Skip to main content

Advertisement

Log in

Nutritional Supplements and Periodontal Disease Prevention—Current Understanding

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review updates the current knowledge on nutrient supplements, which are reported as effective in maintaining the health of periodontal tissues or preventing diseases, as a complementary therapy to existing periodontal treatments.

Recent Findings

The latest meta-analysis reported that green tea component might be used as a complementary method to existing periodontal treatments. New multifunctional food-derived components such as rice- and soybean-derived proteins and amino acids have also been reported recently.

Summary

Several previous reports describe that nutritional supplements may help bacterial control and host immune regulation based on cellular or animal experiments, but evidence regarding most nutritional supplements is still insufficient to apply for prevention or treatment of periodontal disease. Complementary use of green tea extract, including catechin, potentially controlling the symptoms of periodontal disease combined with existing therapies could be beneficial, although randomized clinical trials and larger cohort studies are required properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reynolds MA. Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol. 2000;2014(64):7–19. https://doi.org/10.1111/prd.12047.

    Article  Google Scholar 

  2. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46:1582–8. https://doi.org/10.1086/587658.

    Article  PubMed  Google Scholar 

  3. Schaible UE, Kaufmann SH. Malnutrition and infection: Complex mechanisms and global impacts. PLoS Med. 2007;4:e115. https://doi.org/10.1371/journal.pmed.0040115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qian B, Shen S, Zhang J, Jing P. Effects of Vitamin B6 Deficiency on the composition and functional Potential of T cell populations. J Immunol Res. 2017;2017:2197975. https://doi.org/10.1155/2017/2197975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torres N, Guevara-Cruz M, Velazquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res. 2015;46:408–26. https://doi.org/10.1016/j.arcmed.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  6. Franz MJ. Diabetes nutrition therapy: Effectiveness, macronutrients, eating patterns and weight management. Am J Med Sci. 2016;351:374–9. https://doi.org/10.1016/j.amjms.2016.02.001.

    Article  PubMed  Google Scholar 

  7. Wallin A, Di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35:918–29. https://doi.org/10.2337/dc11-1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akilen R, Tsiami A, Devendra D, Robinson N. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr. 2012;31:609–15. https://doi.org/10.1016/j.clnu.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  9. Kaye EK. Nutrition, dietary guidelines and optimal periodontal health. Periodontol. 2000;2012:5893–111. https://doi.org/10.1111/j.1600-0757.2011.00418.x.

    Article  Google Scholar 

  10. Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K. The ole of nutrition in periodontal health: An update. Nutrients. 2016;8:530. https://doi.org/10.3390/nu8090530.

    Article  CAS  PubMed Central  Google Scholar 

  11. Krall EA. The periodontal-systemic connection: implications for treatment of patients with osteoporosis and periodontal disease. Ann Periodontol. 2001;6(1):209–13. https://doi.org/10.1902/annals.2001.6.1.209.

    Article  CAS  PubMed  Google Scholar 

  12. . Sulijaya B, Takahashi N, Yamazaki K, Yamazaki K. Nutrition as Adjunct therapy in periodontal disease management. Current Oral Health Reports. 2019;6:61–9 This manuscript is a latest review about nutrition effects on the maintenance of periodontal health.

    Article  Google Scholar 

  13. Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018;11:39. https://doi.org/10.3390/nu11010039.

    Article  CAS  PubMed Central  Google Scholar 

  14. Basu A, Masek E, Ebersole JL. Dietary polyphenols and periodontitis-a mini-review of literature. Molecules. 2018;23:1786. https://doi.org/10.3390/molecules23071786.

    Article  CAS  PubMed Central  Google Scholar 

  15. Shahzad M, Millhouse E, Culshaw S, Edwards CA, Ramage G, Combet E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015;6:719–29. https://doi.org/10.1039/c4fo01087f.

    Article  CAS  PubMed  Google Scholar 

  16. Asahi Y, Noiri Y, Miura J, Maezono H, Yamaguchi M, Yamamoto R, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J Appl Microbiol. 2014;116:1164–71. https://doi.org/10.1111/jam.12458.

