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Abstract Discrete-choice experiments (DCEs) have be-

come a commonly used instrument in health economics

and patient-preference analysis, addressing a wide range of

policy questions. An important question when setting up a

DCE is the size of the sample needed to answer the re-

search question of interest. Although theory exists as to the

calculation of sample size requirements for stated choice

data, it does not address the issue of minimum sample size

requirements in terms of the statistical power of hypothesis

tests on the estimated coefficients. The purpose of this

paper is threefold: (1) to provide insight into whether and

how researchers have dealt with sample size calculations

for healthcare-related DCE studies; (2) to introduce and

explain the required sample size for parameter estimates in

DCEs; and (3) to provide a step-by-step guide for the

calculation of the minimum sample size requirements for

DCEs in health care.

Key Points for Decision Makers

The minimum sample size needed for a discrete-

choice experiment (DCE) depends on the specific

hypotheses to be tested.

DCE practitioners should realize that a small size

effect may still be meaningful, but that a limited

sample size prevents detection of such small effects.

Policy makers should not make a decision on non-

significant outcomes without considering whether

the study had a reasonable power to detect the

anticipated outcome.

1 Introduction

Discrete-choice experiments (DCEs) have become a com-

monly used instrument in health economics and patient-

preference analysis, addressing a wide range of policy

questions [1, 2]. DCEs allow for a quantitative elicitation

of individuals’ preferences for health care interventions,

services, or policies. The DCE approach combines con-

sumer theory [3], random utility theory [4], experimental

design theory [5], and econometric analysis [1]. See Lou-

viere et al. [6], Hensher et al. [7], Rose and Bliemer [8],

Lancsar and Louviere [9], and Ryan et al. [10] for further

details on conducting a DCE.

DCE-based research in health care is often concerned

about establishing the impact of certain healthcare inter-

ventions and aspects (i.e., attributes) thereof on patients’

decisions [11–20]. Consequently, a typical research
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question is to establish whether or not individuals are in-

different between two attribute levels. For instance: Do

patients prefer delivery at home more than in a hospital?;

Do patients prefer a medical specialist over an nurse

practitioner?; Do patients prefer every 5 year screening

over every 10 year screening?; Do patients prefer a weekly

oral medication over a monthly injection?; Do patients

prefer the explanation of their medical results through a

face-to-face contact more than through a letter? As a result,

an important design question is the size of the sample

needed to answer such a research question. When consid-

ering the required sample size, DCE practitioners need to

be confident that they have sufficient statistical power to

detect a difference in preferences when this difference is

sufficiently large. A practical solution (that does not require

any sample size calculations) is to simply maximize the

sample size given the research budget at hand, i.e., trying to

overpower the study as much as possible. This is beneficial

for reasons other than statistical precision (e.g. to facilitate

in-depth analysis). However, particularly in the health care

area, the number of eligible patients and healthcare pro-

fessionals is generally limited. Although theory exists as to

the calculation of sample size requirements for stated

choice data, it does not address the issue of minimum

sample size requirements in terms of testing for specific

hypotheses based on the parameter estimates produced

[21].

The purpose of this paper is threefold. The first objective

is to provide insight into whether and how researchers have

dealt with sample size calculations for health care-related

DCE studies. The second objective is to introduce and

explain the required sample size for parameter estimates in

DCEs. The final objective of this manuscript is to provide a

step-by-step guide for the calculation of the minimum

sample size requirements for DCEs in healthcare.

2 Literature Review

2.1 Methods

To gain insight into the current approaches to sample size

determination, we reviewed health care-related DCE

studies published in 2012. Older literature was ignored, as

the research frontier for methodological issues has shifted a

lot over the past years [1, 22]. MEDLINE was used to

identify healthcare-related DCE studies, replicating the

methodology of two comprehensive reviews of the

healthcare DCE literature [1, 2]. The following search

terms were used: conjoint, conjoint analysis, conjoint

measurement, conjoint studies, conjoint choice experiment,

part-worth utilities, functional measurement, paired com-

parisons, pairwise choices, discrete choice experiment, dce,

discrete choice mode(l)ling, discrete choice conjoint ex-

periment, and stated preference. Studies were included if

they were choice-based, published as a full-text English

language article, and applied to healthcare. Consideration

was given to background information of the studies, and

detailed consideration was given to whether and how

sample size calculations were conducted. We also briefly

describe the methods that have been used to obtain sample

size estimates so far.

