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The specificity of protein-DNA interactions is most commonly modeled using position weight matrices
(PWMs). First introduced in 1982, they have been adapted to many new types of data and many different
approaches have been developed to determine the parameters of the PWM. New high-throughput
technologies provide a large amount of data rapidly and offer an unprecedented opportunity to determine
accurately the specificities of many transcription factors (TFs). But taking full advantage of the new data
requires advanced algorithms that take into account the biophysical processes involved in generating the
data. The new large datasets can also aid in determining when the PWMmodel is inadequate and must be
extended to provide accurate predictions of binding sites. This article provides a general mathematical
description of a PWM and how it is used to score potential binding sites, a brief history of the approaches
that have been developed and the types of data that are used with an emphasis on algorithms that we have
developed for analyzing high-throughput datasets from several new technologies. It also describes
extensions that can be added when the simple PWM model is inadequate and further enhancements that
may be necessary. It briefly describes some applications of PWMs in the discovery andmodeling of in vivo
regulatory networks.

INTRODUCTION

Many transcription factors (TFs), as well as some RNA-
binding proteins, bind to DNA (or RNA) in a sequence-
specific manner, where the binding affinity depends on
the sequence. The earliest, and still a common, repre-
sentation of the specificity of such TFs is a consensus
sequence, a DNA sequence that may include degenera-
cies. Potential binding sites are predicted based on
matches to the consensus sequence, often allowing
some number of mismatches. A more general approach,
with improved accuracy, is a position weight matrix
(PWM, also called just a weight matrix or a position
specific scoring matrix, PSSM). In the 30 years since
PWMs were introduced as a representation of the
specificity of DNA and RNA binding proteins [1], they
have become the primary method for representing
specificity and for searching genome sequences and
predicting binding sites. Although PWMs employ a
general mathematical model, a large variety of methods

have been developed to assign parameters to the model.
Often different methods are used when different types of
data are available, but even for the same data different
approaches have been used. The accuracy of different
PWMs can be assessed in various ways, most effectively
when quantitative binding data are available for the TF of
interest. There has also been, since the beginning, the
realization that PWM models have limitations and may
not capture the true specificity of a TF. In fact it is clear
that PWMs are approximations to the true specificity and
the question to address is how good an approximation it
is, which depends on the TF. In many cases PWMs can
provide adequate (for the purpose at hand) models of
specificity, but for some TFs they do not. Extensions to
the basic PWM model can be included which capture
important specificity information that may be missing
from the PWM.
This article has several purposes. It provides an

overview of the primary methods for assigning para-
meters to PWMs including a brief history of the main
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innovations. It then focuses on our recent development of
algorithms that take advantage of new high-throughput
technologies to infer PWMmodels of specificity. The new
datasets provide unprecedented opportunities for improv-
ing the accuracies of specificity models, and for
determining when PWMs are good representations and
when they are not. It also describes extended models for
representing specificity when PWMs are inadequate and
some further enhancements that may provide more
general modeling capabilities. By combining information
from many different members of particular TF families it
is also possible to develop recognition models that can aid
in the design of TFs with novel specificity. This article is
not about gene regulation and regulatory networks.
Although that is an important reason for studying
protein-DNA specificity, the focus here is on models of
intrinsic specificity, modeling the differences in binding
affinity for different DNA sequences under conditions
without any confounding factors. This information can be
very useful in modeling in vivo interactions and gene
regulation, and in particular on the effects of genetic
variations on gene expression, but those applications are
mentioned only briefly.

GENERAL PWM MODEL

There is some disagreement about the definition of a
PWM. In some cases it is used too broadly to cover
methods that are really quite distinct. But more often it is
defined too narrowly, being tied to a specific method for
estimating the parameters of the PWM rather than for the
general notion of what a PWM is and how it is used to
model specificity. We define a PWM as a matrix, W(b,i),
of numbers for each possible base (b = A, C, G or T) at
each position (i = 1 to L) in an L-long protein binding site
(Figure 1A). Such a matrix provides an additive score for
any sequence of length L by summing the elements of W
that correspond to the sequence. If we encode the
sequence Sj with the same type of matrix, with 1 for
the base that occurs at a position and all other elements
being 0, the score is the sum of the products of the
corresponding elements of the two matrices:

ScoreðSjjwÞ=Σb,iW ðb,iÞSjðb,iÞ (1)

which we can also write as W$Sj, the dot product
between the two matrices (Figure 1B). Obviously all L-
long sequences will be encoded in a unique sequence
matrix and W will assign a score to each sequence.
Every sequence-specific DNA binding protein (such as

a TF) can be represented by its ownW and the challenge is
to find one that is a good representation of its specificity,
by which we typically mean one that provides a good
quantitative prediction of activity for different binding
sites or is useful for predicting binding sites in a genome

sequence. A PWM is an approximation to the true
specificity of a protein, for some proteins it is a good
approximation and for others there is noW that provides a
good representation. In that case the model can be
extended to include additional features of the sequence
that increase the accuracy of the representation. A variety
of algorithms have been proposed to create the W for a
protein and the following section provides a brief history
and summary of many methods. In some cases the choice
of method depends on the type of data available, but in
many cases multiple methods have been applied to the
same types of data.
It is important to realize that a PWM is a generalization

of the consensus sequence concept. For any consensus
sequence, including degeneracies and allowing for
mismatches, an equivalent W and threshold score can be
created which will return exactly the same set of binding
site predictions (Figure 1C). But a PWM has the
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Figure 1. Weight matrices and sequence encoding.
(A) The weight matrix for a hypothetical transcription
factor (YFTF). Scores are provided for each possible

base at each position in a five-long binding site. (B) The
encoding of a particular sequence, GCGGA, with a 1 for
the base that occurs at each position and all other
elements are 0. The score of the sequence, given the