    Article  CAS  PubMed  Google Scholar 

  17. Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2016;65:35–43. https://doi.org/10.1016/j.archoralbio.2016.01.014.

    Article  CAS  PubMed  Google Scholar 

  18. Ben Lagha A, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep. 2017;7:44815. https://doi.org/10.1038/srep44815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014;5:434. https://doi.org/10.3389/fmicb.2014.00434.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tamura M, Saito H, Kikuchi K, Ishigami T, Toyama Y, Takami M, et al. Antimicrobial activity of Gel-entrapped catechins toward oral microorganisms. Biol Pharm Bull. 2011;34(5):638–43. https://doi.org/10.1248/bpb.34.638.

    Article  CAS  PubMed  Google Scholar 

  21. Hengge R. Targeting acterial biofilms by the green tea polyphenol EGCG. Molecules. 2019;24:2403. https://doi.org/10.3390/molecules24132403.

    Article  CAS  PubMed Central  Google Scholar 

  22. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10:1618. https://doi.org/10.3390/nu10111618.

    Article  CAS  PubMed Central  Google Scholar 

  23. Rizzo A, Bevilacqua N, Guida L, Annunziata M, Romano Carratelli C, Paolillo R. Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells. Cytokine. 2012;60:197–204. https://doi.org/10.1016/j.cyto.2012.06.004.

    Article  CAS  PubMed  Google Scholar 

  24. Matsuda Y, Minagawa T, Okui T, Yamazaki K. Resveratrol suppresses the alveolar bone resorption induced by artificial trauma from occlusion in mice. Oral Dis. 2018;24:412–21. https://doi.org/10.1111/odi.12785.

    Article  CAS  PubMed  Google Scholar 

  25. Cai Y, Chen Z, Liu H, Xuan Y, Wang X, Luan Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice. Int Immunopharmacol. 2015;29:839–45. https://doi.org/10.1016/j.intimp.2015.08.033.

    Article  CAS  PubMed  Google Scholar 

  26. Cho AR, Kim JH, Lee DE, Lee JS, Jung UW, Bak EJ, et al. The effect of orally administered epigallocatechin-3-gallate on ligature-induced periodontitis in rats. J Periodontal Res. 2013;48:781–9. https://doi.org/10.1111/jre.12071.

    Article  CAS  PubMed  Google Scholar 

  27. Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts. Arch Oral Biol. 2017;75:89–99. https://doi.org/10.1016/j.archoralbio.2016.10.035.

    Article  CAS  PubMed  Google Scholar 

  28. Morinobu A, Biao W, Tanaka S, Horiuchi M, Jun L, Tsuji G, et al. (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum. 2008;58(7):2012–8. https://doi.org/10.1002/art.23594.

    Article  CAS  PubMed  Google Scholar 

  29. Kamon M, Zhao R, Sakamoto K. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol Int. 2009;34:109–16. https://doi.org/10.1042/CBI20090011.

    Article  CAS  PubMed  Google Scholar 

  30. Kote S, Kote S, Nagesh L. Effect of pomegranate juice on dental plaque microorganisms (streptococci and lactobacilli). Anc Sci Life. 2011;31:49–51.

    PubMed  PubMed Central  Google Scholar 

  31. Bhatia M, Urolagin SS, Pentyala KB, Urolagin SB, BM K, Bhoi S. Novel therapeutic approach for the treatment of periodontitis by curcumin. J Clin Diagn Res. 2014;8:ZC65–9. https://doi.org/10.7860/JCDR/2014/8231.5343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. . Mathur A, Gopalakrishnan D, Mehta V, Rizwan SA, Shetiya SH, Bagwe S. Efficacy of green tea-based mouthwashes on dental plaque and gingival inflammation: Systematic review and meta-analysis. Indian J Dent Res. 2018;29:225–32. https://doi.org/10.4103/ijdr.IJDR_493_17This is a latest systematic review describing the efficacy of green tea-based mouthwashes for sustaining oral hygiene.