2.2 Literature Review Results

The search generated 505 possible references. After read-

ing abstracts or full articles, 69 references met the inclusion

criteria. The appendix shows the full list of references

[Electronic Supplementary Material (ESM) 1]. Table 1

summarizes the review data. Most DCE studies were from

the UK, with the USA, Canada, and Australia also major

contributors. Studies having 4–6 attributes and 9–16 choice

sets per respondent were commonly used in the published

healthcare-related DCE studies in 2012. The sample sizes

differed substantially between the DCE studies.

Of 69 DCEs, 22 (32 %) had sample sizes smaller than

100 respondents, whereas 16 (23 %) of the 69 DCEs had

sample sizes larger than 600 respondents; six (9 %)

DCEs even had sample sizes larger than 1000 respon-

dents. More than 70 % of the DCE studies (49 of 69)

did not (clearly) report whether and what kind of sample

size method was used; 12 % of the studies (8 of 69) just

referred to other DCE studies to explain the sample size

used. For example, Huicho et al. [23] mentioned that

‘‘Based on the experience of previous studies [24, 25],

we aimed for a sample size of 80 nurses and midwives’’,

and Bridges et al. [26] mentioned ‘‘In a previously

published pilot study, the conjoint analysis approach was

shown to be both feasible and functional in a very low

sample size (n = 20) [27]’’. In 13 % of the DCE studies

(9 of 69 [28–36]), one or more of the following rules of

thumb were used to estimate the minimum sample size

required: that proposed by (1) Johnson and Orme [37,

38]; (2) Pearmain et al. [39]; and/or (3) Lancsar and

Louviere [9].

In short, the rule of thumb as proposed by Johnson and

Orme [37, 38] suggests that the sample size required for the

main effects depends on the number of choice tasks (t), the

number of alternatives (a), and the number of analysis cells

(c) according to the following equation:

N[ 500c=ðt � aÞ ð1Þ

When considering main effects, ‘c’ is equal to the

largest number of levels for any of the attributes. When

considering all two-way interactions, ‘c’ is equal to the

largest product of levels of any two attributes [38].
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The rule of thumb proposed by Pearmain et al. [39]

suggests that, for DCE designs, sample sizes over 100 are

able to provide a basis for modeling preference data,

whereas Lancsar and Louviere [9] mentioned ‘‘our em-

pirical experience is that one rarely requires more than 20

respondents per questionnaire version to estimate reliable

models, but undertaking significant post hoc analysis to

identify and estimate co-variate effects invariably requires

larger sample size’’.

Four of 69 (6 %) reviewed DCE studies used a para-

metric approach to estimate the minimum sample size re-

quired (a parametric approach can be used if one assumes,

for example based on the law of large numbers, that the

focal quantity—an estimated probability or coefficient—is

Normally distributed. This assumption facilitates the

derivation of the minimum sample sizes required). That is,

three studies used the parametric approach as proposed by

Louviere et al. [6] and one study [40] reported the para-

metric approach as proposed by Rose and Bliemer [21].

Louviere et al. [6] assume the study is being conducted to

measure a choice probability with some desired level of

accuracy. The asymptotic sampling distribution (i.e., the

distribution as sample size N ? ?) of a proportion pN,

obtained by a random sample of size N, is Normal with

mean p (the true population proportion) and variance pq/N,

where q = 1-p. The minimum sample size to estimate the

true proportion within a1 % of the true value p with a

probability a2 or greater has to satisfy the requirement that

Prob(|pN-p| B a1p) C a2, which can be calculated using

the following equation:

N[ ðq=ðrpa21ÞÞ � U�1ð1� a2
2
Þ

� �2

ð2Þ

where U-1 is the inverse cumulative Normal distribution

function, and r is the number of choice sets per respondent.