matrix in part A, is shown. (C) An alternative weight
matrix for the consensus sequence GTGRM (R = A or G,
M = A or C). Any sequence that matches the consensus

will get a score of 5, allowing one mismatch requires a
score of at least 4, etc. This shows how any consensus
sequence can be converted into an equivalent weight

matrix that will return exactly the same set of sites.
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advantage that it provides position-specific penalties for
deviations from the consensus, rather than treating all
mismatches equally. Typically there are some positions
that contribute more to the specificity than others, or
where particular bases are especially important (either
positively or negatively) to the activity of a binding site. A
PWM allows those distinctions to be included in a simple,
additive manner. Taking the example in Figure 1, if the
matrix of Figure 1A is a true representation of the
specificity of the TF, for many choices of thresholds
(where one wants to separate all sequences with scores
higher than the threshold from those with lower scores) it
would be impossible to define a consensus sequence that
makes the desired separation. So, although it is possible to
represent the specificity of a TF with a consensus
sequence, this article focuses solely on PWMs because
of their increased potential accuracy (“potential” because
it is certainly possible to define a W for a protein that is a
very poor representation, worse than a consensus
sequence, but that would be due to the method for
assigning the parameters to W, not a fundamental
limitation of the PWM approach).
It is also important to realize that a PWM does not

imply a particular mechanism for the observed specificity.
For example, if a T is the preferred base at a particular
position that may be due to the specific arrangement of
hydrogen bond donors and acceptors in the major groove
of an A-T base pair, or it may be due to a strong
interaction with the methyl group on the T, or it could be
due to the specific shape of the DNA, such as groove
width or intrinsic bend, that requires the A-T pair, or even
some combination of all of those contributions. The PWM
just captures the relative quantitative contribution of
different base pairs to functional activity without
identifying a specific cause for that preference. On the
other hand, given a large number of TFs (especially all
from the same TF family so that one can assume they bind
to DNA in a very similar manner), each with its own
protein sequence and PWM, it is possible to infer some
interaction rules, or at least probabilistic models, that
allow for prediction of TF specificity based only on the
protein sequence. This further facilitates the design of TFs
with desired specificity, something that has been most
effectively applied to zinc finger proteins [2–5].
Higher order models fit into this paradigm quite easily.

W is a vector that weights the features of the sequence to
give a score. In a PWM the features are just which base
occurs at each position in the site, but one can add more
features if they are important. We can still use the notation
W$S, but now S encodes the relevant features for the
activity and W provides a weight for each of those
features. Relevant features might be adjacent bases if the
protein interacts with them non-independently, or it could
be even more complex. RNA motifs that include

structures with internal base-pairs can be included too
[6,7]. One thing that is not easily accomplished with W
feature vectors are variable lengths, in which case one
must go to a different function, such as an HMM [8].
Fortunately most TFs interact with fixed-length motifs
and can generally be well modeled with a PWM or a
slightly more complex function.

METHODS FOR GENERATING PWMs FROM TF

BINDING DATA

Various types of data can be used to infer a PWM for a
specific TF. The data may be qualitative, simply a list of
binding sites (perhaps also negative data, non-binding
sites), or quantitative, where each site has an associated
value related to its functional activity. In addition one can
classify data sets by whether the binding sites are given
precisely or if they are embedded in longer segments of
DNA without their precise locations being indicated. In
the latter case there is a motif discovery aspect to the
problem where one must infer both the PWM and the sites
simultaneously. The following sections described the
most commonly used algorithms for each class of data
and include some historical notes about their origins.

MODELING FROM QUALITATIVE BINDING SITE

DATA

A large number of specific programs have been written to
estimate PWMs based on collections of sites, but they can
be broadly classified into three types. When both positive
and negative examples exist (sites and non-sites) one can
search for discriminant models in which the scores
assigned to every (or most) positive sequence are higher
than to every (or most) negative sequence. If only positive
examples are known a common approach is to use
probabilistic modeling, in which the scores provide
estimates of the probability of a specific sequence
belonging to the set of sites. This approach can also
incorporate information about the probability of a
sequence belonging to the set of non-sites, the back-
ground from which the sites are selected, to provide better
discrimination although specific sets of non-sites are not
included. A third type of modeling assumes that the
elements of the PWM represent binding energy contribu-
tions of each base at each position which are independent
and whose sum determines the binding free energy of any
sequence. These different approaches derive from differ-
ent viewpoints about the data and how best to capture the
specificity of the TF, but they are not mutually exclusive.
Under some assumptions, the same binding site collection
will give rise to the same PWM using both the
probabilistic approach and the energy approach, although
under different assumptions they can diverge. Some
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approaches provide implicit discrimination based on
assumptions about the non-sites even though specific
sets of non-sites are not included.

Discriminant modeling

Given a collection of known binding sites as a positive
set, S+, and another set of sites that are non-functional, S–,
discriminant modeling searches for a PWM (labeled as
WD for discriminant) that distinguishes the two sets of
sites:

WD : WD$S
þ > WD$S

– 8 Sþ,S – (2)

This approach was the first use of a PWM [1] in which
the sites were E. coli ribosome binding sites and the non-
sites were alternative ATGs that did not function as
ribosome binding sites. The perceptron algorithm was
used in that paper; that is a simple neural network that
learns by error correction and is guaranteed to find such a
WD if one exists (the perceptron convergence theorem
[9]).Finding a WD means that the sequence sets are
linearly separable with the vector WD providing the
separation function; all positive sequence vectors are
closer toWD (have a smaller angle between them andWD)
than any of the negative set. At the time of that paper all
previous efforts at modeling binding site specificities
attempted to derive consensus sequences that could be
used to predict new binding sites while minimizing false
positive predictions; they were focused on deriving
maximally discriminant consensus sequences. The fact
that a PWMwas capable of better discrimination than any
of an extensive set of consensus sequences that were
developed for comparison [10] demonstrated the value of
a linear weighting function. Furthermore a PWM could be
an effective method for identifying the relevant features,
and their relative importance, in a set of functional sites
and as a more precise tool to predict additional sites in
genome sequences.
Djordjevic et al. [11] also used a form of discriminant

modeling. They did not have a set of non-binding sites,
but they used quadratic programming to find the smallest
W (minimizing |W|, the Euclidian length of W) while
requiring that W$Sþ > c 8Sþ (for any constant c). This
putsW in the center of the perimeter of all the Sþ where it
minimizes the number of other sequences that score above
the threshold c. In a comparison with a probabilistic
model (see next section) they showed that it could greatly
reduce the total number of predicted sites, most of which
are probably false positives. Of course the real assessment
of the accuracy depends on independent predictions, but
this approach does provide a means of minimizing the
number of predicted sites for any desired level of
sensitivity based on only known sites, a goal of the
consensus methods described above.

