Skip to main content
Log in

Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Drought is an important limiting factor for wheat production in most agricultural areas of the world. A study was conducted to analyze the effect of cytokinin [benzyl amino purine (BAP), 40 µM] on growth and yield vis-à-vis nitrogen metabolism in two contrasting wheat cultivars, viz., C-306 (drought tolerant) and PBW-343 (drought susceptible) under water deficit stress condition. Water deficit stress significantly decreased yield and total biomass, while cytokinin-treated wheat plants retained higher biomass and yield. Positive effect of cytokinin on yield and biomass was due to cytokinin induced N-metabolism under both water regimes. Water deficit stress decreases activity of two major enzymes of nitrogen assimilation pathway, viz, nitrate reductase (NR) and glutamine synthetase (GS) and increased total protease activity. Cytokinin enhanced the activity of NR and GS enzymes and reduced the protease activity in both the cultivars and water regimes, which also led to increase in level of total nitrogen and total protein content. Overall, cytokinin was able to delay senescence of leaves under water deficit stress conditions by enhancing N-metabolism in general and specifically at the reproductive stage, contributing to increase in grain yield of both the cultivars under both the water regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baki, G. K., Siefritz, A. E., Man, F., Weiner, H. M., Kaldenhoff, H., & Kaiser, W. M. (2000). Nitrate reductase in Zea mays L. under salinity. Plant Cell and Environment, 23, 515–521.

    Article  Google Scholar 

  • Barneix, A. J. (2007). Physiology and Biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology, 164, 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M. W., Damerval, C., & Vartanian, N. (2002). Identification of proteins regulated by cross-talk between drought and hormone pathways in Arabidopsis wild-type and auxin-insensitive mutants, axr1 and axf2. Functional Plant Biology, 29, 55–61.

    Article  CAS  Google Scholar 

  • Binns, A. N. (1994). Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Annual Review Plant Physiology Plant Molecular Biology, 45, 173–196.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilising the principles of Protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, W. G., Romanov, G. A., Kollmer, I., Burkle, L., & Schmulling, T. (2005). Immediate early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome wide expression profiling reveal novel cytokinin sensitive processes and suggest cytokinin action through transcriptional cascades. Plant Molecular Biology, 44, 314–333.

    CAS  Google Scholar 

  • Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G. X., Fu, X. P., Lips, S. H., & Sagi, M. (2003). Control of plant growth resides in the shoot, and not in the root, in reciprocal grafts of flacca and wild-type tomato (Lysopersicon esculentum), in the presence and absence of salinity stress. Plant and Soil, 256, 205–215.

    Article  CAS  Google Scholar 

  • Cowan, A. K., Freeman, M., Bjorkman, P. O., Nicander, B., Sitbon, F., & Tillberg, E. (2005). Effects of senescence-induced alteration in cytokinin metabolism on source—sink relationships and ontogenic and stress-induced transitions in tobacco. Planta, 221, 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner, S. J., Holzer, R., & Feller, U. (1998). Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves. Physiologia Plantarum, 102, 192–200.

    Article  CAS  Google Scholar 

  • Dwivedi, S. K., Singh, V. P., Singh, G. P., & Arora, A. (2012). Combined effect of cytokinin, paclobutrazol and ascorbic acid on nitrogen metabolism and yield of wheat (Triticum aestivum L.) under water deficit stress condition. Indian. Journal of Plant Physiology, 17(3), 259–267.

    Google Scholar 

  • Feller, U. (2004). Proteolysis. In L. D. Noodén (Ed.), Plant cell death processes (pp. 107–123). Amsterdam, the Netherlands: Elsevier Inc.

    Chapter  Google Scholar 

  • Feller, U., & Fisher, A. M. (2007). Stem-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitation transcriptomic analysis of senescence-associated genes. New Phytologist, 176, 56–69.

    Article  PubMed  Google Scholar 

  • Gan, S. S., & Amasino, R. M. (1995). Inhibition of leaf senescence by auto regulated production of cytokinin. Science, 270, 1986–1988.

    Article  CAS  PubMed  Google Scholar 

  • Gepstein, S., & Glick, B. R. (2013). Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molecular Biology, 82, 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S., Gupta, N. K., Arora, A., & Purohit, A. K. (2012). Effect of water stress on photosynthetic attributes, membrane injury and yield in contrasting wheat genotypes. Indian Journal of Plant Physiology, 17(1), 22–27.

