Skip to main content
Log in

Current, Emerging, and Future Applications of Digital PCR in Non-Invasive Prenatal Diagnosis

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Digital PCR (dPCR) approaches have been developed for the detection of nucleic acids of low abundance, such as cell-free DNA, and represent an attractive and sensitive alternative to conventional methods, particularly in the field of non-invasive prenatal diagnosis (NIPD). In this review, we present the principle of dPCR and its applications in the field of prenatal diagnosis from current and emerging uses, such as fetal gender determination, rhesus blood group D antigen genotyping, or monogenic disorders prenatal testing, to future applications, such as the diagnosis and monitoring of pregnancy-related disorders. We also address considerations for implementation of the method in a clinical laboratory and discuss the competiveness of dPCR over other technologies such as quantitative PCR or massively parallel sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996;2:1035–7.

    Article  CAS  PubMed  Google Scholar 

  2. Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996;2:1033–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    Article  CAS  PubMed  Google Scholar 

  4. Tabor A, Alfirevic Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther. 2010;27:1–7.

    Article  PubMed  Google Scholar 

  5. Barrett AN, Zimmermann BG, Wang D, Holloway A, Chitty LS. Implementing prenatal diagnosis based on cell-free fetal DNA: accurate identification of factors affecting fetal DNA yield. PLoS One. 2011;6:e25202.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lo YMD, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2:61ra91.

    Article  CAS  PubMed  Google Scholar 

  7. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA. 1999;96:9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–9.

    CAS  PubMed  Google Scholar 

  9. Basu AS. Digital assays part i: partitioning statistics and digital PCR. SLAS Technol. 2017;22:369–86.

    PubMed  Google Scholar 

  10. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milbury CA, Zhong Q, Lin J, Williams M, Olson J, Link DR, et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif. 2014;1:8–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zonta E, Garlan F, Pécuchet N, Perez-Toralla K, Caen O, Milbury C, et al. Multiplex detection of rare mutations by picoliter droplet based digital PCR: sensitivity and specificity considerations. PLoS One. 2016;11:e0159094.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 2008;3:e1662.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res. 2006;34:e123.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61:79–88.

    Article  CAS  PubMed  Google Scholar 

  16. Baker M. Digital PCR hits its stride. Nat Methods. 2012;9:541–4.

    Article  CAS  Google Scholar 

  17. Perez-Toralla K, et al. Digital PCR compartmentalization I. Single-molecule detection of rare mutations [in French]. Med Sci (Paris). 2015;31:84–92.

    Article  Google Scholar 

  18. Dube S, Qin J, Ramakrishnan R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One. 2008;3:e2876.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte J-M. The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol Diagn Ther. 2017;21(6):587–600. https://doi.org/10.1007/s40291-017-0287-7.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobs BKM, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinform. 2014;15:283.

    Article  Google Scholar 

  21. Droplet Digital™ PCR applications guide. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf. Accessed 31 Aug 2017

  22. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59:892–902.

    Article  CAS  PubMed  Google Scholar 

  23. Chan KCA, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006;52:2211–8.

    Article  CAS  PubMed  Google Scholar 

  24. Costa JM, Benachi A, Gautier E, Jouannic JM, Ernault P, Dumez Y. First trimester fetal sex determination in maternal serum using real-time PCR [in French]. Gynecol Obstet Fertil. 2002;30:953–7.

    Article  CAS  PubMed  Google Scholar 

  25. Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion (Paris). 2002;42:1079–85.

    Article  CAS  Google Scholar 

  26. Devaney SA, Palomaki GE, Scott JA, Bianchi DW. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA. 2011;306:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Legler TJ, Müller SP, Haverkamp A, Grill S, Hahn S. Prenatal RhD testing: a review of studies published from 2006 to 2008. Transfus Med Hemother. 2009;36:189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsui NBY, Hyland CA, Gardener GJ, Danon D, Fisk NM, Millard G, et al. Noninvasive fetal RHD genotyping by microfluidics digital PCR using maternal plasma from two alloimmunized women with the variant RHD(IVS3 + 1G > A) allele. Prenat Diagn. 2013;33:1214–6.

    Article  PubMed  Google Scholar 

  29. Sillence KA, Roberts LA, Hollands HJ, Thompson HP, Kiernan M, Madgett TE, et al. Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR. Clin Chem. 2015;61:1399–407.

