3 shows that the current also decays exponentially, and is, thus, also confined to a region of
only a few penetration depths from the surface. Therefore, indeed, the essential physical mechanism responsible
for the effect is surface currents which create a field − �B exactly compensating the contribution of the magnetic
induction �B imposed on the sample, at all points inside the metal sufficiently far from the surface ([20], pg. 166). By
(4.29.3), we see that this shielding corresponds to a surface magnetization �M (analogous to the surface polarization
in charge screening), familiar from electrostatics, but obtained here in a quantum context (albeit semiclassical). A
very important point is that the penetration depth (4.27.6) is independent of the size of the sample: it agrees, in fact,
very well with the conventional theory ([20], pg. 165).

With regard to the open problems, it is clear that Assumptions A.1 and A.2—the existence of a solution of the
London type—are the most serious and challenging one. We have already commented on Assumption B in the
introduction. Concerning the restriction in Assumption A.1 to cylindrically symmetric solutions, we should only
like to remark that the only symmetry breaking expected in superconductivity (as well as in superfluidity), connected
to ODLRO, is the breaking of a global gauge symmetry, see [39], restricted, however, to infinite systems.

It should be pointed out that (2.6) is the standard formulation of the “back-reaction” of the quantum field �j on the
classical field �B (see [34]), analogous to the back reaction of the energy-momentum tensor quantum field upon the
space–time geometry in the semiclassical Einstein equation ([45], Chapter 4, pg.98). Under conditions analogous to
the ones stated in the latter reference, presently, that the fluctuations of �j in
 �B are small comparedwith |(
 �B , �j
 �B)|
(which may be expected for macroscopic systems, see, e.g., the analogous discussion of the relative fluctuation
of the mean number of particles in the BCS ground state in [20], pg. 192), and, further, that the fluctuations of
the quantized field associated with �B in the corresponding state (quantum vacuum or thermal state) are small in
comparison with the average of the square of the field ([30], pg. 35), the semiclassical model may be expected to
be a good approximation. However, as Wald remarks (op. cit. pg. 98), “even the analogous (to Einstein’s equation)
justification of the semiclassical Maxwell equation ∇a Fab = −4π < jb > in quantum electrodynamics has not yet
been given”. The only mathematical result we know on the semiclassical model concerns the semiclassical Einstein
equation in a cosmological scenario, for which Pinamonti [25] was able to show the existence of a local solution:
for this purpose, the (vacuum) state of the field was assumed to have certain natural properties in that context. It
seems, therefore, that the semiclassical model poses an interesting open mathematical problem. Its solution would

123



216 W. F. Wreszinski

not only clarify the Assumptions A.1, A.2 and B, as well as (4.30.3), but also possibly indicate how to construct a
“self-consistent” solution starting from initial data, e.g., (B, φG(ρ)).

We should like to make some brief remarks on the relation to the Higgs effect in relativistic quantum field theory
(rqft). This analogy is popularly related to spontaneous symmetry breaking (s.s.b.), see, e.g., [20], pp. 305-311, but
the actual connection between the London current (4.16.4) (with |φ0,e(ρ)|2 = μ0

V and (4.27.5), (4.27.6), and the
identification (δ)−1 = m, m being the vector meson mass) and rqft proceeds by way of the so-called Schwinger
mechanism of dynamical mass generation [35], see the preface of [11] and references given there (Farhi and Jackiw
actually refer there to “London-Schwinger screening”). As remarked in this section, the surfacemagnetization in the
Meissner effect is analogous to the surface polarization in charge screening, and, roughly speaking, the statement
analogous to the vanishing of the magnetic induction is that of zero “charge” Q = ∫

j0(�x)d �x = 0, where j0
denotes the charge density [31]. A deep theorem to this effect in rqft uses local commutativity (microcausality) in
an essential and subtle way, and is due to Swieca [41] and Buchholz and Fredenhagen [6]. On the other hand, s.s.b.
requires, formally, Q = ∫

j0(�x)d �x = ∞, due to existence of vacuum fluctuations occurring over all space, due to
translation invariance [40] : these are the real source of s.s.b.. These remarks, due in essence to Schroer (see [31] and
references given there), exemplify that the usual s.s.b. textbook treatment has no bearing to the real Meissner-rqft
analogy.

The free model treated in this paper could be improved by consideration of the weakly interacting dilute Boson
gas of Huang et al. [15] in a magnetic field. In the absence of the field, the model exhibits a gap, which might render
it specially interesting as a model of Schafroth pairs in a magnetic field. The present model has been treated from
different points of view in [8,27].

6 Conclusion

By Theorem 1, we have seen that Assumption A.2 may be phrased in the equivalent form that only the London part
of the current (2.4.2′) contributes to the expectation value on the r.h.s. of the Maxwell equation (2.6.2′). In most
textbooks, and also basic references [33,34], it is asserted that the Meissner effect follows, once it is established that
the current is of London type; the approach using the macroscopic wave function [20] also makes this assumption.
But—together with Assumption A.1 of existence and unicity of a cylindrically symmetric solution, with some
regularity properties (Assumption B)—this is our basic assumption too! What is, then, the main contribution of the
present article?