Probabilistic modeling

It is more common to have only a set of known functional
sites and there have been many algorithms that use such
collections to define PWMs for modeling and prediction
purposes. Once methods for DNA sequencing were
invented [12,13], several groups began identifying the
binding sites for specific regulatory factors. The earliest
large collections were for E. coli promoters [14–16] and
ribosome binding sites [17,18] and for eukaryotic splice
junctions [19]. Alignments of those collections of sites
were used to generate a position frequency matrix (PFM,
Figure 2A), in which the probability (or frequency) of
each base at each position is determined from the
alignment. For example, given N sequences encoded in
matrices as shown in Figure 1B, the PFM is:

Fðb,iÞ= 1

N

XN

j¼1
Sjðb; iÞ (3)

The first use of PFMs directly as a model was for
predicting E. coli promoters [20]. E. coli promoters have
two separate parts, the “ –10 region” and the “ –35
region”, named for their approximate distances from the
transcription start site, but there is variable distance
between them. For any given sequence Harr et al. [20]
computed the probability given the PFM, including the
spacing, and then determined if it was likely to be a
promoter based on a threshold score. (They actually used
an adjusted probability so that the consensus sequence,
the highest scoring site, was assigned 1 and all other
sequences were then scored relative to that). This is not a
PWM because the function is not additive. In fact one can
think of it as providing the score, which is the probability
of the sequence given F, as:

Pr ðSjjFÞ=∏b,iFðb,iÞSjðb,iÞ (4)

This can be converted to a PWM by taking the
logarithms of F(b,i):

WLP : WLPðb,iÞ=logFðb,iÞ (5)

(“LP” for “log probability”) and then the score of a
sequence givenW is computed just as in equation (1), but
now the score is the log of the probability of the sequence
being in the set of functional sites. That is the probabilistic
PWM method that Staden published the following year
[21] in which he applied it to both E. coli promoters and to
eukaryotic splice junctions. The fact that Harr et al. [20]
included the probabilities of the different variable
spacings means that it was a simplified profile hidden
Markov model [8], only allowing gaps in the space
between the –10 and –35 regions. Staden’s method did
the same, but again using the logarithms of the different
spacing probabilities. Harr et al.[20] also suggested that
the PFM could be used directly as a PWM, that isW(b,i) =
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F(b,i) where one adds the base/position frequencies to get
the score. They pointed out that would not be a proper
probabilistic model, but suggested it might be useful in
some cases. That idea, of using the observed frequencies
as the PWM, was proposed again later by two other
groups [22,23] although instead of using the PFM directly
each position was weighted by its information content
(see below).
Mulligan et al. [24] also used an alignment of E. coli

promoters [15] to generate a PWM in which the elements
of W were based on the deviation (Z-score) of the
observed base frequencies from that expected by chance,
and also including a similar score for variable spacings.
They called this a “homology score” and they further
showed that it was correlated to the activity of any specific
promoter sequence.
In 1986 Schneider et al. [25] used information theory to

analyze binding sites. From F(b,i) of the aligned sites they
defined the information content, IC, at each position i as:

ICðiÞ=2þ ΣbFðb,iÞlog2Fðb,iÞ

=ΣbFðb,iÞlog2
Fðb,iÞ
0:25

(6)

They used log2 so that the information content is
measured in bits. If F(b,i)= 0.25 for each base then IC(i)=
0 and if F(b,i)= 1 for one base and 0 for every other base,
then IC(i)= 2. Those are the two extreme cases, but
0£IC(i)£2 in all cases. The IC of an entire site is the
sum over all of the positions. Note that the formula for IC
can be rewritten as:

ICðiÞ=2þ ΣbFðb,iÞWLPðb,iÞ (7)

where WLP is the probabilistic model given by equation
(5). Σb,iFðb,iÞWLPðb,iÞ is the average score of all the
binding sites used to build the model. The last formula for
IC(i), on the last line of equation (6), is the relative
entropy, also known as Kullback-Leibler distance. It is a
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Figure 2. Position frequency matrix (PFM) and information content logo. (A) The position frequency matrix (PFM) for the
YFTF log-odds matrix from Figure 1A. The sum of the base frequencies for each position is 1. (B) An information content logo for

YFTF based on the PFM of part A. The height of the column at each position is the information content (IC) and the individual base
heights are in proportion to their frequencies.
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log-likelihood ratio (LLR) statistic between the observed
frequencies, given by F(b,i), and those expected from a
random sequence with 25% of each base. However, the
genome sequence where the sites occur may not contain
25% of each base. In that case any selection of randomly
chosen “sites” would have IC> 0, violating our intuition
that randomly chosen sequences should contain no
information. This can be corrected by altering the relative
entropy formula to use the actual background probabil-
ities for each base, P(b), instead of 0.25, in the
denominator. This is a log-odds (“LO”) weight matrix:

WLO : WLOðb,iÞ=log
Fðb,iÞ
PðbÞ (8)

from which one can define an alternative measure of
information content:

IC�ðiÞ=ΣbFðb,iÞlog2
Fðb,iÞ
PðbÞ

=ΣbFðb,iÞWLOðb,iÞ (9)

IC* is average score of all the sites used to build the
model, where the score is logarithm of the ratio of their
occurrence in the binding site collection compared to the
expected background occurrence (assuming positional
independence). Schneider et al. [25] suggested using the
alternative definition of IC* for genomes with unequal
base frequencies and WLO is now probably the most
commonly used method for determining the parameters of
a PWM from a collection of known sites (hereafter we
drop the “*” and references to IC will use the definition in
equation (9)). It is also frequently the objective function
that is maximized in motif discovery algorithms because
larger IC values correspond to larger statistical signifi-
cance (decrease in expected occurrence by chance, see
below). Schneider and Stephens [26] invented the
sequence logo method for visualizing a PWM (Figure
2B). The height of the column at each position is the IC of
that position and the individual base heights are in
proportion to their frequencies, with the more frequent
bases on top. This visualization technique is convenient
for many purposes. The consensus sequence is just the top
base at each position (nearly equal bases may be
converted to degeneracies) and the total height at each
position, the IC for that position, indicates how important
that position is to the specificity. Positions with very high
IC are critical to activity whereas those with low IC can
tolerate variations with little effect.

Energy modeling

If the positions in a binding site contribute independently
(additively) to the free energy of binding, the total binding

energy of a TF to sequence Sj, Ej, can be defined with a
PWM where the elements of W are the energetic
contributions of each base at position:

Ej=W$Sj (10)

Beginning in the late 1970s Peter von Hippel had
considered the relationship between binding energy
contributions of each base and the information required
within binding sites for regulatory systems to work given
the vast excess of non-functional sites in the genome
[27,28]. Initial models were based on the assumption that
each non-consensus base contributed an equal amount,
essentially a mismatch energy, but further theoretical
analysis led to a quantitative relationship between the
F(b,i) for a collection of binding sites and the energy
contribution of each base at each position [29]. This
model assumes that sites are selected by evolution if they
have a binding energy that is “good enough” to be
functional, while those with lower affinity will be lost. By
considering all of the combinations of bases that can
contribute to functional binding sites they show that
energy contributions are proportional to – logF(b,i), just
as was obtained from the probabilistic model (but with the
change in sign; lower energy bases are preferred):

W ðb,iÞ=log
maxFðb,iÞ
Fðb,iÞ ↕ ↓Ej=EminSj –WLP$Sj (11)

where maxF(b,i) is the maximum of F(b,i) at position i;
this defines the most frequent base to have energy = 0. It is
clear from probabilistic modeling that there are only three
free parameters at each position, because the frequencies
of all bases at each position sum to 1. In energy modeling
one is free to assign an energy of 0 to a reference
sequence, which they chose to be the consensus sequence.
Using this convention the energy values in W are the
difference in binding energy between the preferred base at
each position and each other base, hence the relationship
shown at the right of equation (11) that the W(b,i) matrix
for binding energy is equivalent to WLP but offset by the
minimum energy sequence. That model was based on the
background frequency for each base being 25% and for
the positions contributing independently to the binding
energy. In the appendix to the paper [29] they also showed
that for non-equal background frequencies one gets the
WLO matrix described above (again offset by the
minimum energy sequence) and that non-independence
between adjacent positions could also be included in the
model.
In later work it was shown that when sequences are

selected based on their binding affinities, such as in an in
vitro selection experiment, the WLO matrix also corre-
sponds to the sites being selected from a Boltzmann
distribution [30,31], but now over the entire range of
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affinities, not just those that are “good enough” to survive
evolutionary selection. This follows from F(Sj) being the
probability of sequence Sj, with binding energy Ej being
in the bound fraction, and P(Sj) being its proportion in the
collection of potential binding sites. If the sites are
selected according to the Boltzmann distribution, then:

FðSjÞ=
PðSjÞe –Ej

z
↕ ↓Ej=– log

FðSjÞ
PðSjÞ

(12)

where Z is the partition function, the sum of the numerator
over all possible sequences Sj (and note that Z = 1 for this
definition of Ej). Note that this equation does not depend
on independent contributions from the positions in the
binding site, or on the background being random
sequences. It is valid for any collection of sites when
they are selected based on their binding energies via this
Boltzmann relationship. If independence holds then the
contributions can be factored into additive contributions
at each position and one obtains the WLO matrix obtained
earlier from information theory considerations.
However, Djordjevic et al. [11] pointed out that the

Boltzmann distribution, Eq. (12), is not appropriate in
cases where binding sites approach saturation, which is
common in both in vitro experimental conditions and in
vivo for many regulatory systems. In such cases the
Fermi-Dirac distribution describes the relationship
between the binding energy of a sequence and its
probability of being bound:

PðboundjSjÞ=
e –Ej

e –� þ e –Ej
=

1

1þ eEj –�
(13)

where μ is related to the TF concentration (μ = ln[TF]/
KD(Sref), where KD(Sref) is the dissociation constant of the
reference sequence, defined to have Eref= 0). When Ej –

� � 0 ([TF] is very low or energy is very high) this
reduces to the Boltzmann equation given above. But
when [TF] is high, and Ej –� << 0, this approaches 1, the
sites become nearly saturated. The difference between the
two distributions can be quite large at high protein
concentrations and low energies. Figure 3 graphs the
differences in the probability distributions as a function of
binding free energy (relative to the consensus sequence
with E = 0). For the Boltzmann distribution (blue line),
the graph shows the decrease in relative binding
probability compared to the consensus sequence, whereas
for the Fermi-Dirac distribution (red line) it shows the
absolute binding probability under conditions such that
the consensus sequence is about 95% bound, near
saturation. Under those conditions the probability falls
off much more gradually for low energy sites than for
higher energy sites. For example, a single variant that
increased binding energy by 2 kT in the context of the
consensus sequence would reduce binding from about

