Skip to main content

Advertisement

Log in

Plant-mediated synthesis of zinc oxide nano-particles and their effect on growth, lipid peroxidation and hydrogen peroxide contents in soybean

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Zinc oxide nano-particles have been produced by physical and chemical methods for a long time, but recent developments explored the critical role of biological systems for this purpose. In the present study, zinc oxide-nano-particles were prepared by leaf extract of Aloe vera and their effects were evaluated on growth and physiological parameters of soybean. Properties of zinc oxide-nano-particles were determined by UV–visible spectroscopy, scanning electron microscopy, X-ray diffraction and dynamic light scattering. Synthesized zinc oxide-nano-particles were confirmed by the absorption maxima at the wavelength of 360 nm. Scanning electron microscopy image revealed that zinc oxide-nano-particles were oval in shape. Zinc oxide-nano-particles of average size of 70 nm were synthesized by ecofriendly method. Investigations of zinc oxide-nano-particles on soybean have shown accelerated germination and enhanced growth of plants exposed to nano-particles. Treatment of zinc oxide nano-particles showed increase in lipid peroxidation and hydrogen peroxide contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of brassica juncea. Plant Growth Regulation, 66(3), 303–310.

    Article  CAS  Google Scholar 

  • Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica—from medicine to pest control. Parasitology Research, 103(2), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Geoprincy, G., Srri, B. N. V., Poonguzhali, U., Gandhi, N. N., & Renganathan, S. (2013). A review on green synthesis of silver nano-particles. Asian Journal of Clinical Research, 6, 8–12.

    CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nano-particles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8(3), 265–275.

    Article  Google Scholar 

  • Jain, D., Daima, H. K., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant-mediated silver nano-particles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures, 4(4), 723–727.

    Google Scholar 

  • Khatami, M., & Pourseyedi, S. (2015). Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nano-particles with high antifungal and antibacterial activity. IET Nanobiotechnology, 9(4), 184–190.

    Article  PubMed  Google Scholar 

  • Khatami, M., Pourseyedi, S., Khatami, M., Hamidi, H., Zaeifi, M., & Soltani, L. (2015). Synthesis of silver nano-particles using seed exudates of sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresources and Bioprocessing, 2(1), 1–7.

    Article  Google Scholar 

  • Khodakovskaya, M. V., Silva, K. D., Biris, A. S., Dervish, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nano-particles using acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Guleria, P., Kumar, V., & Yadav, S. (2013). Gold nanoparticle exposure induces growth and yield enhancement in arabidopsis thaliana. Science of the Total Environment, 461–462, 462–468.

    Article  PubMed  Google Scholar 

  • Nejad, M. S., Khatami, M., & Bonjar, G. H. S. (2016). Extracellular synthesis gold nanotriangles using biomass of streptomyces microflavus. IET Nanobiotechnology, 10(1), 33–38.

    Article  Google Scholar 

  • Nekrasova, G. F., Ushakova, O. S., Ermakov, A. E., Uimin, M. A., & Byzov, I. V. (2011). Effects of copper(ii) ions and copper oxide nano-particles on elodea densa planch. Russian Journal of Ecology, 42(6), 458–463.

    Article  CAS  Google Scholar 

  • Prasad, T., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K., et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927.

    Article  CAS  Google Scholar 

  • Rajiv, P., Rajeshwari, S., & Venckatesh, R. (2013). Bio-fabrication of zinc oxide nano-particles using leaf extract of parthenium hysterophorus l. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384–387.

    Article  CAS  Google Scholar 

  • Ramesh, M., Palanisamy, K., & Sharma, N. K. (2014). Effects of bulk and nano-titanium dioxide and zinc oxide on physiomorphological changes in triticum aestivum linn. Journal of Global Biosciences, 3(2), 415–422.

    Google Scholar 

  • Rao, S., & Shekhawat, G. S. (2014). Toxicity of zinc oxide engineered nano-particles and evaluation of their effect on growth, metabolism and tissue specific accumulation in brassica juncea. Journal of Environmental Chemical Engineering, 2(1), 105–114.

    Article  CAS  Google Scholar 

  • Raskar, S. V., & Laware, S. L. (2014). Effect of zinc oxide nano-particles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3(2), 467–473.

    CAS  Google Scholar 

  • Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nano-particles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566.

    Article  CAS  Google Scholar 

  • Sathyavathi, R., Krishna, M. B., Rao, S. V., Saritha, R., & Rao, D. N. (2010). Biosynthesis of silver nano-particles using coriandrum sativum leaf extract and their application in nonlinear optics. Advanced Science Letters, 3, 1–6.

    Article  Google Scholar 

  • Shaw, A. K., & Hossain, Z. (2013). Impact of nano-cuo stress on rice (oryza sativa l.) seedlings. Chemosphere, 93(6), 906–915.

    Article  CAS  PubMed  Google Scholar 

  • Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113.

    Google Scholar 

  • Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nano-particles by nyctanthes arbor-tristis leaves extract. Chalcogenide Letters, 8(8), 447–451.

    CAS  Google Scholar 

  • Syed, A., Saraswati, S., Kundu, G. C., & Ahmad, A. (2013). Biological synthesis of silver nano-particles using the fungus humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 144–147.

    Article  CAS  Google Scholar 

  • Thema, F. T., Manikandan, E., Dhlamini, M. S., & Maaza, M. (2015). Green synthesis of zinc oxide nano-particles via agathosma betulina natural extract. Materials Letters, 161, 124–127.

    Article  CAS  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Wanga, H., Koub, X., Peic, Z., Xiaob, J. Q., Shanc, X., & Xing, B. (2011). Physiological effects of magnetite (fe3o4) nano-particles on perennial ryegrass (lolium perenne L.) and pumpkin (cucurbita mixta) plants. Nanotoxicology, 5(1), 30–42.

    Article  Google Scholar 

  • Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., et al. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nano-particles based on dissolution and oxidative stress properties. ACS Nano, 2(10), 2121–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Shahid Bahonar University of Kerman, Kerman, Iran, for the continuous support in providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S., Asrar, Z., Pourseyedi, S. et al. Plant-mediated synthesis of zinc oxide nano-particles and their effect on growth, lipid peroxidation and hydrogen peroxide contents in soybean. Ind J Plant Physiol. 21, 312–317 (2016). https://doi.org/10.1007/s40502-016-0242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0242-3

Keywords

Navigation