    Article  PubMed  Google Scholar 

  33. Balappanavar AY, Sardana V, Singh M. Comparison of the effectiveness of 0.5% tea, 2% neem and 0.2% chlorhexidine mouthwashes on oral health: a randomized control trial. Indian J Dent Res. 2013;24:26–34. https://doi.org/10.4103/0970-9290.114933.

    Article  PubMed  Google Scholar 

  34. Hambire CU, Jawade R, Patil A, Wani VR, Kulkarni AA, Nehete PB. Comparing the antiplaque efficacy of 0.5% Camellia sinensis extract, 0.05% sodium fluoride, and 0.2% chlorhexidine gluconate mouthwash in children. J Int Soc Prev Community Dent. 2015;5:218–26. https://doi.org/10.4103/2231-0762.158016.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Radafshar G, Ghotbizadeh M, Saadat F, Mirfarhadi N. Effects of green tea (Camellia sinensis) mouthwash containing 1% tannin on dental plaque and chronic gingivitis: a double-blinded, randomized, controlled trial. J Investig Clin Dent. 2017;8. https://doi.org/10.1111/jicd.12184.

  36. Priya BM, Anitha V, Shanmugam M, Ashwath B, Sylva SD, Vigneshwari SK. Efficacy of chlorhexidine and green tea mouthwashes in the management of dental plaque-induced gingivitis: A comparative clinical study. Contemp Clin Dent. 2015;6:505–9. https://doi.org/10.4103/0976-237X.169845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rattanasuwan K, Rassameemasmaung S, Sangalungkarn V, Komoltri C. Clinical effect of locally delivered gel containing green tea extract as an adjunct to non-surgical periodontal treatment. Odontology. 2016;104:89–97. https://doi.org/10.1007/s10266-014-0190-1.

    Article  CAS  PubMed  Google Scholar 

  38. Chava VK, Vedula BD. Thermo-reversible green tea catechin gel for local application in chronic periodontitis: a 4-week clinical trial. J Periodontol. 2013;84:1290–6. https://doi.org/10.1902/jop.2012.120425.

    Article  CAS  PubMed  Google Scholar 

  39. Hattarki SA, Pushpa SP, Bhat K. Evaluation of the efficacy of green tea catechins as an adjunct to scaling and root planing in the management of chronic periodontitis using PCR analysis: a clinical and microbiological study. J Indian Soc Periodontol. 2013;17:204–9. https://doi.org/10.4103/0972-124X.113071.

    Article  PubMed  PubMed Central  Google Scholar 

  40. . Gartenmann SJ, Weydlich YV, Steppacher SL, Heumann C, Attin T, Schmidlin PR. The effect of green tea as an adjunct to scaling and root planing in non-surgical periodontitis therapy: a systematic review. Clin Oral Investig. 2019;23:1–20. https://doi.org/10.1007/s00784-018-2684-7This is a latest systematic review describing the efficacy of green tea as an adjunct to SRP.

    Article  PubMed  Google Scholar 

  41. Barceloux DG. Cinnamon (Cinnamomum species). Dis Mon. 2009;55:327–35. https://doi.org/10.1016/j.disamonth.2009.03.003.

    Article  PubMed  Google Scholar 

  42. Wainstein J, Stern N, Heller S, Boaz M. Dietary cinnamon supplementation and changes in systolic blood pressure in subjects with type 2 diabetes. J Med Food. 2011;14:1505–10. https://doi.org/10.1089/jmf.2010.0300.

    Article  CAS  PubMed  Google Scholar 

  43. Hariri M, Ghiasvand R. Cinnamon and chronic diseases. Adv Exp Med Biol. 2016;929:1–24. https://doi.org/10.1007/978-3-319-41342-6_1.