Hence, the parametric approach as proposed by Louviere

et al. [6] suggests that the sample size required for the main

effects depends on the number of choice sets per respon-

dent (r), the true population proportion (p), the one minus

true population proportion (q), the inverse cumulative

Normal distribution function (U-1), the allowed deviation

from the true population proportion (a1), and the sig-

nificance level (a2).
The parametric approach that has been recently intro-

duced by Rose and Bliemer [21] focuses on the minimum

sample size required based on the most critical parameter

(i.e., to be able to determine whether each parameter value

is statistically significant from zero). This parametric ap-

proach can only be used if prior parameter estimates are

available and not equal to zero. The minimum required

sample size to state with 95 % certainty that a parameter

estimate is different from zero can be determined according

to the following equation:

N[ max
k

ð1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ck
=

q
ckÞ2 ð3Þ

where ck is the parameter estimate of attribute k, and Rck is

the corresponding variance of the parameter estimate of

attribute k.

Table 1 Background information and sample size (method) used of

published health care-related discrete-choice experiment studies in

2012 (N = 69)

Item N (%)

Country of origina

UK 16 (23)

USA 13 (19)

Canada 10 (14)

Australia 7 (10)

Germany 6 (9)

Netherlands 4 (6)

Denmark 3 (4)

Other 19 (28)

Number of attributesa

2–3 5 (7)

4–5 24 (35)

6 25 (36)

7–9 17 (25)

[9 3 (4)

Number of choices per respondent

8 or fewer 14 (20)

9–16 choices 47 (68)

More than 16 choices 5 (7)

Not clearly reported 3 (4)

Sample size useda

\100 22 (32)

100–300 28 (41)

300–600 17 (25)

600–1,000 10 (14)

[1,000 6 (9)

Sample size method useda

Parametric approach 4 (6)

Louviere et al. [6] 3 (4)

Rose and Bliemer [21] 1 (1)

Rule of thumb 9 (13)

Johnson and Orme [28, 29] 5 (7)

Pearmain et al. [30] 2 (3)

Lancsar and Louviere [9] 3 (4)

Referring to studies 8 (12)

Review studies 3 (4)

Applied studies 5 (7)

Not (clearly) reported 49 (71)

a Totals do not add up to 100 % as some studies were conducted in

different countries, used a different number of attributes per discrete-

choice experiment, used several subgroups of respondents, and/or

used multiple sample size methods
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2.3 Comment on the State of Play

The disadvantage of using one of the rules of thumb

mentioned in paragraph 2.2 is that such rules are not

intended to be strictly accurate or reliable. The para-

metric approach as proposed by Louviere et al. [6] is not

suitable for determining the minimum required sample

size for coefficients in DCEs, as this approach focuses on

choice probabilities and does not address the issue of

minimum sample size requirements in terms of testing for

specific hypotheses based on the parameter estimates

produced. The parametric approach for minimum sample

size calculation proposed by Rose and Bliemer [21] is

solely based on the most critical parameter, so it is not

specific to a certain hypothesis. It also does not depend

on a desired power level for the hypothesis tests of

interest.

3 Determining Required Sample Sizes for Discrete-

Choice Experiments (DCEs): Theory

In this section we explain the analysis needed to deter-

mine the minimum sample size requirements in terms of

testing for specific hypotheses for coefficients in DCEs.

Our proposed approach is more general than the para-

metric approaches mentioned in Sect. 2, as it can be used

for any particular hypothesis that is relevant to the re-

searcher. We outline which elements are required before

such a minimum sample size can be determined, why

these elements are needed, and how to calculate the re-

quired sample size. To provide a step-by-step guide that

is useful for researchers from all different kinds of

backgrounds, we strive to keep the number of formulas in

this section as low as possible. Nevertheless, a compre-

hensive explanation of the minimum sample size calcu-

lation for coefficients in DCEs can be found in the

appendix (ESM 2).

3.1 Required Elements for Estimating Minimum

Sample Size

Before the minimum sample size for coefficients in a DCE

can be calculated, the following five elements are needed:

• Significance level (a)
• Statistical power level (1-b)
• Statistical model used in the DCE analysis [e.g.,

multinomial logit (MNL) model, mixed logit (MIXL)

model, generalized multinomial logit (G-MNL) model]

• Initial belief about the parameter values

• The DCE design.

3.1.1 Significance Level (a)

The significance level a sets the probability for an incorrect

rejection of a true null hypothesis. For example, if one

wants to be 95 % confident that the null hypothesis will

not be rejected when it is true, a needs to be set at

1-0.95 = 0.05 (i.e. 5 %). Conversely, if one decides to

perform a hypothesis test at a 1-a confidence level, there

is by definition an a probability of finding a significant

deviation when there is in fact no true effect. Perhaps un-

surprisingly, the smaller the imposed value of a (i.e., the

more certainty one requires), the larger the minimum re-

quired sample size will be.

