Skip to main content

Advertisement

Log in

Phenomics: unlocking the hidden genetic variation for breaking the barriers in yield and stress tolerance

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The rate of genetic gain in yield, quality, input use efficiency and adaptability of crops to biotic and abiotic stresses must be improved significantly to achieve global food and nutritional security by 2050. To achieve this goal, deciphering the physiological genetic basis and assembly of component traits through analytical breeding is necessary. The two pillars of analytical breeding are genotyping and phenotyping. Advances in genotyping technologies such as single-nucleotide polymorphism genotyping and genotyping by sequencing have made deep genotyping cheaper and quicker, while phenotyping has lagged behind and thus remains a rate limiting step. Recently, phenomics has emerged as a new way of accurately phenotyping large set of genotypes. Phenomics employ non-invasive sensors and advanced computational platforms for non-destructive and high-throughput phenotyping. The depth of component phenotypic traits and the spatio-temporal dynamic phenotypic data generated in phenomics are enormous and unparallel to the conventional phenotyping. The utility of phenomics in QTL mapping and genome-wide association studies has already been demonstrated in important food crops. Phenomics has high potential for phenome-wide association studies, genomics selection models for enhancing selection efficiency, and genetic-ecophysiological crop simulation models for prediction of genotype-phenotypes relationship, in silico phenotyping and ideotype design. With the advancement in the depth of phenome data acquisition and analyses capabilities of phenomics, phenome assisted breeding and phenomic selection is anticipated to be a reality in near future. Complementary use of conventional phenotyping and advanced phenomics is suggested to assist in fundamental discoveries and analytical crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19, 52–61.

    Article  CAS  PubMed  Google Scholar 

  • Bac-Molenaar, J. A., Vreugdenhil, D., Granier, C., & Keurentjes, J. J. B. (2015). Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. Journal of Experimental Botany, 66, 5567–5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilder, R. M., Sabb, F. W., Cannon, T. D., London, E. D., Jentsch, J. D., Parker, D. S., et al. (2009). Phenomics: The systematic study of phenotypes on a genome-wide scale. Neuroscience, 164, 30–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biskup, B., Scharr, H., Schurr, U., & Rascher, U. (2007). A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell and Environment, 30, 1299–1308.

    Article  PubMed  Google Scholar 

  • Bogard, M., Ravel, C., Paux, E., Bordes, J., Balfourier, F., Chapman, S. C., et al. (2014). Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Journal of Experimental Botany, 65, 5849–5865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busemeyer, L., Ruckelshausen, A., Möller, K., Melchinger, A. E., Alheit, K. V., Maurer, H. P., et al. (2013). Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Scientific Reports, 3, 2442. doi:10.1038/srep02442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, M. T., Knecht, A. C., Berger, B., Brien, C. J., Wang, D., & Walia, H. (2015). Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiology, 168, 1476–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al. (2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell, 26, 4636–4655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy, V., Dalal, M., & Zhu, J. K. (2013). Epigenetic regulation of abiotic stress responses in plants. In M. A. Jenks & P. M. Hasegawa (Eds.), Plant abiotic stress (pp. 203–230). Hoboken: Wiley. doi:10.1002/9781118764374.ch8

  • Chinnusamy, V., Stevenson, B., Lee, B.-H., & Zhu, J. K. (2002). Screening for gene regulation mutants by bioluminescence imaging. Science’s STKE, 140, pl10.

    Google Scholar 

  • Chinnusamy, V., & Zhu, J. K. (2009). RNA-directed DNA methylation and demethylation in plants. Science in China C Life Sciences, 52, 331–343.

    Article  CAS  PubMed  Google Scholar 

  • Cobb, J. N., Declerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126, 867–887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Das, B., Sahoo, R. N., Pargal, S., Krishna, G., Gupta, V. K., Verma, R., et al. (2016). Measuring leaf area index from colour digital image of wheat crop. Journal of Agrometeorology, 18, 22–28.