    Article  CAS  PubMed  Google Scholar 

  44. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med. 2013;11:452–9. https://doi.org/10.1370/afm.1517.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Veilleux MP, Grenier D. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. BMC Complement Altern Med. 2019;19:303. https://doi.org/10.1186/s12906-019-2730-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog. 2018;120:198–203. https://doi.org/10.1016/j.micpath.2018.04.036.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Zhang Y, Shi YQ, Pan XH, Lu YH, Cao P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb Pathog. 2018;116:26–32. https://doi.org/10.1016/j.micpath.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  48. Schink A, Naumoska K, Kitanovski Z, Kampf CJ, Frohlich-Nowoisky J, Thines E, et al. Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct. 2018;9:5950–64. https://doi.org/10.1039/c8fo01286e.

    Article  CAS  PubMed  Google Scholar 

  49. Han X, Parker TL. Antiinflammatory activity of Cinnamon (Cinnamomum zeylanicum) bark essential oil in a human skin disease model. Phytother Res. 2017;31:1034–8. https://doi.org/10.1002/ptr.5822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mamajiwala AS, Sethi KS, Raut CP, Karde PA, Khedkar SU. Comparative evaluation of chlorhexidine and cinnamon extract used in dental unit waterlines to reduce bacterial load in aerosols during ultrasonic scaling. Indian J Dent Res. 2018;29:749–54. https://doi.org/10.4103/ijdr.IJDR_571_17.

    Article  PubMed  Google Scholar 

  51. Gupta D, Jain A. Effect of Cinnamon extract and Chlorhexidine Gluconate (0.2%) on the clinical level of dental plaque and gingival health: a 4-Week, triple-blind randomized controlled trial. J Int Acad Periodontol. 2015;17:91–8.

    PubMed  Google Scholar 

  52. Chapa-Oliver AM, Mejia-Teniente L. Capsaicin: from plants to a cancer-suppressing agent. Molecules. 2016;21. https://doi.org/10.3390/molecules21080931.

  53. McCarty MF, DiNicolantonio JJ, O'Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart. 2015;2:e000262. https://doi.org/10.1136/openhrt-2015-000262.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim JH. The emerging role of TRPV1 in airway inflammation. Allergy Asthma Immunol Res. 2018;10:187–8. https://doi.org/10.4168/aair.2018.10.3.187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsieh WS, Kung CC, Huang SL, Lin SC, Sun WH. TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep. 2017;7:8870. https://doi.org/10.1038/s41598-017-09200-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, et al. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat Immunol. 2014;15:1055–63. https://doi.org/10.1038/ni.3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, cancer and immunity-implication of TRPV1 Channel. Front Oncol. 2019;9:1087. https://doi.org/10.3389/fonc.2019.01087.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou Y, Guan X, Zhu W, Liu Z, Wang X, Yu H, et al. Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. Eur J Clin Microbiol Infect Dis. 2014;33:211–9. https://doi.org/10.1007/s10096-013-1947-0.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi N, Matsuda Y, Sato K, de Jong PR, Bertin S, Tabeta K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci Rep. 2016;6:29294. https://doi.org/10.1038/srep29294.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Avellan NL, Kemppainen P, Tervahartiala T, Vilppola P, Forster C, Sorsa T. Capsaicin-induced local elevations in collagenase-2 (matrix metalloproteinase-8) levels in human gingival crevice fluid. J Periodontal Res. 2006;41:33–8. https://doi.org/10.1111/j.1600-0765.2005.00836.x.

    Article  CAS  PubMed  Google Scholar 

  61. Taniguchi M, Ochiai A, Takahashi K, Nakamichi S, Nomoto T, Saitoh E, et al. Antimicrobial activity and mechanism of action of a novel cationic alpha-helical octadecapeptide derived from alpha-amylase of rice. Biopolymers. 2015;104:73–83. https://doi.org/10.1002/bip.22605.