3.1.2 Statistical Power Level (1-b)

b indicates the probability of failing to reject a null hy-

pothesis when the null hypothesis is actually false. The

chosen value of beta is related to the statistical power of a

test (which is defined as 1-b). As we want to assess

whether a parameter value (coefficient) is significantly

different from zero, we can define the sample size that

enables us to find a significant deviation from zero in at

least (1-b) 9 100 % of the cases. For example, a statis-

tical power of 0.8 (or 80 %) means that a study (when

conducted repeatedly over time) is likely to produce a

statistically significant result eight times out of ten. A

larger statistical power level will increase the minimum

sample size needed.

3.1.3 Statistical Model Used in the DCE Analysis

The calculation of the minimum required sample size also

depends on the type of statistical model that will be used to

analyze the DCE data (e.g., MNL, MIXL, G-MNL). The

type of statistical model affects the number of parameters

that needs to be estimated, the corresponding parameter

values, and the parameter interpretation. As a consequence,

the estimation precision of the parameters, which we will

characterize through the variance covariance matrix of the

estimated parameters, also depends on the statistical model

that is used. In order to properly determine the estimation

precision of each of the parameters, the statistical model

needs to be specified.

3.1.4 Initial Belief About the Parameter Values

Of course, if the true values of the parameters (coefficients)

were known, one would not need to execute the DCE.

Nevertheless, before a minimum sample size can be de-

termined, an initial estimate of the parameter values is

required for two reasons. First, in models that are nonlinear
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in the parameters, such as choice models, the asymptotic

variance–covariance matrix (AVC) depends on the values

of the parameters themselves. This AVC is an intermediate

stage in the sample size calculation (see Sect. 3.2 for more

details), and reflects the expected accuracy of the statistical

estimates obtained using the statistical model as identified

under Sect. 3.1.3. Second, before a power calculation can

be done, one has to describe a specific hypothesis and the

power one wants to achieve given a certain degree of

misspecification (i.e., the degree to which the true coeffi-

cient value deviates from its hypothesized value). As null

hypothesis, we will use the hypothesis that there is no in-

fluence so the coefficient equals zero. The initial estimate

of the parameter value can then be used as value for the

effect size. The closer to zero the effect size is, the more

difficult it will be to find a significant effect and hence the

larger the minimum sample size will be. To obtain some

insight into these parameter values, a small pilot DCE

study—for example with 20–40 respondents—may be

helpful.

3.1.5 DCE Design

The large literature on efficient design generation indicates

the importance of the design in getting accurate estimates

and powerful tests. The DCE design is described by the

number of choice sets, the number of alternatives per

choice set, the number of attributes, and the combination of

the attribute levels in each choice set. The DCE design has

a direct influence on the AVC, which affects the estimation

precision of the parameters, and hence will have a direct

influence on the minimum sample size required.1

3.2 Sample Size Calculation for DCEs

Once all five required elements mentioned in Sect. 3.1 have

been determined, the minimum required sample size for the

estimated coefficients in a DCE can be calculated. First, as

an intermediate part of the sample size calculation, the

AVC has to be established. That is, the statistical model

(Sect. 3.1.3), the initial belief on the parameter values,

denoted with c (Sect. 3.1.4), and the DCE design (Sect.

3.1.5), are all needed to infer the AVC matrix,
P

c, of the

estimated parameters. Details on how to construct the

variance–covariance matrix from this information can be

found, for example, in McFadden [4] for MNL and in

Bliemer and Rose [41] for panel MIXL. A variance–co-

variance matrix is a square matrix that contains the vari-

ances and covariances associated with all the estimated

coefficients. The diagonal elements of this matrix contain

the variances of the estimated coefficients, and the off-

diagonal elements capture the covariances between all

possible pairs of coefficients. For hypothesis tests on in-

dividual coefficients, we only need the diagonal elements

of
P

c, which we denote by Rck for the kth diagonal

element.