    Google Scholar 

  • Denny, J. C., Bastarache, L., & Roden, D. M. (2016). Phenome-wide association studies as a tool to advance precision medicine. Annual Review of Genomics and Human Genetics, 17, 353–373.

    Article  CAS  PubMed  Google Scholar 

  • Desta, Z. A., & Ortiz, R. (2014). Genomic selection: Genome-wide prediction in plant improvement. Trends in Plant Science, 19, 592–601.

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., et al. (2015a). A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Molecular Plant, 8, 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren, N., Gehan, M. A., & Baxter, I. (2015b). Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93–99.

    Article  PubMed  Google Scholar 

  • Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64, 267–291.

    Article  CAS  PubMed  Google Scholar 

  • Flood, P. J., Kruijer, W., Schnabel, S. K., van der Schoor, R., Jalink, H., Snel, J. F., et al. (2016). Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12, 14. doi:10.1186/s13007-016-0113-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freimer, N., & Sabatti, C. (2003). The human phenome project. Nature Genetics, 34, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Furbank, R. T., & Tester, M. (2011). Phenomics—Technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Golzarian, M. R., Frick, R. A., Rajendran, K., Berger, B., Roy, S., Tester, M., et al. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7, 2. doi:10.1186/1746-4811-7-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant, M., Brown, I., Adams, S., Knight, M., Ainslie, A., & Mansfield, J. (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant Journal, 23, 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky, D. K., Svensgaard, J., Christensen, S., & Roitsch, T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. Journal of Experimental Botany, 66, 5429–5440.

    Article  PubMed  Google Scholar 

  • Gu, J., Yin, X., Zhang, C., Wang, H., & Struik, P. C. (2014). Linking ecophysiological modelling with quantitative genetics to support marker-assisted crop design for improved yields of rice (Oryza sativa) under drought stress. Annals of Botany, 114, 499–511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Honsdorf, N., March, T. J., Berger, B., Tester, M., & Pillen, K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE, 9(e97047), 2014. doi:10.1371/journal.pone.0097047.eCollection.

    Google Scholar 

  • Jin, K., Li, J., Vizeacoumar, F. S., Li, Z., Min, R., Zamparo, L., et al. (2012). PhenoM: a database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Research, 40, D687–D694.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer, K. H., & Ottosen, C. O. (2015). 3D Laser triangulation for plant phenotyping in challenging environments. Sensors (Basel), 15, 13533–13547.

    Article  Google Scholar 

  • Leister, D. (2012). Retrograde signaling in plants: from simple to complex scenarios. Frontiers in Plant Science, 3, 135. doi:10.3389/fpls.2012.00135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Gowda, M., Reif, J. C., Hahn, V., Ruckelshausen, A., Weissmann, E. A., et al. (2014). Genetic dynamics underlying phenotypic development of biomass yield in triticale. BMC Genomics, 15, 458. doi:10.1186/1471-2164-15-458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Liu, Y., Niu, X., Yang, Q., Hu, X., Zhang, H. Y., et al. (2015). Systems genetic validation of the SNP-metabolite association in rice via metabolite-pathway-based phenome-wide association scans. Frontiers in Plant Science, 6, 1027. doi:10.3389/fpls.2015.01027.

    PubMed  PubMed Central  Google Scholar 

  • Mahner, M., & Kary, M. (1997). What exactly are genomes, genotypes and phenotypes? And what about phenomes? Journal of Theoretical Biology, 186, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Mervis, J. (2016). NSF director unveils big ideas. Science, 352, 755–756.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A., Heyer, A. G., & Mishra, K. B. (2014). Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods, 10, 38. doi:10.1186/1746-4811-10-38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Möller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., et al. (2007). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58, 827–838.