95% to about 80%. But in the context of a site that was
originally bound at 50%, the same variant would reduce
binding to about 10%. Only sites with high binding
energy fit the Boltzmann assumption of exponential
decrease in probability with increasing energy.
Modeling based on binding energy has some important

advantages compared to the simple form of probabilistic
modeling described above. The binding energy to a
particular sequence is an intrinsic property of the protein
(it will vary with different conditions, but we imagine that
under “physiological conditions” it will be a constant),
whereas binding probability also depends on the protein
concentration. Figure 4A shows the energy matrix for the
hypothetical YFTF. This energy matrix was used to
generate the WLO of Figure 1A (assuming 0.25 back-
ground probabilities) and the PFM of Figure 2A
(assuming a Boltzmann relationship between energy and
probability for each base). Figure 4B is an energy logo
[32,33] for YFTF. If binding sites for YFTF were
collected at a high TF concentration, such that the
consensus sequence is 95% bound, the PFM would be
quite different (Figure 4C), giving rise to a quite different
WLO (Figure 4D) and IC logo (Figure 4E). It can be
readily seen that the logo is considerably reduced, making
it appear the TF is much less specific, and also that
different positions appear to have different relative
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Figure 3. Binding probabilities as a function of

binding energy. Blue line is the relative binding
probability, compared to the consensus sequence (with
E = 0), for sequences with energy on the X-axis. Red line

is the absolute binding probability under conditions
where the consensus is about 95% bound (μ = 2).
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contributions to the overall IC. That is also evident from
the PFM and WLO. Furthermore, as described above, at
high TF concentrations the probabilities of specific bases
at specific positions in the binding sites will depend on
their context. This gives the appearance of non-indepen-
dent contributions to binding from the simple probabil-
istic modeling framework, even though the energy
contributions are entirely additive. For these reasons we
have emphasized energy modeling in our recent work
(described below).

MODELING FROM QUALITATIVE BINDING

SEGMENT DATA (MOTIF FINDING)

It is much more common to identify segments of DNA
that contain binding sites for a TF than to obtain the
binding sites directly. In that case one can apply motif
discovery algorithms to determine the motif from the
segments. This problem is often thought of in a
probabilistic manner as a problem with missing informa-
tion. If one knew where the bindings sites were one could
make a PWM to represent the motif from the aligned
F(b,i). On the other hand, if one were given the PWM one
could search across each of the sequences and find the
highest scoring, or most likely, binding sites. But in this
problem we are given neither type of information and
wish to discover both the sites and the motif. A number of
consensus based algorithms have been developed for this,
including a very early one by Waterman and colleagues
[34,35] and followed by many more in the ensuing
decades. But since PWMs are better representations of
binding site motifs, we concentrate on algorithms for
identifying PWMs from unaligned sequences known to
contain binding sites. The first method was a greedy
approach that built up multiple alignments progressively,
starting with pairs of sequences and adding new ones until
the entire set of binding sites was included and the motif
identified [36]. The criterion used to identify the best
alignments at each step to keep for further analysis was
the IC of the WLO matrix of the alignment. Later this was
modified to a calculation of the E-value of the alignment
which depends on both the WLO and also the number of
sequences containing sites [37]. Soon after that an
expectation maximization (EM) algorithm was developed
for this problem [38,39]. It maximizes the total prob-
ability of the data and the model which is similar to, but
slightly different than, IC. A version of EM was even
developed that could learn the variable spacing prob-
abilities between the -10 and -35 regions of E. coli
promoters [40]. After that the Gibbs’ sampling algorithm
was applied to the motif discovery problem (originally
applied to motifs in protein sequences but more
commonly used for DNA motifs) in which maximization

of the IC of theWLO matrix (including pseudocounts) was
the objective function [41]. Avariety of related algorithms
have been developed since then, many of them focused on
finding motifs in very large datasets, such as those
available from gene expression experiments where one
seeks to find motifs from sets co-regulated genes and from
chromatin immunoprecipitation (ChIP) experiments
where one seeks motifs from the genomic DNA segments
bound to particular TFs [42–46]. In most cases these try to
optimize a probabilistic model, usually maximizing IC or
something related.

MODELING FROM QUANTITATIVE BINDING SITE

DATA

Quantitative binding data can be direct measurements of
binding energies for many different sequences, but more
commonly it is binding probabilities or functional
activities. In either case the goal is to find a PWM that
provides a good quantitative fit to the data. This approach
was first described in 1986 where the data were nonsense
codon suppression efficiencies that varied depending on
the sequence context surrounding the stop codon [47].
The elements of the PWM were obtained by multiple
linear regression and the fit to the data, an adjusted R2 of
0.86, showed that the assumption of additive contribu-
tions was reasonable. In fact just the two positions
following the stop codon contributed additively and
captured 76% of variance. A different example, on the
context effects of mutation rates, was not well fit by an
additive (PWM) model, but could be adequately
explained using a simple extension of the PWM idea
where the features are the di-nucleotides at each position
rather than individual bases. That paper also emphasized
that there are only three independent parameters at each
position for a PWM, and 15 independent parameters for a
di-nucleotide model, and increasing exponentially for
higher-order models. Later work showed how to
efficiently encode sequences, and their corresponding
weight vectors, to capture each order of parameters
independently so that the higher-order parameters are fit
to the residuals from the lower order models [33].
An advantage of regression methods is that they

provide the optimum fit to the data for any specified
model, such as a PWM, and furthermore indicate how
good the fit is so that one can decide if more complex
models are necessary. Since a PWM will always be an
approximation to the true specificity of a TF, the
important question is how good an approximation it is
and whether determining additional parameters for
higher-order models will significantly improve binding
site predictions. There are now several examples, with
different TFs, where quantitative measures of binding
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Figure 4. Energy modeling. (A) The energy matrix for YFTF. The average energy at each position is defined as 0 in this matrix,