    Article  CAS  PubMed  Google Scholar 

  62. Taniguchi M, Ochiai A, Fukuda S, Sato T, Saitoh E, Kato T, et al. AmyI-1-18, a cationic alpha-helical antimicrobial octadecapeptide derived from alpha-amylase in rice, inhibits the translation and folding processes in a protein synthesis system. J Biosci Bioeng. 2016;122:385–92. https://doi.org/10.1016/j.jbiosc.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  63. . Aoki-Nonaka Y, Tabeta K, Yokoji M, Matsugishi A, Matsuda Y, Takahashi N, et al. A peptide derived from rice inhibits alveolar bone resorption via suppression of inflammatory cytokine production. J Periodontol. 2019;90:1160–9. https://doi.org/10.1002/JPER.18-0630This manuscript represents a new data on rice-derived peptide, which could possibly prevent periodontal disease.

    Article  CAS  PubMed  Google Scholar 

  64. Tamura H, Maekawa T, Domon H, Hiyoshi T, Yonezawa D, Nagai K, et al. Peptides from rice endosperm protein restrain periodontal bone loss in mouse model of periodontitis. Arch Oral Biol. 2019;98:132–9. https://doi.org/10.1016/j.archoralbio.2018.11.021.

    Article  CAS  PubMed  Google Scholar 

  65. Higuchi Y, Hosojima M, Kabasawa H, Kuwahara S, Goto S, Toba K, et al. Rice Endosperm protein administration to juvenile mice regulates gut microbiota and suppresses the development of high-fat diet-induced obesity and related disorders in adulthood. Nutrients. 2019;11. https://doi.org/10.3390/nu11122919.

  66. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M, et al. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006;113:1034–44. https://doi.org/10.1161/CIRCULATIONAHA.106.171052.

    Article  CAS  PubMed  Google Scholar 

  67. Beavers KM, Jonnalagadda SS, Messina MJ. Soy consumption, adhesion molecules, and pro-inflammatory cytokines: A brief review of the literature. Nutr Rev. 2009;67:213–21. https://doi.org/10.1111/j.1753-4887.2009.00191.x.

    Article  PubMed  Google Scholar 

  68. Oliveira GJ, Paula LG, Souza JA, Spin-Neto R, Stavropoulos A, Marcantonio RA. Effect of avocado/soybean unsaponifiables on ligature-induced bone loss and bone repair after ligature removal in rats. J Periodontal Res. 2016;51:332–41. https://doi.org/10.1111/jre.12312.

    Article  CAS  PubMed  Google Scholar 

  69. Inagaki K, Furukawa M, Yoshinari N, Yamada S, Ishihara Y, Ito M. Calcium and isoflavone supplements may maintain periodontal health in postmenopausal women - a randomized controlled study. Jpn J Conserv Dent. 2003:538–48.

  70. Taniguchi M, Noda Y, Aida R, Saito K, Ochiai A, Saitoh E, et al. Cationic peptides from enzymatic hydrolysates of soybean proteins exhibit LPS-neutralizing and angiogenic activities. J Biosci Bioeng. 2019;127:176–82. https://doi.org/10.1016/j.jbiosc.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  71. Taniguchi M, Aida R, Saito K, Ochiai A, Takesono S, Saitoh E, et al. Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean Natto extracts. J Biosci Bioeng. 2019;127:472–8. https://doi.org/10.1016/j.jbiosc.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  72. Taniguchi M, Saito K, Nomoto T, Namae T, Ochiai A, Saitoh E, et al. Identification and characterization of multifunctional cationic and amphipathic peptides from soybean proteins. Biopolymers. 2017;108. https://doi.org/10.1002/bip.23023.

  73. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007;137:2171–84. https://doi.org/10.1093/jn/137.10.2171.

    Article  CAS  PubMed  Google Scholar 

  74. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9. https://doi.org/10.3390/nu9111211.

  75. Ashor AW, Brown R, Keenan PD, Willis ND, Siervo M, Mathers JC. Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyzes. Nutr Res. 2019;61:1–12. https://doi.org/10.1016/j.nutres.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  76. Chen Q, Polireddy K, Chen P, Dong R. The unpaved journey of vitamin C in cancer treatment. Can J Physiol Pharmacol. 2015;93:1055–63. https://doi.org/10.1139/cjpp-2014-0509.