Once the AVC,
P

c, of the estimated parameters has

been established and the confidence level (a), the power

level (1-b), and the effect sizes (d) are set, the minimum

required sample size (N) for the estimated coefficients in a

DCE can be calculated (see Eq. 4).

N[ ððz1�b þ z1�aÞ
ffiffiffiffiffiffiffiX
ck

s
=dÞ2 ð4Þ

Each of the elements in this sample size calculation

intuitively makes sense. In particular, with a larger effect

size d, a smaller sample size (N) will suffice to have

enough power to find a significant deviation. Testing at a

higher confidence level a increases z1-a,
2 and thus

increases the minimum required sample size (N). The

same holds when more statistical power is desired, as this

increases z1-b.
3 When the variance-covariance matrix

contains smaller variance (
P

ck) the minimum sample

size (N) required decreases, as the estimates will be more

precise. Smaller values for
P

ck can be obtained from using

more choice sets, more alternatives per choice set or a more

efficient design.

4 Determining Required Sample Sizes for DCEs:

A Practical Example

In this section, a practical example is provided to explain,

step-by-step, how the minimum sample size requirement

1 All aspects of our sample size calculation are conditional on the

design of the experiment and the implementation in a questionnaire.

The survey design will have an impact on the precision of the

parameters that should be accounted for through its effect on the

anticipated parameter values. Also, the model specification has an

impact on the precision of the parameters.

2 The value of a (Sect. 3.1.1) is used to determine the corresponding

quantile of the Normal distribution (z1-a) that is needed in the sample

size calculations. The value of z1-a for a given a can be found in the

basic statistics textbooks or easily calculated in Microsoft Excel�
using the formula NORMSINV(1-a). The value of z1-a for an a of

0.05 equals 1.64.
3 In the computation of the sample size, we need z1-b, the quantile of

the Normal distribution with U(z1-b) = 1-b. Here again, U denotes

the cumulative distribution function of the Normal distribution.

Accordingly, the value for z1–b for a given 1–b can be found in the

basic statistics textbooks or easily calculated in Microsoft Excel�
using the formula NORMSINV(1-b); e.g., assuming a statistical

power level of 80 %, the value z1-b is 0.84 [i.e., NORMSINV(0.8)].
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for a DCE study can be calculated. This is illustrated using

R-code, which can also be found at http://www.erim.eur.nl/

ecmc.

The DCE study used for this illustration concerns a DCE

about patients’ preferences for preventive osteoporosis

drug treatment [12]. In this DCE study, patients had to

choose between drug treatment alternatives that differed in

five treatment attributes: route of drug administration, ef-

fectiveness, side effects (nausea), treatment duration, and

out-of-pocket costs. The DCE design was orthogonal and

contained 16 choice sets. Each choice set consisted of two

unlabeled drug treatment alternatives and an opt-out

option.

In what follows, we show in seven steps how the

minimum sample size for coefficients can be calculated for

the DCE on patients’ preferences for preventive osteo-

porosis drug treatment.

Step 1 Significance Level (a)
We first have to set the confidence through a. In
the illustration, we choose a = 0.05. The resulting

confidence level is 95 %, assuming a one-tailed

test4 (Box 1)

Box 1

test_alpha=0.05
z_one_minus_alpha<-qnorm(1-test_alpha)

Table 2 Alternatives, attributes and levels for preventive osteoporosis drug treatment, their parameter labels, initial belief about parameter

values, and discrete-choice experiment design codes (based on de Bekker-Grob et al. [12])

Parameter label Initial belief

parameter value

DCE design

code

Alternative Alternative label

Constant (i.e., alternative specific constant for drug treatment; intercept) A 1.23

Alternative 1 Drug treatment alternative I 1

Alternative 2 Drug treatment alternative II 1

Alternative 3 Opt-out alternative 0

Attribute Attribute levels

Drug administration Tablet once a month

Tablet once a week B1 –0.31 1

Injection every 4 months B2 –0.21 1

Injection once a month B3 –0.44 1

Effectiveness ( %) C 0.028

5 5

10 10

25 25

50 50

Side effect nausea D –1.10

No 0

Yes 1

Treatment duration (years) E –0.04

1 1

2 2

5 5

10 10

Cost (€) F –0.0015

0 0

120 120

240 240

720 720

4 A one-tailed test is used if only deviations in one direction are

considered possible; in contrast, a two-tailed test is used if deviations

of the estimated parameter in either direction from zero are

considered theoretically possible. Be aware that, for a two-tailed

test, the alpha level should be divided by 2 (i.e., a/2).
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Step 2 Statistical Power Level (1-b)
The second step is to choose the statistical power

level. For our illustration, we opt for a standard

statistical power level of 80 % (i.e., b = 0.20,

hence 1-b = 0.80) (Box 2).

