Skip to main content

Advertisement

Log in

Oxidative Stress and Bladder Cancer Carcinogenesis: Early Detection and Chemoprevention Involving Nrf2—an Integrative Approach

  • Cancer Chemoprevention (R Agarwal, KE Bayoumy and S Yu, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Oxidative stress is a driver of many diseases, including cancer. Nuclear factor (erythroid-derived 2) like 2 (Nrf2 or NFE2L2) provides cellular defense against oxidative stress by regulating antioxidant response element (ARE)-mediated phase II detoxifying/antioxidant enzymes. This protective role is evident from studies on bladder cancer (BCa) pathogenesis. This article reviews the impact of excessive oxidative stress on bladder carcinogenesis, aiming to understand what is happening from an epidemiological perspective concerning its burden and management, as well as to discuss the challenges including high relapse rate. Two measures are proposed for reducing the burden and better management: first, promote early diagnosis of BCa with fluorescence cystoscopy; second, increase dietary intake of nutraceuticals that demonstrate functional antioxidative Nrf2. Such an integrative approach may provide a better prognostic outcome for BCa patients or people who are at higher risk of developing BCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Google Scholar 

  2. Berenblum I, Armuth V. Two independent aspects of tumor promotion. Biochim Biophys Acta. 1981;651:51–63.

    CAS  PubMed  Google Scholar 

  3. Heidelberger C, Freeman AE, Pienta RJ, Sivak A, Bertram JS, Casto BC, et al. Cell transformation by chemical agents—a review and analysis of the literature. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983;114:283–385.

    Article  CAS  Google Scholar 

  4. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66:3663–73.

    Article  CAS  Google Scholar 

  5. Mantovani A, Allavena P, Sica A, Balkwill FA. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  Google Scholar 

  6. Letašiová S, Medve’ová A, Šovčíková A, Dušinská M, Volkovová K, Mosoiu C, et al. Bladder cancer, a review of the environmental risk factors. Environ Health. 2012;11(Suppl 1):S11.

    Article  Google Scholar 

  7. Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 2011;51:257–81.

    Article  CAS  Google Scholar 

  8. Steward WP, Brown K. Cancer chemoprevention: a rapidly evolving field. Br J Cancer. 2013;109(1):1–7.

    Article  CAS  Google Scholar 

  9. Sporn MB. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976;36:2699–702.

    CAS  PubMed  Google Scholar 

  10. Hu R, Saw CL-L, Yu R, Kong A-NT. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal. 2010;13:1679–98.

    Article  CAS  Google Scholar 

  11. Talalay P, Fahey JW, Holtzclaw WD, Prestera T, Zhang Y. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett. 1995;82–83:173–9.

    Article  Google Scholar 

  12. Paredes-Gonzalez X, Fuentes F, Jeffery S, Saw CL-L, Shu L, Su Z-Y, et al. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm Drug Dispos. 2015;36:440–51.

    Article  CAS  Google Scholar 

  13. Saw CLL, Guo Y, Yang AY, Paredes-Gonzalez X, Ramirez C, Pung D, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol. 2014;72:303–11.

    Article  CAS  Google Scholar 

  14. Saw CLL, Yang AY, Guo Y, Kong A-NT. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem Toxicol. 2013;62:869–75.

    Article  CAS  Google Scholar 

  15. Saw CLL, Wu Q, Su Z-Y, Wang H, Yang Y, Xu X, et al. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm Drug Dispos. 2013;34:303–11.

    Article  CAS  Google Scholar 

  16. Wang H, Khor TO, Yang Q, Huang Y, Wu T-Y, Saw CL-L, et al. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes. Mol Pharm. 2012;9:2819–27.

    Article  CAS  Google Scholar 

  17. Saw CLL, Yang AY, Cheng DC, Boyanapalli SS-S, Su Z-Y, Khor TO, et al. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol. 2012;25:1574–80.

    Article  CAS  Google Scholar 

  18. Saw CL-L, Cintrón M, Wu T-Y, Guo Y, Huang Y, Jeong W-S, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos. 2011;32:289–300.

    Article  CAS  Google Scholar 

  19. Slocum SL, Kensler TW. Nrf2: control of sensitivity to carcinogens. Arch Toxicol. 2011;85:273–84.

    Article  CAS  Google Scholar 

  20. Saw CLL, Yang AY, Huang M-T, Liu Y, Lee JH, Khor TO, et al. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages. Cell Biosci. 2014;4:39.

    Article  Google Scholar 

  21. Saw CL, Huang M-T, Liu Y, Khor TO, Conney AH, Kong A-N. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog. 2011;50:479–86.

    Article  CAS  Google Scholar 

  22. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  Google Scholar 

  23. Cheng D, Wu R, Guo Y, Kong A-NT. Regulation of Keap1–Nrf2 signaling: the role of epigenetics. Curr Opin Toxicol. 2016;1:134–8.