and bases with negative values are preferred, and those with positive values are discriminated against, compared to the average.
(B) An energy logo showing the energies of each base at each position, with an average of 0 as in the matrix of part A. Note that the
Y-axis is –E, so the preferred bases are on top. (C) The PFM for binding sites under conditions where the preferred sequence is 95%

bound. (D) The log-oddsmatrix based on the PFM of part C (assuming an equal frequency background). (E) The information content
logo for the PFM of part C.
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affinity have shown non-independence of the positions in
the binding sites, but in most cases a simple PWM still
provides a good approximation to the binding data or if
not then the addition of adjacent di-nucleotide parameters
is sufficient for a good quantitative fit [48–58].
In each of those previous cases the binding sites were

known so that the contributions of each position to the
total activity could be assigned directly. It is also possible
to search for PWMs that explain differences in activity
when the exact binding sites are not known. This was first
done using whole genome expression data with a search
for consensus sequences that could predict differences in
expression in different conditions [59]. Later this was
extended to a search for PWMs that were correlated with
expression changes and with binding location experi-
ments [32,60,61]. They could easily find many PWMs
that were highly significant and many of them correspond
to known motifs for specific TFs. Those examples
demonstrated that regression methods can be highly
effective on large quantitative data sets without prior
knowledge, or alignments, of the binding sites.

MODELING BASED ON NEW HIGH-THROUGHPUT

TECHNOLOGIES

In recent years several high-throughput methods have
been developed to determine binding affinities for many
different binding sites in parallel. The rapidity with which
large, quantitative data sets can be generated offers an
unprecedented opportunity to determine the specificity of
a large number of both natural and synthetic TFs. To take
maximum advantage of the new, large datasets improved
algorithms are needed that take into account the details of
the experimental methods. We recently published a
review of those experimental methods [62] but the details
of the computational analyses were not included. In the
following sections we describe computational approaches
to model the specificity of TFs using several different
types of high-throughput experimental data.

Mechanically induced trapping of molecular interactions
(MITOMI)

The mechanically induced trapping of molecular interac-
tions (MITOMI) method uses a microfluidic device with
different DNA sequences localized to individual cham-
bers, and binding of TFs to each sequence can be
monitored by fluorescent tags, allowing for the determi-
nation of binding affinities directly for each sequence
variant [53]. Because MITOMI can determine binding
energies directly, one can apply simple linear regression
to find the parameters for the energy PWM that best fits
the data and also determine how good the fit is. One
complication is that there is a lower bound where the

affinity becomes non-specific (no longer depends on the
sequence), but accounting for that the lower bound allows
one to determine if sequence-specific binding is additive
across the binding site positions. Analysis of several TFs
from the basic helix-loop-helix (bHLH) family demon-
strated that the positions did not contribute independently
to binding [53], but adding parameters to account for
adjacent di-nucleotides fit the data within experimental
error [54,55]. In more recent work MITOMI has been
made more high-throughput by including long oligos in
the binding reaction instead of just variants of a known
consensus site [63]. This allowed them to identify the
PWMs for each TF from a much larger collection of
potential binding sites using a combination of regression
methods [32,64].

SELEX-seq

SELEX was invented in 1990 as a means to identify
binding sites for RNA binding proteins [65] but has been
adapted and used many times to determine the binding
specificity of TFs. It uses a random library of potential
binding sites and those that bind to the protein are selected
with probabilities that depend on their affinities. Tradi-
tionally the bound fraction would be amplified by PCR
and after several cycles of binding and amplification a
small number, typically 20–100, of individual binding
sites would be sequenced. This was sufficient to gain
knowledge about the specificity of the protein (e.g., Ref.
[66]) but due to the multiple rounds of selection it was not
straightforward to determine relative binding affinities
accurately. However, new sequencing technologies allow
one to efficiently obtain binding site sequences for an
enormous number of sites with large differences in
binding affinities [55,67,68]. Sequencing of the initial
library gives us the prior distribution of all potential
binding sites, P(Sj), and sequencing of the bound fraction
after only a single round of selection gives us the posterior
distribution, P(Sj|bound). Applying Bayes rule:

PðSjjboundÞ
PðSjÞ

=
PðboundjSjÞ

ΣjPðSjÞPðboundjSjÞ
(14)

shows how those measured quantities (on the left) are
related to the energy parameters we want using the
relationship of equation (13). A non-linear regression
method called BEEML (Binding Energy Estimation by
Maximum Likelihood) was applied to determine the
optimal values of the energy PWM as well as the μ
parameter and a non-specific binding energy [55]. This
approach provided a much better fit to the data than
standard probabilistic motif discovery methods. While
BEEML assumed that the position of each binding site
was known, similar methods have been developed by
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others, and applied to large datasets of multiple TFs,
which include the ability of inferring the binding sites
along with modeling the specificity [69,70].

Protein binding microarrays (PBMs)

