Skip to main content
Log in

Differential response to physiological drought stress in tolerant and susceptible cultivars of canola

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In this study, two cultivars of Brassica napus L. viz., Okapi (drought sensitive) and Zarfam (drought tolerant) were evaluated for their response to drought stress at physiological and molecular levels. Physiological drought stress was imposed on 10-day-old seedlings grown in half MS medium containing 200 mM mannitol at 0, 3, 12 and 24 h. At physiological level, water deficit changed ascorbate peroxidase, peroxidase and catalase activities in both the cultivars. However, the magnitude of changes differed in roots and shoots and was also genotype specific. Drought stress caused change in lipid peroxidation in terms of malondialdehyde (MDA) accumulation, soluble sugar and total protein contents in two cultivars with Zarfam responding earlier (3 h) compared to Okapi (12 h). At molecular level, there were significant variations between two cultivars in response to drought stress. Drought stress significantly up-regulated Auxin responsive protein (ARP), MPK3, Protein kinase (PK) and MPK4 genes transcript level in Okapi, while down-regulated expression in Zarfam. It can be concluded that drought stress imposed adverse effects on both cultivars by exertion of different responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, A., & Ghamdi, A. L. A. (2009). Evaluation of oxidative stress in two wheat (Triticum aestivum) cultivars in response to drought. International Journal of Agricultural Biology, 11, 7–12.

    Google Scholar 

  • Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46, 27–34.

    CAS  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. In L. Packer (Ed.), Methods in enzymology (pp. 121–126). San Diego, CA: Academic Press Inc.

    Google Scholar 

  • Akcay, U. C., Ercan, O., Kavas, M., Yildiz, L., Oktem, H. A., & Yucel, M. (2010). Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regulations, 61, 21–28.

    Article  Google Scholar 

  • Albarrak, K. H. (2006). Irrigation interval and nitrogen level effects on growth and yield of canola (Brassica napus L.). Scientific Journal of King Faisal University, 7, 87–99.

    Google Scholar 

  • Ashraf, M., & Mehmood, S. (1989). Response of four Brassica species to drought stress. Environmental and Experimental Botany, 30, 93–100.

    Article  Google Scholar 

  • Bañuelos, G. S., Bryla, D. R., & Cook, C. G. (2002). Vegetative production of kenaf and oilseed rape under irrigation in central California. Industrial Crops and Products, 15, 237–245.

    Article  Google Scholar 

  • Bishnoi, S. K., Kumar, B., Rani, C., Datta, K. S., Kumar, P., Sheoran, I. S., et al. (2006). Changes in protein profile of pigeonpea genotypes in response to NaCl and boron stress. BiologiaPlantarum, 50, 135–137.

    CAS  Google Scholar 

  • Chen, L., Ren, F., Zhong, H., Jiang, W., & Li, X. (2010). Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 42, 154–164.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. Journal of Experimental Botany, 55, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • DaCosta, M., & Huang, B. (2007). Changes in antioxidant enzyme activities and lipid peroxidation for Bentgrass species in response to drought stress. Journal of American Society of Horticulture Science, 132, 319–326.

    CAS  Google Scholar 

  • Desikan, R., Mackerness, A. H. S., Hancock, J. T., & Neill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 127, 159–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203, 460–469.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photo peroxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125, 850–857.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal, 61, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  • Khanna-Chopra, R., & Selote, D. S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60, 276–283.

    Article  CAS  Google Scholar 

  • Kochert, G. (1978). Carbohydrate determination by phenol-sulfuric acid method. In J. A. Hellebust & J. S. Craige (Eds.), Handbook of physiological and biochemical methods (pp. 95–97). London: Cambridge University Press.

    Google Scholar 

  • Kovtun, Y., Chiu, W. L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade inplants. Proceedings of the National Academy of Sciences, 97, 2940–2945.

    Article  CAS  Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology: Ecophysiology and stress physiology of functional groups (p. 513). Berlin: Springer.

    Book  Google Scholar 

  • Lehti-Shiu, M. D., & Shiu, S. H. (2012). Diversity, classification and function of the plant protein kinase super-family. Philosophical Transactions of Royal Society B, 367, 2619–2639.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Mariana, N., Norfarrah, M., Nik, K., Yusoff, F., & Arshad, A. (2009). Evaluating the antibacterial activity and in vivo assay of methanolic extract of Stichopus badionotus. International Journal of Pharmaceutics, 5, 228–231.