    Article  PubMed  Google Scholar 

  • Moore, C. R., Johnson, L. S., Kwak, I. Y., Livny, M., Broman, K. W., & Spalding, E. P. (2013). High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response. Genetics, 195, 1077–1086.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Møller, B. L., & Gleadow, R. M. (2015). Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany, 66, 1817–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent, B., Shahinnia, F., Maphosa, L., Berger, B., Rabie, H., Chalmers, K., et al. (2015). Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. Journal of Experimental Botany, 66, 5481–5492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli, D., Chapman, S. C., Bart, R., Topp, C. N., Lawrence-Dill, C. J., Poland, J., et al. (2016). The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiology, 172, 622–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plant Science Research Summit. (2013). Unleashing a decade of innovation in plant science: A vision for 2015–2025. http://plantsummit.wordpress.com/.

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., et al. (2012). Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39, 878–890.

    Article  Google Scholar 

  • Rötter, R. P., Tao, F., Höhn, J. G., & Palosuo, T. (2015). Use of crop simulation modelling to aid ideotype design of future cereal cultivars. Journal of Experimental Botany, 66, 3463–3476.

    Article  PubMed  Google Scholar 

  • Sahoo, R. N., Ray, S. S., & Manjunath, K. R. (2015). Hyperspectral remote sensing of agriculture. Current Science, 108, 848–859.

    Google Scholar 

  • Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21, 110–124.

    Article  CAS  PubMed  Google Scholar 

  • Sun, D. W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. London: Academic press.

    Google Scholar 

  • Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Talamond, P., Verdeil, J. L., & Conéjéro, G. (2015). Secondary metabolite localization by autofluorescence in living plant cells. Molecules, 20, 5024–5037.

    Article  CAS  PubMed  Google Scholar 

  • Topp, C. N., Iyer-Pascuzzi, A. S., Anderson, J. T., Lee, C. R., Zurek, P. R., Symonova, O., et al. (2013). 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proceedings of National Academy of Sciences USA, 110, E1695–E1704.

    Article  CAS  Google Scholar 

  • Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3, 347. doi:10.3389/fphys.2012.00347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadez, V., Kholová, J., Hummel, G., Zhockhavets, U., Gupta, S. K., & Tom Hash, C. (2015). LeasyScan: A novel concept combining 3D imaging and lysimetry for high-troughput phenotyping of traits of traits controlling plant water budget. Journal of Experimental Botany, 66, 5581–5593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oosten, M. J., Bressan, R. A., Zhu, J. K., Bohnert, H. J., & Chinnusamy, V. (2014). The role of the epigenome in gene expression control and the epimark changes in response to the environment. Critical Reviews in Plant Sciences, 33, 64–87.

    Article  Google Scholar 

  • Wahabzada, M., Mahlein, A. K., Bauckhage, C., Steiner, U., Oerke, E. C., & Kersting, K. (2016). Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants. Scientific Reports, 6, 22482. doi:10.1038/srep22482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Zhu, J., Huang, R., & Yang, Y. (2012). Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L.) by FTIR spectroscopy. Plant Signaling & Behaviour, 7, 856–863.

    Article  CAS  Google Scholar 

  • Würschum, T., Liu, W., Busemeyer, L., Tucker, M. R., Reif, J. C., Weissmann, E. A., et al. (2014). Mapping dynamic QTL for plant height in triticale. BMC Genetics, 15, 59. doi:10.1186/1471-2156-15-59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 129, 653–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., et al. (2014). Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 5, 5087. doi:10.1038/ncomms6087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, D. L., Zhang, G., Tang, K., Li, J., Yang, L., Huang, H., et al. (2016). Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Research, 26, 66–82.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., Struik, P. C., van Eeuwijk, F. A., Stam, P., & Tang, J. (2005). QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany, 56, 967–976.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Hause, R. J., & Borevitz, J. O. (2012). Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 Bethesda, 2, 29–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the funding from National Agricultural Science Fund, Indian Council of Agricultural Research, and Indian Agricultural Research Institute, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanathan Chinnusamy.

Additional information

Sudhir Kumar and Dhandapani Raju contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Raju, D., Sahoo, R.N. et al. Phenomics: unlocking the hidden genetic variation for breaking the barriers in yield and stress tolerance. Ind J Plant Physiol. 21, 409–419 (2016). https://doi.org/10.1007/s40502-016-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0261-0

Keywords

Navigation