Step 3 Statistical Model Used in the DCE Analysis

The third step is to choose the statistical model to

analyze the DCE data. For our illustration, we opt

for an MNL model. In the R code, this affects the

way the AVC needs to be calculated, which is

outlined in step 6

Step 4 Initial Belief About the Parameter Values

The fourth step concerns the initial beliefs about the

parameter values. The DCE illustration regarding

patients’ preferences for preventive osteoporosis

drug treatment contains five attributes (two catego-

rical attributes and three linear attributes) [12],

resulting in eight parameters to be estimated (see

Table 2 column ‘parameter label’). We use the

point estimates of the parameters as our guess of the

coefficients and the effect sizes d (see Table 2

column ‘initial belief parameter value’) (Box 3)

Step 5 The DCE design

The fifth step focuses on the DCE design. The

DCE design requires eight parameters to be

estimated (ncoefficients = 8). Each choice set

contains three alternatives (nalts = 3); that is, two

drug treatment alternatives, and one opt-out

alternative. The DCE design contains 16 choice

sets (nchoices = 16) (Box 4)

The DCE design should be coded in a text-file

in such a way that it can be read correctly into

R. That is, the DCE design should contain one

row for each alternative. So, there should be

nalts 9 nchoices rows (see Table 3 as an

example for our illustration, which contains

48 rows (i.e., 3 alternatives 9 16 choice sets);

rows 1–3 correspond to choice set 1, rows 4–6

correspond to choice set 2, etc.)

Each row should contain the coded attribute

levels for that alternative. See Table 3 for how

the DCE design for our illustration was coded

(columns A–F). For example, row 1 corre-

sponds to the first preventive drug treatment

alternative in choice set 1: a drug treatment

alternative (value 1, column A) that should be

taken as a tablet every week (value 1, column

B1), which will result in a 5 % reduction of a

hip fracture (value 5, column C) without side

effects (value 0, column D), for which the drug

treatment duration will be 10 years (value 10,

column E) and out-of-pocket costs of €120 are

required (value 120, column F). Be aware that

only the DCE design (i.e., the ‘white part’ of

Table 3) should be in a text file, so that it can be

read correctly in R (Box 5)

Box 5# load the design informa�on
design<-as.matrix(read.table(“….fill in the file name 
of the DCE design…”,header=FALSE));

Box 2

test_beta=0.20
z_one_minus_beta<-qnorm(1-test_beta)

Box 3

parameters<-c(1.23 , -0.31 , -0.21 , -0.44 , 0.028 , 
-1.10 , -0.04 , -0.0015)

Box 4

ncoefficients=8
nalts=3
nchoices=16
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Step 6 Estimation Accuracy

Having our statistical model, our initial beliefs

about the parameter values (i.e., our guess of the

effect sizes) and our DCE design matrix, we are

able to compute the AVC matrix (
P

c) (Box 6)

Step 7 Sample Size Calculation

The final step is to calculate the required sample

size for the MNL coefficients in our DCE. Hereto

we use Eq. 4 (Box 7)

The results of the minimum sample size

required to obtain the desired power level for

finding an effect when testing at a specific

confidence level for each parameter are shown

in Table 4. To illustrate the impact of the

probability that we will find a significant effect

given a specific effect size, we also computed

the required sample size for the statistical

power level 1-b equal to 0.6, 0.7, and 0.9.