    Article  CAS  PubMed  Google Scholar 

  77. Staudte H, Guntsch A, Volpel A, Sigusch BW. Vitamin C attenuates the cytotoxic effects of Porphyromonas gingivalis on human gingival fibroblasts. Arch Oral Biol. 2010;55:40–5. https://doi.org/10.1016/j.archoralbio.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  78. Wu W, Yang N, Feng X, Sun T, Shen P, Sun W. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells. Mol Med Rep. 2015;11:242–8. https://doi.org/10.3892/mmr.2014.2712.

    Article  CAS  PubMed  Google Scholar 

  79. Akman S, Canakci V, Kara A, Tozoglu U, Arabaci T, Dagsuyu IM. Therapeutic effects of alpha lipoic acid and vitamin C on alveolar bone resorption after experimental periodontitis in rats: a biochemical, histochemical, and stereologic study. J Periodontol. 2013;84:666–74. https://doi.org/10.1902/jop.2012.120252.

    Article  CAS  PubMed  Google Scholar 

  80. Tomofuji T, Ekuni D, Sanbe T, Irie K, Azuma T, Maruyama T, et al. Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med. 2009;46:163–8. https://doi.org/10.1016/j.freeradbiomed.2008.09.040.

    Article  CAS  PubMed  Google Scholar 

  81. . Tada A, Miura H. The Relationship between Vitamin C and Periodontal Diseases: A Systematic Review. Int J Environ Res Public Health. 2019;16. https://doi.org/10.3390/ijerph16142472This is a latest systematic review about vitamin C and periodontal disease.

  82. Shimabukuro Y, Nakayama Y, Ogata Y, Tamazawa K, Shimauchi H, Nishida T, et al. Effects of an ascorbic acid-derivative dentifrice in patients with gingivitis: a double-masked, randomized, controlled clinical trial. J Periodontol. 2015;86:27–35. https://doi.org/10.1902/jop.2014.140138.

    Article  CAS  PubMed  Google Scholar 

  83. Gokhale NH, Acharya AB, Patil VS, Trivedi DJ, Thakur SL. A short-term evaluation of the relationship between plasma ascorbic acid levels and periodontal disease in systemically healthy and type 2 diabetes mellitus subjects. J Diet Suppl. 2013;10:93–104. https://doi.org/10.3109/19390211.2013.790332.

    Article  CAS  PubMed  Google Scholar 

  84. Abou Sulaiman AE, Shehadeh RM. Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis. J Periodontol. 2010;81:1547–54. https://doi.org/10.1902/jop.2010.100173.

    Article  CAS  PubMed  Google Scholar 

  85. Kunsongkeit P, Okuma N, Rassameemasmaung S, Chaivanit P. Effect of Vitamin C as an adjunct in nonsurgical periodontal therapy in uncontrolled type 2 diabetes mellitus patients. Eur J Dent. 2019;13:444–9. https://doi.org/10.1055/s-0039-1693207.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health--author's reply. Lancet Diabetes Endocrinol. 2014;2:275–6. https://doi.org/10.1016/S2213-858770049-X.

    Article  PubMed  Google Scholar 

  87. Zanetti M, Harris SS, Dawson-Hughes B. Ability of vitamin D to reduce inflammation in adults without acute illness. Nutr Rev. 2014;72:95–8. https://doi.org/10.1111/nure.12095.

    Article  PubMed  Google Scholar 

  88. De Filippis A, Fiorentino M, Guida L, Annunziata M, Nastri L, Rizzo A. Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human beta-defensin-3 in human gingival epithelium and periodontal ligament cells. Int Immunopharmacol. 2017;47:106–17. https://doi.org/10.1016/j.intimp.2017.03.021.