    Article  Google Scholar 

  24. Huang Y, Li W, Su Z-Y, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26:1401–13.

    Article  CAS  Google Scholar 

  25. Tang L, Zirpoli GR, Guru K, Moysich KB, Zhang Y, Ambrosone CB, et al. Intake of cruciferous vegetables modifies bladder cancer survival. Cancer Epidemiol Biomarkers Prev. 2010;19:1806–11.

  26. Veeranki OL, Bhattacharya A, Tang L, Marshall JR, Zhang Y. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. Curr Pharmacol Rep. 2015;1:272–82.

    Article  CAS  Google Scholar 

  27. Borden LS, Clark PE, Hall MC. Bladder cancer. Curr Opin Oncol. 2005;17:275–80.

    Article  Google Scholar 

  28. Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71:447–61.

    Article  Google Scholar 

  29. Soini Y, Haapasaari K-M, Vaarala MH, Turpeenniemi-Hujanen T, Kärjä V, Karihtala P. 8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinary bladder carcinoma. Int J Clin Exp Pathol. 2011;4:267–75.

    PubMed  PubMed Central  Google Scholar 

  30. Cookson MS, Herr HW, Zhang Z-F, Soloway S, Sogani PC, Fair WR. The treated natural history of high risk superficial bladder cancer: 15-year outcome. J Urol. 1997;158:62–7.

    Article  CAS  Google Scholar 

  31. Spiess PE, Grossman HB. Fluorescence cystoscopy: is it ready for use in routine clinical practice? Curr Opin Urol. 2006;16:372–6.

    Article  Google Scholar 

  32. D’Hallewin M-A, Vanherzeele H, Baert L Fluorescence detection of bladder cancer. In: Petrovich Z, Baert L, Brady LW, editors. Carcinoma of the Bladder. Medical Radiology (Diagnostic Imaging and Radiation Oncology) [Internet]. Berlin, Heidelberg: Springer 1998; p. 113–25. Available from: https://link.springer.com/chapter/10.1007/978-3-642-60258-0_10.

  33. Lamm DL. Carcinoma in situ. Urol Clin North Am. 1992;19:499–508.

    CAS  PubMed  Google Scholar 

  34. American Urological Association - Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO joint guideline [Internet]. [cited 2018 Jan 11]. Available from: http://www.auanet.org/guidelines/non-muscle-invasive-bladder-cancer-(aua/suo-joint-guideline-2016)#x2560.

  35. Gregorie HB, Horger EO, Ward JL, Green JF, Richards T, Robertson HC, et al. Hematoporphyrin-derivative fluorescence in malignant neoplasms. Ann Surg. 1968;167:820–8.

    Article  Google Scholar 

  36. D’Hallewin M-A, Kamuhabwa AR, Roskams T, De Witte PAM, Baert L. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int. 2002;89:760–3.

    Article  Google Scholar 

  37. Straub M, Russ D, Horn T, Gschwend JE, Abrahamsberg C. A phase IIA dose-finding study of PVP-hypericin fluorescence cystoscopy for detection of nonmuscle-invasive bladder cancer. J Endourol. 2015;29:216–22.

    Article  Google Scholar 

  38. Saw CLL, Olivo M, Chin WWL, Soo KC, Heng PWS. Superiority of N-methyl pyrrolidone over albumin with hypericin for fluorescence diagnosis of human bladder cancer cells implanted in the chick chorioallantoic membrane model. J Photochem Photobiol B. 2007;86:207–18.

    Article  CAS  Google Scholar 

  39. Saw CLL, Olivo M, Soo KC, Heng PWS. Spectroscopic characterization and photobleaching kinetics of hypericin-N-methyl pyrrolidone formulations. Photochem Photobiol Sci. 2006;5:1018–23.

    Article  CAS  Google Scholar 

  40. Saw CLL, Olivo M, Soo KC, Heng PWS. Delivery of hypericin for photodynamic applications. Cancer Lett. 2006;241:23–30.

    Article  CAS  Google Scholar 

  41. Jiang B, Dong Y, He H, Han C. Application of pirarubicin photosensitizer fluorescence cystoscopy in early detection of bladder cancer. Oncol Lett. 2017;14:3309–12.

    Article  Google Scholar 

  42. Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky K-E, et al. 5-Aminolevulinic acid-based photodynamic therapy. Cancer. 1997;79:2282–308.

    Article  CAS  Google Scholar 

  43. Novo M, Hüttmann G, Diddens H. Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J Photochem Photobiol B. 1996;34:143–8.

    Article  CAS  Google Scholar 

  44. Saw CLL, Heng PWS. Hypericin. In: Schwab M, editor. Encyclopedia of Cancer [Internet]. Berlin, Heidelberg: Springer 2017. https://doi.org/10.1007/978-3-662-46875-3_2908.

  45. Lerner SP, Goh A. Novel endoscopic diagnosis for bladder cancer. Cancer. 2015;121:169–78.

    Article  Google Scholar 

  46. D’Hallewin MA, De Witte PA, Waelkens E, Merlevede W, Baert L. Fluorescence detection of flat bladder carcinoma in situ after intravesical instillation of hypericin. J Urol. 2000;164:349–51.