Additionally, we also computed the required

Box 6

#compute the informa�on matrix, see Appendix (Electronic Supplementary Material 2) for more details
# ini�alize a matrix of size ncoefficients by ncoefficients filled with zeros.
info_mat=matrix(rep(0,ncoefficients* ncoefficients), ncoefficients, ncoefficients)
# compute exp(design matrix �mes ini�al parameter values)
expu�li�es=exp(design%*%parameters)
# loop over all choice sets
for (k_set in 1:nchoices) {
# select alterna�ves in the choice set
alterna�ves=((k_set-1)*nalts+1) : (k_set*nalts)
# obtain vector of choice shares within the choice set
p_set=expu�li�es[alterna�ves]/sum(expu�li�es[alterna�ves])
# also put these probabili�es on the diagonal of a matrix that only contains zeros
p_diag=diag(p_set)
# compute middle term P-pp’ in equa�on A.1 of Electronic Supplementary Material 2
middle_term<-p_diag-p_set%o%p_set
# pre- and postmul�ply with the Xs from the design matrix for the alterna�ves in this choice set
full_term<-t(design[alterna�ves,])%*%middle_term%*%design[alterna�ves,]
# Add contribu�on of this choice set to the informa�on matrix
info_mat<-info_mat+full_term
} # end of loop over choice sets
#get the inverse of the informa�on matrix (i.e., gets the variance-covariance matrix)
sigma_beta<-solve(info_mat,diag(ncoefficients)) 

Box 7

# Use the parameter values as effect size. Other values can be used here.
effectsize<-parameters 

# formula for sample size calcula�on is n>[(z_(beta)+z_(1-alpha))*sqrt(Σγκ)/delta]^2
N<-((z_one_minus_beta + z_one_minus_alpha)*sqrt(diag(sigma_beta))/abs(effectsize))^2
# Display results
“required sample size for each coefficient”
N
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sample sizes assuming a significance level a of

0.1, 0.025, and 0.01

As can be seen from Table 4, one needs a

minimum sample size of 190 respondents with

a statistical power of 0.8 and assuming an

a = 0.05, whether ‘injection every 4 months’ is

significantly different from ‘tablet once a

month (reference attribute level)’ (Table 4,

Table 4 Minimum sample size required to obtain the desired power level 1-b for finding an effect when testing at a specific confidence level

1-a

a = 1-b = Constant I. Route of drug administration II. Effectiveness III. Nausea IV. Duration V. Costs

A B1 B2 B3 C D E F

0.1 0.6 2 28 72 13 2 1 17 3

0.05 0.6 3 43 111 19 2 1 27 4

0.025 0.6 4 58 151 26 3 2 36 6

0.01 0.6 6 79 205 35 5 3 49 8

0.1 0.7 3 39 100 17 2 1 24 4

0.05 0.7 4 56 145 25 3 2 35 6

0.025 0.7 6 73 190 33 4 3 46 7

0.01 0.7 7 96 250 43 6 3 60 10

0.1 0.8 4 53 139 24 3 2 33 5

0.05 0.8 6 73 190 33 4 3 46 7

0.025 0.8 7 93 241 42 5 3 58 9

0.01 0.8 9 119 308 53 7 4 74 12

0.1 0.9 6 78 202 35 5 3 49 8

0.05 0.9 8 102 263 45 6 4 64 10

0.025 0.9 10 125 323 56 7 4 78 13

0.01 0.9 12 154 400 69 9 5 97 16

Table 3 DCE design

Choice task Alternative Constant I. Route of drug administration II. Effectiveness III. Nausea IV. Duration V. Costs

A B1 B2 B3 C D E F

1 1 1 1 0 0 5 0 10 120

1 2 1 0 1 0 10 1 1 240

1 3 0 0 0 0 0 0 0 0

2 1 1 0 0 1 5 1 5 720

2 2 1 0 0 0 10 0 10 0

2 3 0 0 0 0 0 0 0 0

3 1 1 0 0 0 25 1 10 240

3 2 1 1 0 0 50 0 1 720

3 3 0 0 0 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

16 1 1 0 1 0 10 0 10 720

16 2 1 0 0 1 25 1 1 0

16 3 0 0 0 0 0 0 0 0

alternative 1 = drug treatment alternative I; alternative 2 = drug treatment alternative II; alternative 3 = opt-out alternative; values 0 and 1 in

column A mean ‘opt-out alternative’ and ‘drug treatment alternative’, respectively; value 1 in columns B1, B2, B3 means ‘tablet every week’,