In our view, our contribution lies in the study of the role played by the seemingly harmless term |φ0,e(ρ)|2
in the expectation value of the London current (4.16.4) (as commented in the previous section, this feature is
absent in relativistic quantum field theory, because the analogue of the square of the wave function is a constant).
Since this form is expected to take place only for sufficiently small fields (4.15), the usual treatment of the effect
(see [34] and references given there) uses perturbation theory starting from the free solution, but the latter is not
applicable, because, by Theorem 2, the spectrum in the presence of any boundary magnetic induction (4.29.1),
however small B, is discrete, in contrast to the continuous spectrum in the free case. Most textbooks (see, e,g.,
[48], pg. 344) assume that the g.s. wave function is, for sufficiently small fields, slowly varying or “rigid”, i.e.,
insensitive to the magnetic induction, and thus the g.s. expectation value of the momentum-density part of the
current (2.4.1) is “close” to the expectation value in the g.s. wave function of the free Hamiltonian, which is zero
(see also [34]).

In Theorem 1, it was shown that the assumption that the current is of London type implies the basic inequality
(4.16.2). The latter is the main ingredient of the basic Theorem 4 on the pointwise monotonicity of the g.s. wave
function on the potential: the homogeneous case provides as comparison wave function the Gaussian solution for
the ground state, which is rather flat for small fields. Actually, the wave function inside the sample need not be
slowly varying, but, by the bound of theorem 5, it necessarily exceeds the Gaussian wave function pointwise. This
is used in Theorem 3 to show exponential decay of the magnetic induction inside the sample, with a reasonable
value for the penetration depth.
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The main difficulties exposed in the previous paragraph remind us that the ground state wave function is basi-
cally unknown, because (φ0,e, �B) is a coupled system (see the discussion after (2.10.5) up to remark 1). In hav-
ing made issues such as this one precise, we hope to stimulate further mathematical work on this fascinating
subject.
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which is crucial.

7 Appendix A: Proof of theorem 3

We recall (4.11.3),

ρ
dB(ρ)

dρ
= νg(ρ)

∫ ρ

0
duuB(u) (A.1)

with ν given by (4.12.1), (4.12.2), and g by (4.10.4). If g(ρ) = constant = c > 0, we have seen in the main text that
the unique bounded solution of (A.1) with the boundary condition

B(R) = B (A.2)

is given by

B(ρ) = BI0((νc)1/2ρ)

I0((νc)1/2R)
(A.3)

This motivates the following approach. Consider, now, the operator A defined by (4.18), and choose

0 < δ < a (A.4)

where a is given in (4.22), and let gδ be defined as

gδ = g(R − lδ)χ(R − (l + 1)δ, R − lδ) for l = 0, 1, · · · , K (A.5)

where χ(a, b) is the characteristic function of the interval (a, b), defined as

χ(a, b)(ρ) ≡ 1 for a < ρ ≤ b and zero otherwise (A.6)

Let Aδ denote the operator defined as in (4.18), but replacing g by gδ there. Note that (AδB) is a continuous function
of ρ for g ∈ L1(R − a, R) if B(·) is only bounded L1. The equation corresponding to (4.17) may be written as:

Bδ(ρ) = B − ν

∫ R

ρ

dugδ(u)/u
∫ u

0
dvvBδ(v) (A.7)

or, alternatively,

(AδBδ)(ρ) = Bδ(ρ) (A.8)

The proof of Theorem 3 in the main text is completed by the following result:

Theorem A.1 Equations (4.18) and (A.7) with the boundary condition (A.2) have both unique solutions in the same
space MB,a defined in Theorem 1, for any fixed a satisfying (4.22) and any δ satisfying (A.4), given, respectively,
by

B(ρ) = lim
m→∞(AmB)(ρ) (A.9)

and

Bδ(ρ) = lim
m→∞(Am

δ B)(ρ) (A.10)
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Moreover, the above solutions may be uniquely extended to the whole interval [0, R]. Denoting the extensions by
the same symbols, there exists a constant f > 0 such that

max
0≤ρ≤R

|B(ρ) − Bδ(ρ)| ≤ f δ (A.11)

In (A.9), (A.10), B denotes the constant function, equal to B for all ρ ∈ [0, R], and Am denotes the m-fold
composition of A with itself.

Proof Since |gδ| ≤ L with the same L as g by the definition (A.5), (A.6), and gδ ≥ 0, Aδ is also a contraction from
MB,a to itself. The first assertion of Theorem A.1, together with (A.9) and (A.10), follows from the contraction
mapping principle (see, e.g., [4], Th. 2, Ch. 4, pg. 209). The existence of unique extensions to the whole interval
follows from the same theorem.