Protein binding microarrays (PBMs) were initially
employed to measure binding in parallel of all 64 DNA
triplets to several different individual zinc fingers as part
of larger zinc finger proteins [49]. Although it was shown
that the positions do not contribute completely indepen-
dently to binding, in this case a simple PWMmodel could
be found which fit the data quite well for most proteins
[48]. In recent years PBMs have been expanded to include
all possible 10-long binding sites [71,72] and have been
used to determine the specificities of many different TFs
(see UniPROBE database [73]). Although the signal is
analog (the fluorescence intensity due to protein binding
at each location of the array), the data are similar to that
from SELEX. We developed a modified version of
BEEML, BEEML-PBM, that takes into account the
specific characteristics of PBM data and finds the binding
energy model that provides the best fit to the fluorescence
data [56]. In contrast to a previous report [74], we found
that most TFs could be well modeled by a simple PWM of
energy parameters. A further analysis of all available
PBM datasets showed that the majority of TFs could be fit
well, probably within the experimental error, by an energy
PWM, and for most of the other adding parameters for
adjacent di-nucleotides captured the remaining variance
[52]. In a more recent comparison of many different
algorithms for analyzing PBM data, including quite
complex models with many more parameters, BEEML-
PBM and similar algorithms were shown to perform as
well as the more complex models except for a small
number of TFs [75]. In fact the models derived from PBM
data fit the data from in vivo ChIP-seq experiments as well
as the models obtained from those data, demonstrating the
value of specificity models determined using in vitro
experiments for understanding regulatory networks in
cells. These results are consistent with the general
paradigm that the specificity of most TFs can be well
modeled by either a simple energy PWM or an extension
that includes energy parameters for non-independence
between adjacent bases. However, there were a few TFs
where the PBM data was only fit well using more
complex models, indicating that some TFs can have
multiple modes of binding, including variable spacing
between half-sites for TFs that bind as dimers, and require
more complex models of specificity.

Bacterial one-hybrid (B1H)

Bacterial one-hybrid (B1H) methods express TFs in E.

coli and can identify high affinity binding sites by
selecting for those that can strongly activate expression of
a gene required for colony growth [76–78]. Similar to
SELEX methods, they typically use libraries of random
sequences for the potential binding sites and they can be
quite long; a 28 bp randomized region is common. A
primary advantage of B1H over in vitro methods, such as
those described above, is that the TF does not need to be
purified or synthesized in vitro, merely expressed in E.
coli, making it quite reliable and efficient for most TFs.
Early versions of B1H would select many fast growing
colonies from which to sequence the binding sites, but
current methods utilize high-throughput sequencing
where cells from an entire plate (or even from liquid
culture) are sequenced [79–83]. This provides quantita-
tive data; the number of times different binding sites are
sequenced, for the whole range of binding affinities from
the highest to those with only non-specific binding (cells
without good binding sites do not grow but are still on the
plate and are sequenced, similar to the non-specific
background in SELEX experiments). There is one
significant difference in the analysis between selection
for cell growth, such as in B1H, and selection for binding
affinity, as in SELEX or PBM. Cells containing good
binding sites will continue dividing so the number of
those sites will increase exponentially over time, depend-
ing on the growth rate afforded by the specific binding
site. The growth rate, rj, for cells with binding site Sj, is
measured by sequencing the initial library to get the
number of cells containing that site at time 0, Nj(0), and
sequencing the library after time t of growth under
selective conditions, Nj(t):

NjðtÞ=Njð0Þ2rjt (15)

where, for example, rj is doublings/hour and t is hours.
Under the reasonable assumption that growth rate is
proportional to the binding probability of the TF at the
critical promoter (at least up to a point where expression
of the selectable gene is no longer limiting for growth),
which follows the Fermi-Dirac relationship with binding
energy, we can determine the binding energy parameters
from the relationship:

log
NjðtÞ
Njð0Þ

=
M

1þ eEj –�
(16)

where M is the maximum growth rate. Although B1H is
an indirect measure of binding affinity, using a version of
B1H called constrained variation bacterial one-hybrid
(CV-B1H), where the size of the library is small enough
that comprehensive sequencing is possible and sites are
coherently aligned, we showed that this approach could
determine specificity models with accuracies comparable
to in vitro assays [79]. The more general use of B1H is
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more complicated. Long randomized regions preclude
comprehensive sequencing and there are often effects on
the strength of promoter activation in addition to TF
binding affinity, such as the orientation and location of the
binding site relative to the promoter. Currently the best
methods for specificity modeling employ general motif
discovery algorithms, such as MEME [44], and improved
methods is an open problem.

CONCLUSIONS AND FUTURE DIRECTIONS

Determining the specificity of TFs has been an important
research area for over 30 years. For most of that time
PWMs have been the primary method of representing
specificity. New technologies greatly increase the rapidity
with which new specificities can be determined and also
facilitate significant increases in accuracy by providing
large quantitative datasets. New computational
approaches have also been developed to optimally extract
the information from those datasets. There are likely to be
still more advances to come, in both the experimental and
computational aspects of the problem. The following
sections briefly describe advances that are underway or
likely to occur, and also describe a few of the important
uses of TF specificity models in studies of regulatory
networks within cells.

Experimental advances

As described above, the MITOMI approach has already
been enhanced to work on long oligos so that a much
larger collection of potential binding sites can be assayed
[63]. The PBM approach has been utilized to assay
binding of longer segments of DNA, such as promoter
and enhancer regions, which facilitates the study of
interactions by combinations of TFs [84]. A new method
has recently been described as ‘high-throughput sequen-
cing’-‘fluorescent ligand interaction profiling’ (HiTS-
FLIP) that has some similarities to the PBM strategy
but assays many more oligos in parallel [85]. Instead of
synthesizing oligos on an array, DNA segments are
selected from a genome, arrayed and each one sequenced,
as in a ChIP-Seq experiment. Once the sequence of each
oligo is known they are converted to dsDNA and then the
TF is added and detected by a fluorescent label, as in the
PBM method, but now over millions of different oligos.
Through analysis of the DNA sequence and the
fluorescence intensity one can obtain specificity models
for the binding sites, even for sites longer than can be
assayed by current PBM methods. Although the data is
much more extensive than using PBM, it is probably too
expensive to be cost effective for the study of single TFs.
But one can imagine arraying all of the regulatory regions
of a cell, such as those obtained in a ChIP-seq experiment

based on chromatin marks for regulatory regions, and
then assaying the binding of many different TFs in
succession. Such information could identify not only
which TFs can bind to which regulatory regions but also
the specificity model for each TF independently. Finally,
we think that a modification to the SELEX-seq protocol
can lead to more accurate models more efficiently. Recall
that in the current method the initial library is sequenced
along with the bound fraction to obtain the data needed to
find the parameters of the energy PWM, see equation
(14). If instead we sequence both the bound and unbound
fractions, we have a simpler relationship for estimating
the energy parameters that does not require determining
the partition function because