    CAS  Google Scholar 

  • Hirel, B., Andrieu, B., Valadier, M. H., Renard, S., Quillere, I., & Chelle, M. (2005). Physiology of maize II: Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiologia Plantarum, 124, 178–188.

  • Jones, J. B. (1988). Soil testing and plant analysis: procedure and use. Technical bulletin 109 (p. 14). Taipei City: Food and Fertilizer technology centre.

    Google Scholar 

  • Martinez, D. E., Bartoli, C. G., Grbic, V., & Guiamet, J. J. (2007). Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. Journal of Experimental Botany, 58, 1099–1107.

    Article  CAS  PubMed  Google Scholar 

  • Merewitz, E., Gianfagna, T., & Huang B. (2010). Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth and leaf senescence in creeping bentgrass exposed to drought stress. Journal of the American Society for Horticultural Science, 135, 230–239.

  • Mohanty, B., & Fletcher, J. S. (1980). Ammonium influence on nitrogen assimilating enzymes and protein accumulation in suspension cultures of Paul’s scarlet rose. Physiologia Plantarum, 48, 453–459.

    Article  CAS  Google Scholar 

  • Nair, T. V. R., & Abrol, Y. P. (1973). Nitrate reductase activity in developing wheat ears. Experimentia, 29, 1480–1491.

    Article  CAS  Google Scholar 

  • Nieri, B., Canino, S., Versace, R., & Alpi, A. (1998). Purification and characterization of endoprotease from alfalfa senescent leaves. Phytochemistry, 49, 643–649.

    Article  CAS  Google Scholar 

  • Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion Plant Biology, 14, 1–6.

    Article  Google Scholar 

  • Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of National Academy of Sciences of the United States of America, 104, 19631–19636.

  • Sairam, R. K., Deshmukh, P. S., & Shukla, D. S. (1997). Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. Journal of Agronomy and Crop Science, 178, 171–177.

    Article  CAS  Google Scholar 

  • Sakakibara, H., Takei, K., & Hirose, N. (2006). Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 11, 440–448.

    Article  CAS  PubMed  Google Scholar 

  • Seligman, N. G., & Sinclair, T. R. (1995). Global environment change and simulated forage quality of wheat. II. Water and nitrogen stress. Field Crops Research, 40, 29–37.

    Article  Google Scholar 

  • Shah, S. H. (2011). Comparative effects of 4-Cl-IAA and kinetin on photosynthesis, nitrogen metabolism and yield of black cumin (Nigella sativa L.). Acta Botanica Croatica, 70, 91–97.

    Article  CAS  Google Scholar 

  • Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257, 219–226.

    Article  CAS  Google Scholar 

  • Sinclair, T. R., Pinter, P. J., Kimball, B. A., Adamsen, F. J., LaMorte, R. L., & Thompson, T. (2000). Leaf nitrogen concentration of wheat subjected to elevated (CO2) and either water or N deficits. Agriculture Ecosystems and Environment, 79, 53–60.

  • Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., & Morcuende, R. (2002). Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, 53, 959–970.

    Article  CAS  PubMed  Google Scholar 

  • Tripura, K., Singh, G. P., Singh, A. M., Arora, A., Ahlawat, A., & Sharma, R. K. (2011). Genetic analysis of wheat (Triticum aestivum L.) genotypes for physiological traits under different moisture regimes. Indian. Journal of Plant Physiology, 16(3), 255–259.

    Google Scholar 

  • Tsai, Y. C., Hsu, Y. T., & Kao, C. H. (2003). Proline accumulation induced by phosphinothricin in rice leaves. Biologia Plantarum, 46, 317–322.

    Article  CAS  Google Scholar 

  • Van der Hoorn, R. A. L. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annual Review of Plant Biology, 59, 191–223.

    Article  PubMed  Google Scholar 

  • Weatherley, P. E. (1950). Studies in the water relations of the cotton plant I. The field measurements of water deficit in leaves. New Phytologist, 48, 81–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, S., Ramakrishnan, S., Singh, V.P. et al. Cytokinin enhanced biomass and yield in wheat by improving N-metabolism under water limited environment. Ind J Plant Physiol. 20, 31–38 (2015). https://doi.org/10.1007/s40502-014-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-014-0134-3

Keywords

Navigation