We now prove (A.11). Because A, defined by (4.18), and Aδ , defined by (A.8), are not linear operators, due to
the B-term in (4.17) (resp. (A.7)), we express equations (4.17) (resp. (A.7)) in terms of the operators C (resp. Cδ)
obtained by omitting the term B in (4.17) (resp. (A.7)). The operators C and Cδ are then linear, their contractivity
follows from that of A and Aδ , and

Cm − Cm
δ =

m∑
γ=1

Cm−γ (C − Cδ)C
γ−1
δ (A.12)

(A.12) is valid for any two bounded linear operators, such as C and Cδ on MB,a . We now apply both members of
(A.12) to B. Since C and Cδ are contractions from MB,a to itself,

||(Cm − Cm
δ )B|| ≤

m∑
γ=1

||Cm−γ ||||C − Cδ|||Cγ−1
δ B|| (A.13)

where ||A|| = sup f ∈MB,a
||A f ||/|| f || is the operator norm on MB,a . By definitions of C , Cδ , g and gδ , we obtain

||C − Cδ|| ≤ νBrδ (A.14)

where

r = max
ρ∈[0,R] |g

′
(ρ)| (A.15)

which is finite by Assumption B2. Representing now the functions B(ρ) and Bδ(ρ) as MB,a vectors B and Bδ , Eqs.
(4.17) and (A.7) are equivalent to (1 + C)B = B(R) and (1 + Cδ)Bδ = B(R), respectively. By the invertibility of
1 + C and 1 + Cδ , their solutions are expressible in terms of power series in C and Cδ; we obtain (A.11) from the
estimates (A.13) and (A.14), with the interval replaced by [R − a, R]. By the aforementioned extension, the result
follows in general. ��

As indicated in the main text, the solution of (A.7) is of the form

α0 I0[(νc0)1/2ρ] with c0 = (νg(R))1/2 (A.16)

with α0 determined by the boundary condition (A.2),

α0 = B

I0[(νc0)1/2R] (A.17)

In the subsequent intervals [R − (i − 1)δ, R − iδ], i = 1, 2, · · · , , N , the solution is determined by continuity at
the upper boundaries and equals

Bδ(R − iδ) = B
i−1∏
j=0

I0[(νc j )1/2(R − ( j + 1)δ)]
I0[(νc j )1/2(R − jδ)] (A.18)

123



The Meissner effect in the ground state 219

with

c j = g(R − jδ) (A.19)

Let, now,

R − Nδ = b (A.20)

Theorem 3 of the main text now follows from:

Theorem A.2 Let Assumptions A.1, A.2 and B hold and let B(·) denote the unique solution of (4.17). Then, there
exists a 0 < p < ∞ such that, if

(ν)1/2b > p (A.21)

then

|B(b)| ≤ B exp[− (ν)1/2
∫ R
b dρ(g(ρ))1/2

2
] ≤ B exp[−c(ν)1/2(R − b)] (A.22.1)

with

c = 0.8779

2
= 0.4389 (A.22.2)

Proof We write in (A.18)

I0[(νc j )1/2(R − ( j + 1)δ)] = I0[(νc j )1/2(R − jδ)] − I1(λ j )(νc j )
1/2δ

where

λ j ∈ ((νc j )
1/2(R − ( j + 1)δ), (νc j )

1/2(R − jδ))

Thus,

I0[(νc j )1/2(R − ( j + 1)δ)

I0[(νc j )1/2(R − jδ)
= 1 − I1(λ j )(νc j )1/2δ

I0[(νc j )1/2(R − jδ)]
≤ exp[− I1(λ j )(νc j )1/2δ

I0[(νc j )1/2(R − jδ)] ]

by the inequality 1 − x ≤ exp(−x), true if x ≥ 0. Inserting this estimate in (A.18), we get

Bδ(b) ≤ B exp[−
N−1∑
j=0

I1(λ j )(νc j )1/2δ

I0[(νc j )1/2(R − jδ)] ] (A.23)

We now use (A.11) and the fact that we have, by (A.19), a Riemann sum for the function I1((νg(ρ))1/2ρ)

I0((νg(ρ))1/2ρ)
(νg(ρ))1/2

inside the exponential in (A.23), to obtain

|B(b)| ≤ B exp[−
∫ R

b
dρ

I1((νg(ρ))1/2ρ)

I0((νg(ρ))1/2ρ)
(νg(ρ))1/2] (A.24)

The asymptotic expansions for I0 and I1 ([5], pg. 377) now yield that, for given 0 < p < ∞,

I1((νg(ρ))1/2ρ)

I0((νg(ρ))1/2ρ)
≥ 0.5 (A.25)

if b satisfies (A.21). Inserting (A.25) and (4.28.2) of theorem 5 for the term (νg(ρ))1/2 into (A.24), we obtain the
last bound in (A.22.1), with c satisfying (A.22.2). ��
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