PðboundjSjÞ
PðunboundjSjÞ

=e� –Ej (17)

Furthermore, because we primarily care about relative
binding affinities, we can determine the energy difference
between any sequence, Sk, and a reference sequence, Sj,
by simply taking the ratios of the measured quantities of
equation (17):

log
PðSjjboundÞ
PðSk jboundÞ

PðSk junboundÞ
PðSjjunboundÞ

=Ek –Ej (18)

We utilized this approach several years ago in a method
called Quantitative Multiple Fluorescence Relative Affi-
nity (QuMFRA) assay [51], but it was limited to
comparing a few sequences at a time because it used a
different fluorescent dye for each sequence. Now, by
using sequencing directly, we can essentially assay all
possible binding sites in parallel from a single experiment
and the computational component is much simpler,
essentially multiple linear regression, and should be
more accurate.

Computational advances

The PWM model of specificity was always known to be
an approximation and it is somewhat surprising that it has
worked as well as it has for as long as it has. Even with
new technologies that have collected large datasets for
many different TFs, the majority of them appear to be well
modeled by energy PWMs [52,75]. Of course all datasets
contain noise, sometimes substantial noise, and it is likely
that as more accurate datasets emerge more TFs will be
found to be better described by more complex models.
Some TFs are not well fit by PWMs, but in most cases
simple extensions that include di-nucleotide parameters
provide a good fit to the data [52]. For the remaining ones,
where neither PWMs nor simple extensions are adequate,
more complex models are needed. Many different
algorithms, with a variety of complexities, have been
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developed for PBM data and are described in a recent
paper [75]. The classes of TFs that require more complex
models probably have alternative modes of binding to
DNA. A common example is for dimeric TFs that can
bind with variable spacings between the half sites. This is
similar to the two-component motifs of E. coli promoters
described earlier, and HMM-based methods to deal with
them have been developed previously [40]. Another
common example may be zinc finger proteins that contain
many different fingers and may bind to different sites
using different combinations. Regardless of the specific
mechanism of alternative modes of binding, we advocate
an energy-based biophysical modeling approach. Math-
ematically this is simple, equation (13) still applies but
now the binding energy Ej to sequence Sj can be
composed of several distinct, and mutually exclusive,
interactions that are combined by their Boltzmann
weights. We already did this in a simplified case where
the alternative modes are specific and non-specific
binding [55]:

e –Ej=e –W$Sj þ e –Ens

where W$Sj is the specific component that depends on
the sequence via the energy matrix W and Ens is the non-
specific energy that is independent of the sequence. This
is easily extended to having two (or more) energy
matrices W1 and W2 that correspond to sequence specific
binding in alternative modes:

e –Ej=e –W1$Sj þ e –W2$Sj þ e –Ens

Of course the challenge is estimating the parameters for
such a complex model where the search space is likely to
contain many local optima. It may be more effective to
employ some other function of the sequence, F(Sj), such
as a support vector machine [86]. At this point we do not
know what fraction of TFs will require more complex
models or how much improvement in accuracy will be
obtained by using them.

Specificity modeling for in vivo regulatory networks

Predicting regulatory sites in vivo has always been one of
the primary uses for PWMs. But the accuracy of the
predictions is limited by at least two factors. One reason is
that the accuracy of the PWMs, often built from a small
number of sites, is often low and small changes can have
large effects on the number of predicted sites [11].
Another reason, especially relevant in eukaryotic cells, is
that most of the genome is inaccessible to TF binding due
to chromatin structure, but combining information about
DNA accessibility with PWMs can lead to much higher
accuracies of binding site predictions [87,88]. In several
areas of research models of TF specificity remain an

important tool for elucidating in vivo regulatory networks.
Recent experimental methods that identify the binding
locations of TFs in vivo, such as ChIP-seq, provide very
valuable information and can be used to infer regulatory
networks. But even when TF binding sites are known the
information provided by specificity models, such as
PWMs, can be very useful. For example, genetic variants
within TF binding sites may, or may not, cause changes in
gene expression depending on whether the specific
variants increase, decrease or have no effect on TF
binding affinity, information provided by the PWM. By
combining information from genome wide association
studies with information about TF specificity one can
often uncover causative genetic variants associated with
specific diseases or other phenotypes [89–93]. One
important result from ChIP-seq experiments is the
identification of the exact binding location of the TF
which requires a specificity model, such as a PWM.
Especially interesting are cases where there appear to be
no high affinity binding sites within a ChIP-seq peak,
which requires an accurate model of the TF specificity,
because those are indicative of either indirect binding or
cooperative binding, both of which indicate that the
localization of the TF requires interaction with another
factor [52]. That knowledge leads to the search for the
interacting factor(s) which helps to fill out the details of
the regulatory network. While ChIP-seq experiments are
very valuable, they must be done for each TF individually
in each cell type of interest. An alternative to ChIP-seq
experiments is to obtain DNaseI hypersensitive sites
(DHS) which identify all of the regulatory regions within
the cell type in a single experiment. The DHS data alone
does not identify which TFs bind to each regulatory
region, but by using catalogs of PWMs the TFs that bind
can often be identified [94,95]. By combining the general,
genome wide accessibility information of DHS with TF-
specific information in PWMs, one can efficiently map
nodes in the regulatory networks. This approach will
become more valuable as the number and quality of
PWMs, and other specificity models, increases, as is
happening rapidly. Furthermore, by including information
regarding competition and cooperativity between differ-
ent TFs, which can be inferred from combinations of
experimental data and specificity models, much more
comprehensive regulatory networks can be obtained. The
coming years are likely to see significant increases in our
knowledge not only of TF specificities but of their
biological impact on gene regulation.
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