    Article  Google Scholar 

  47. Sim HG, Lau WKO, Olivo M, Tan PH, Cheng CWS. Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma? BJU Int. 2005;95:1215–8.

    Article  Google Scholar 

  48. Kubin A, Meissner P, Wierrani F, Burner U, Bodenteich A, Pytel A, et al. Fluorescence diagnosis of bladder cancer with new water soluble hypericin bound to polyvinylpyrrolidone: PVP-hypericin. Photochem Photobiol. 2008;84:1560–3.

    Article  CAS  Google Scholar 

  49. Akçay T, Saygili I, Andican G, Yalçin V. Increased formation of 8-hydroxy-2′-deoxyguanosine in peripheral blood leukocytes in bladder cancer. Urol Int. 2003;71:271–4.

    Article  Google Scholar 

  50. Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakul C, et al. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomed. 2010;4:703–10.

  51. Perše M, Injac R, Erman A. Oxidative status and lipofuscin accumulation in urothelial cells of bladder in aging mice. PLoS One. 2013;8:e59638.

    Article  Google Scholar 

  52. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol [Internet]. 2009;1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882124/

  53. Tripathi DN, Jena GB. Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide-induced urinary bladder injury in rat. J Pineal Res. 2010;48:324–31.

    Article  CAS  Google Scholar 

  54. Wongpaiboonwattana W, Tosukhowong P, Dissayabutra T, Mutirangura A, Boonla C. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line. Asian Pac J Cancer Prev. 2013;14:3773–8.

    Article  Google Scholar 

  55. Yager JW, Gentry PR, Thomas RS, Pluta L, Efremenko A, Black M, et al. Evaluation of gene expression changes in human primary uroepithelial cells following 24-Hr exposures to inorganic arsenic and its methylated metabolites. Environ Mol Mutagen. 2013;54:82–98.

    Article  CAS  Google Scholar 

  56. Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004;64:6424–31.

    Article  CAS  Google Scholar 

  57. Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12:564–71.

    Article  CAS  Google Scholar 

  58. Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, et al. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol. 2014;140:1723–31.

    Article  CAS  Google Scholar 

  59. Qi Z-P, Zhao E-J, Li B, Bai R-X. Glutathione S-transferase M1 polymorphism and bladder cancer risk: a meta-analysis involving 50 studies. Int J Clin Exp Pathol. 2017;10:3209–18.

    CAS  Google Scholar 

  60. Reszka E, Jablonowski Z, Wieczorek E, Gromadzinska J, Jablonska E, Sosnowski M, et al. Expression of NRF2 and NRF2-modulated genes in peripheral blood leukocytes of bladder cancer males. Neoplasma. 2013;60:123–8.

    Article  CAS  Google Scholar 

  61. Savic-Radojevic A, Djukic T, Simic T, Pljesa-Ercegovac M, Dragicevic D, Pekmezovic T, et al. GSTM1-null and GSTA1-low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep. 2013;18:1–7.

    Article  CAS  Google Scholar 

  62. Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, et al. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol Oncol Semin Orig Investig. 2014;32:806–14.

    Article  CAS  Google Scholar 

  63. Saw CL-L, Wu Q, Kong A-NT. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med. 2010;5:37.

    Article  Google Scholar 

  64. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 2013;73:4158–68.

    Article  CAS  Google Scholar 

  65. Lee JH, Khor TO, Shu L, Su Z-Y, Fuentes F, Kong A-NT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137:153–71.

    Article  CAS  Google Scholar 

  66. Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee J-H, et al. Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem. 2012;12:1281–305.

    Article  CAS  Google Scholar 

  67. Su Z-Y, Shu L, Khor TO, Lee JH, Fuentes F, Tony Kong A-N. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, Nrf2, and epigenomics. Top Curr Chem. 2013;329:133–62.

    Article  CAS  Google Scholar 

  68. Finley JW, Kong A-N, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem. 2011;59:6837–46.

    Article  CAS  Google Scholar 

  69. Berger RG, Lunkenbein S, Ströhle A, Hahn A. Antioxidants in food: mere myth or magic medicine? Crit Rev Food Sci Nutr. 2012;52:162–71.

    Article  CAS  Google Scholar 

  70. Hock LC. An overview of the cancer control programme in Singapore. Jpn J Clin Oncol. 2002;32:S62–5.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Chung Ling Quek at Singapore Health Services (Singhealth), Singapore for reading of this manuscript. Thanks also go to Dr. Chee Loong Saw and Dr. Simran Kaur at McGill University for their helpful comments.

Funding

This review is not funded by any parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance Lay Lay Saw.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Chemoprevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saw, C.L.L. Oxidative Stress and Bladder Cancer Carcinogenesis: Early Detection and Chemoprevention Involving Nrf2—an Integrative Approach. Curr Pharmacol Rep 4, 482–490 (2018). https://doi.org/10.1007/s40495-018-0163-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0163-0

Keywords

Navigation