    Article  CAS  PubMed  Google Scholar 

  30. Svobodová I, Pazourková E, Hořínek A, Novotná M, Calda P, Korabečná M. Performance of droplet digital PCR in non-invasive fetal RHD genotyping—comparison with a routine real-time PCR based approach. PLoS One. 2015;10:e0142572.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Orhant L, Rondeau S, Vasson A, Anselem O, Goffinet F, Allach El Khattabi L, et al. Droplet digital PCR, a new approach to analyze fetal DNA from maternal blood: application to the determination of fetal RHD genotype. Ann Biol Clin (Paris). 2006;74:269–77.

    Google Scholar 

  32. Sillence KA, Halawani AJ, Tounsi WA, Clarke KA, Kiernan M, Madgett TE, et al. Rapid RHD zygosity determination using digital PCR. Clin Chem. 2017;63:1388–97.

    Article  CAS  PubMed  Google Scholar 

  33. Orhant L, Anselem O, Fradin M, Becker PH, Beugnet C, Deburgrave N, et al. Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia. Prenat Diagn. 2016;36:397–406.

    Article  CAS  PubMed  Google Scholar 

  34. Gruber A, Pacault M, El Khattabi LA, Vaucouleur N, Orhant L, Bienvenu T, et al. Non-invasive prenatal diagnosis of cystic fibrosis and neurofibromatosis type 1 from maternal plasma: detection of paternally-inherited mutations using droplet digital PCR. Clin Chem Lab Med. 2017 (accepted).

  35. Debrand E, Lykoudi A, Bradshaw E, Allen SK. A non-invasive droplet digital PCR (ddPCR) assay to detect paternal CFTR mutations in the cell-free fetal DNA (cffDNA) of three pregnancies at risk of cystic fibrosis via compound heterozygosity. PLoS One. 2015;10:e0142729.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lo YMD, Lun FM, Chan KC, Tsui NB, Chong KC, Lau TK, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA. 2007;104:13116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan HC, Blumenfeld YJ, El-Sayed YY, Chueh J, Quake SR. Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol. 2009;200:543.e1–7.

    Article  PubMed  Google Scholar 

  38. Evans MI, Wright DA, Pergament E, Cuckle HS, Nicolaides KH. Digital PCR for noninvasive detection of aneuploidy: power analysis equations for feasibility. Fetal Diagn Ther. 2012;31:244–7.

    Article  PubMed  Google Scholar 

  39. El Khattabi LA, Rouillac-Le Sciellour C, Le Tessier D, Luscan A, Coustier A, Porcher R, et al. Could digital PCR be an alternative as a non-invasive prenatal test for trisomy 21: a proof of concept study. PLoS One. 2016;11:e0155009.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taylor-Phillips S, Freeman K, Geppert J, Agbebiyi A, Uthman OA, Madan J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6:e010002.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Skrzypek H, Hui L. Noninvasive prenatal testing for fetal aneuploidy and single gene disorders. Best Pract Res Clin Obstet Gynaecol. 2017;42:26–38.

    Article  PubMed  Google Scholar 

  42. Lo YMD, Chiu RWK. Genomic analysis of fetal nucleic acids in maternal blood. Annu Rev Genom Hum Genet. 2012;13:285–306.

    Article  CAS  Google Scholar 

  43. Daley R, Hill M, Chitty LS. Non-invasive prenatal diagnosis: progress and potential. Arch Dis Child Fetal Neonatal Ed. 2014;99:F426–30.

    Article  PubMed  Google Scholar 

  44. El Karoui N, Zhou W, Whittemore AS. Getting more from digital SNP data. Stat Med. 2006;25:3124–33.

    Article  PubMed  Google Scholar 

  45. Lun FMF, Tsui NB, Chan KC, Leung TY, Lau TK, Charoenkwan P, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci USA. 2008;105:19920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrett AN, McDonnell TCR, Chan KCA, Chitty LS. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem. 2012;58:1026–32.

    Article  CAS  PubMed  Google Scholar 

  47. Tsui NBY, Kadir RA, Chan KC, Chi C, Mellars G, Tuddenham EG, et al. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood. 2011;117:3684–91.