    Article  CAS  PubMed  Google Scholar 

  89. Nakashyan V, Tipton DA, Karydis A, Livada R, Stein SH. Effect of 1,25(OH)2 D3 and 20(OH)D3 on interleukin-1beta-stimulated interleukin-6 and -8 production by human gingival fibroblasts. J Periodontal Res. 2017;52:832–41. https://doi.org/10.1111/jre.12452.

    Article  CAS  PubMed  Google Scholar 

  90. McMahon L, Schwartz K, Yilmaz O, Brown E, Ryan LK, Diamond G. Vitamin D-mediated induction of innate immunity in gingival epithelial cells. Infect Immun. 2011;79:2250–6. https://doi.org/10.1128/IAI.00099-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. . Pinto J, Goergen J, Muniz F, Haas AN. Vitamin D levels and risk for periodontal disease: A systematic review. J Periodontal Res. 2018;53:298–305. https://doi.org/10.1111/jre.12531This is a latest systematic review about vitamin D and periodontal disease.

    Article  CAS  PubMed  Google Scholar 

  92. Dodington DW, Fritz PC, Sullivan PJ, Ward WE. Higher intakes of fruits and vegetables, beta-carotene, vitamin C, alpha-Tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. J Nutr. 2015;145:2512–9. https://doi.org/10.3945/jn.115.211524.

    Article  CAS  PubMed  Google Scholar 

  93. Meghil MM, Hutchens L, Raed A, Multani NA, Rajendran M, Zhu H, et al. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Dis. 2019;25:1403–13. https://doi.org/10.1111/odi.13097.

    Article  PubMed  Google Scholar 

  94. Chee B, Park B, Fitzsimmons T, Coates AM, Bartold PM. Omega-3 fatty acids as an adjunct for periodontal therapy-a review. Clin Oral Investig. 2016;20(5):879–94. https://doi.org/10.1007/s00784-016-1750-2.

    Article  CAS  PubMed  Google Scholar 

  95. Iwasaki M, Yoshihara A, Moynihan P, Watanabe R, Taylor GW, Miyazaki H. Longitudinal relationship between dietary omega-3 fatty acids and periodontal disease. Nutrition. 2010;26(11-12):1105–9. https://doi.org/10.1016/j.nut.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  96. Naqvi AZ, Hasturk H, Mu L, Phillips RS, Davis RB, Halem S, et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res. 2014;93(8):767–73. https://doi.org/10.1177/0022034514541125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Naqvi AZ, Mu L, Hasturk H, Van Dyke TE, Mukamal KJ, Goodson JM. Impact of docosahexaenoic acid therapy on subgingival plaque microbiota. J Periodontol. 2017;88(9):887–95. https://doi.org/10.1902/jop.2017.160398.

    Article  CAS  PubMed  Google Scholar 

  98. Keskiner I, Saygun I, Bal V, Serdar M, Kantarci A. Dietary supplementation with low-dose omega-3 fatty acids reduces salivary tumor necrosis factor-alpha levels in patients with chronic periodontitis: a randomized controlled clinical study. J Periodontal Res. 2017;52(4):695–703. https://doi.org/10.1111/jre.12434.

    Article  CAS  PubMed  Google Scholar 

  99. Matesanz-Perez P, Garcia-Gargallo M, Figuero E, Bascones-Martinez A, Sanz M, Herrera D. A systematic review on the effects of local antimicrobials as adjuncts to subgingival debridement, compared with subgingival debridement alone, in the treatment of chronic periodontitis. J Clin Periodontol. 2013;40:227–41. https://doi.org/10.1111/jcpe.12026.

    Article  CAS  PubMed  Google Scholar 

  100. Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control. 2018;7:58. https://doi.org/10.1186/s13756-018-0336-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukari Aoki-Nonaka or Koichi Tabeta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on [Oral Disease and Nutrition]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki-Nonaka, Y., Matsugishi, A., Lwin, H.Y. et al. Nutritional Supplements and Periodontal Disease Prevention—Current Understanding. Curr Oral Health Rep 7, 154–164 (2020). https://doi.org/10.1007/s40496-020-00261-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-020-00261-7

Keywords

Navigation