    Google Scholar 

  • Mirzaee, M., Moieni, A., & Ghanati, F. (2013). Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. Journal of Agricultural Science and Technology, 15, 593–602.

    CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Volokita, M., Guy, M., & Tal, M. (2000). Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 110, 42–51.

    Article  CAS  Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., et al. (1996). A gene encoding a mitogen activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 93, 765–769.

    Article  CAS  Google Scholar 

  • Moussa, H., & Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1, 31–36.

    Google Scholar 

  • Muhammad, N., Cheema, M. A., Wahid, M. A., Ahmad, N., & Zaman, M. (2007). Effect of source and method of nitrogen fertilizer application on seed yield and quality of canola (Brassica napus L.). Pakistan Journal of Agricultural Sciences, 44, 74–78.

    Google Scholar 

  • Murashige, T., & Skoog, F. A. (1962). Revised medium for rapid growth and bioassays with tobacco cultures. Physiologia Plantarum, 159, 473–479.

    Article  Google Scholar 

  • Nair, A. S., Abraham, T. K., & Jaya, D. S. (2008). Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. Journal of Environmental Biology, 29, 689–691.

    CAS  PubMed  Google Scholar 

  • Nakagami, H., Pitzschke, A., & Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Science, 10, 339–346.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Ohashi, Y., Nakayama, N., Saneoka, H., & Fujita, K. (2006). Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biology of Plant, 50, 138–141.

    Article  Google Scholar 

  • Ozkur, O., Ozdemir, F., Bor, M., & Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Cappari sovata Desf. to drought. Environmental and Experimental Botany, 66, 487–492.

    Article  CAS  Google Scholar 

  • Pedley, K. F., & Martin, G. B. (2005). Role of mitogen-activated protein kinases in plant immunity. Current Opinion in Plant Biology, 8, 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Sairam, R. K., Veerabhadra Rao, K., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046.

    Article  CAS  Google Scholar 

  • Sanchez-Rodriguez, E., Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., et al. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178, 30–40.

    Article  CAS  Google Scholar 

  • Satterlee, J. S., & Sussman, M. R. (1998). Unusual membrane-associated protein kinases in higher plants. Journal of Membrane Biology, 164, 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Shao, H. B., Chu, L. Y., Wu, G., Zhang, J. H., Lu, Z. H., & Hu, Y. C. (2007). Changes of some anti-oxidative physiological indices under soil water deficits among 10 Wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B, Biointerfaces, 54, 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Shirani Rad, A. H., Naeemi, M., & Nasr Esfahani, S. H. (2010). Evaluation of terminal drought stress tolerance in spring and winter rapeseed genotypes. Iranian Journal of Crop Sciences, 12, 112–126. (in Persian).

    Google Scholar 

  • Sl, H., Chao, Y. C., Tong, W. F., & Yu, S. M. (2001). Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiology, 125, 877–890.

    Article  Google Scholar 

  • Sofo, A., Manfreda, S., Dichio, B., & Xiloyannis, C. (2008). The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrology Earth Systematic Science, 12, 293–301.

    Article  Google Scholar 

  • Sreenivasulu, N., Grimm, B., Wobus, U., & Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435–442.

    Article  CAS  Google Scholar 

  • Stone, J., & Walker, J. C. (1995). Plant protein kinase families and signal transduction. Plant Physiology, 108, 451–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tas, S., & Tas, B. (2007). Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World Journal of Agricultural Sciences, 3, 178–183.

    Google Scholar 

  • Valliyodan, B., & Nguyen, H. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9, 1–7.

    Article  Google Scholar 

  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stress. Plant Physiology and Biochemistry, 47, 570–577.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant responses to drought, acclimation and stress tolerance. Photosynthetica Journal, 38, 171–186.

    Article  CAS  Google Scholar 

  • Yu, S. H., Zhang, L., Zuo, K., Tang, D., & Tang, K. (2005). Isolation and characterization of an oilseed rape MAP kinase, BnMPK3 involved in diverse environmental stresses. Plant Science, 169, 413–421.

    Article  CAS  Google Scholar 

  • Zhou, R., & Zhao, H. (2004). Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiologia Plantarum, 121, 399–408.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Urmia Institute of Biotechnology for providing the desired facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Padervand, AH. Differential response to physiological drought stress in tolerant and susceptible cultivars of canola. Ind J Plant Physiol. 21, 333–340 (2016). https://doi.org/10.1007/s40502-016-0239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0239-y

Keywords

Navigation