    Article  CAS  PubMed  Google Scholar 

  48. Hudecova I, Jiang P, Davies J, Lo YMD, Kadir RA, Chiu RWK. Noninvasive detection of F8 int 22 h-related inversions and sequence variants in maternal plasma of hemophilia carriers. Blood. 2017;130:340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Srinivasan A, Bianchi DW, Huang H, Sehnert AJ, Rava RP. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet. 2013;92:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao C, Tynan J, Ehrich M, Hannum G, McCullough R, Saldivar JS, et al. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. Clin Chem. 2015;61:608–16.

    Article  CAS  PubMed  Google Scholar 

  51. Wapner RJ, Babiarz JE, Levy B, Stosic M, Zimmermann B, Sigurjonsson S, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212:332.e1–9.

    Article  PubMed  Google Scholar 

  52. Vora NL, OʼBrien BM. Noninvasive prenatal testing for microdeletion syndromes and expanded trisomies: proceed with caution. Obstet Gynecol. 2014;123:1097–9.

    Article  PubMed  Google Scholar 

  53. Hwang VJ, Maar D, Regan J, Angkustsiri K, Simon TJ, Tassone F. Mapping the deletion endpoints in individuals with 22q11.2 deletion syndrome by droplet digital PCR. BMC Med Genet. 2014;15:106.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pretto D, Maar D, Yrigollen CM, Regan J, Tassone F. Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR. Clin Chem. 2015;61:182–90.

    Article  CAS  PubMed  Google Scholar 

  55. Wong FCK, Lo YMD. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.

    Article  CAS  PubMed  Google Scholar 

  56. Yuen RK, Peñaherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet. 2010;18:1006–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiang Y, Zhang X, Li Q, Xu J, Zhou X, Wang T, et al. Promoter hypomethylation of TIMP3 is associated with pre-eclampsia in a Chinese population. Mol Hum Reprod. 2013;19:153–9.

    Article  CAS  PubMed  Google Scholar 

  58. Redshaw N, Huggett JF, Taylor MS, Foy CA, Devonshire AS. Quantification of epigenetic biomarkers: an evaluation of established and emerging methods for DNA methylation analysis. BMC Genom. 2014;15:1174.

    Article  Google Scholar 

  59. Poon LL, Leung TN, Lau TK, Lo YM. Presence of fetal RNA in maternal plasma. Clin Chem. 2000;46:1832–4.

    CAS  PubMed  Google Scholar 

  60. Pang WWI, Tsui MH, Sahota D, Leung TY, Lau TK, Lo YM, et al. A strategy for identifying circulating placental RNA markers for fetal growth assessment. Prenat Diagn. 2009;29:495–504.

    Article  CAS  PubMed  Google Scholar 

  61. Hui L, Beard S, Hannan NJ. Measuring fetal brain and lung transcripts in amniotic fluid supernatant: a comparison of digital PCR and RT-qPCR methods. J Matern Fetal Neonatal Med. 2017;24:1–6. https://doi.org/10.1080/14767058.2017.1367378.

    Article  Google Scholar 

  62. Kaitu’u-Lino TJ, Hastie R, Cannon P, Lee S, Stock O, Hannan NJ, et al. Stability of absolute copy number of housekeeping genes in preeclamptic and normal placentas, as measured by digital PCR. Placenta. 2014;35:1106–9.

    Article  PubMed  Google Scholar 

  63. Barrett AN, Chitty LS. Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR. Methods Mol Biol. 2014;1160:215–28.

    Article  CAS  PubMed  Google Scholar 

  64. Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48:948–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the clinical centers participating in the Diagnostic Ante Natal Non Invasif (DANNI) project. We are grateful to the geneticists, obstetricians, midwifes, nurses, and laboratory technicians and we thank the families for their participation. We also thank Mathilde Pacault and the French Digital PCR Working Group for our fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette Nectoux.

Ethics declarations

Conflict of Interest

Juliette Nectoux declares no conflicts of interest.

Funding

Funding was received from Agence de la Biomédecine (Project R13188KK), Vaincre la mucoviscidose (Project RC2013500852), and Association Française contre les Myopathies (Project AFM AO2019-No. 19832).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nectoux, J. Current, Emerging, and Future Applications of Digital PCR in Non-Invasive Prenatal Diagnosis. Mol Diagn Ther 22, 139–148 (2018). https://doi.org/10.1007/s40291-017-0312-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0312-x

Navigation