‘infusion every 4 months’, and ‘infusion every month’, respectively; column C presents how effective (risk reduction of a hip fracture in %) a

drug treatment alternative is; values 0 and 1 in column D mean ‘no nausea as a side effect’ and ‘nausea as a side effect’, respectively; column E

presents the total treatment duration in years; and the values in column F present the out-of-pocket costs (€)
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column B2). If a smaller sample size of, for

example, 111 respondents were to be used and

no significant result to be found for this

parameter, one has a statistical power of 0.6,

assuming an a = 0.05, to conclude that respon-

dents do not prefer ‘tablet every month’ over

‘injection every 4 months’. As a proof of

principle, we compared the standard errors

and confidence intervals from the actual study

[12] against the predicted standard errors and

confidence intervals. The results showed that

they were quite similar (Table 5), which gives

further evidence that our sample size calcula-

tion makes sense.

5 Discussion

In this paper, we have summarized how researchers have

dealt with sample size calculations for health care-related

DCE studies. We found that more than 70 % of the health

care-related DCE studies published in 2012 did not

(clearly) report whether and what kind of sample size

method was used. Just 6 % of the health care-related DCE

studies published in 2012 used a parametric approach for

sample size estimation. Nevertheless, the parametric ap-

proaches used were not suitable as a power calculation for

determining the minimum required sample size for hy-

pothesis testing for coefficients based on DCEs. To fill in

this gap, we explained the analysis needed to determine the

required sample size in DCEs from a hypothesis testing

perspective. That is, we clarified that the following five

elements are needed before such a minimum sample size

can be determined: significance level (a), statistical power
level (1-b), statistical model used in the DCE analysis,

initial belief about the parameter values, and the DCE

design. An important feature of the resulting sample size

formula is that the required sample size tends to grow

exponentially. For example, when one wants a certain

power level to detect an effect that is 50 % smaller, the

required sample will be four times larger.

To build a bridge between theory and practice, we cre-

ated a generic R-code as a practical tool for researchers to

be able to determine the minimum required sample size for

coefficients in DCEs. We then illustrate step-by-step how

the sample size requirement can be obtained using our

R-code. Although the R-code presented in this paper is for

MNL only, the theory is also suitable for other choice

models, such as the nested logit, mixed logit, scaled-MNL,

or generalized-MNL.

Our approach for determining the minimum required

sample size for coefficients in DCEs can also be extended

to functions of parameters. For example, one might want to

know whether patients are willing to pay a specific amount

to increase effectiveness by 10 %. In order to test such a

hypothesis, confidence intervals for a willingness-to-pay

measure are needed. Once how these will be inferred from

the limiting distribution of the parameters [42] is deter-

mined, RWTP (instead of Rc) is known and the required

sample size can be computed.

From a practical point of view, in health care-related

DCEs, the number of patients and physicians that can be

approached is often given, and sometimes rather small.

Especially in these cases, our tool could indicate that power

will be low. Using efficient designs (striving for small

values for
P

ck), more alternatives per choice set, or clear

Table 5 Parameter estimates and precision from an actual discrete-choice experiment study [12] relative to those predicted by the sample size

calculations

Attribute MNL results actual study (N = 117)a Predicted results based on 117 subjects

Parameter value SE 95 % CI SE 95 % CI

Constant (drug treatment) 1.23 0.218 0.81–1.66 0.109 1.02–1.45

Drug administration (base level tablet once a month):

Tablet once a week –0.31 0.070 -0.45 to -0.17 0.099 –0.50 to –0.12

Injection every 4 months –0.21 0.097 -0.41 to -0.02 0.108 –0.43 to –0.01

Injection once a month –0.44 0.100 -0.64 to -0.25 0.094 –0.63 to –0.26

Effectiveness (1 % risk reduction) 0.03 0.003 0.02–0.03 0.002 0.02–0.03

Side effect nausea –1.10 0.104 -1.30 to -0.89 0.065 –1.22 to –0.97

Treatment duration (1 year) –0.04 0.010 -0.06 to -0.02 0.010 –0.06 to –0.02

Cost (€1) –0.0015 0.0002 -0.002 to -0.001 0.0002 –0.002 to –0.001

CI confidence interval, SE standard error
a Number of observations 5589 (117 respondents 9 16 choices 9 3 options per choice, minus 27 missing values), Pseudo R2 = 0.185, log

pseudolikelihood = -1668.7
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wording and layout are ways to increase the power that is

achieved.

The approach presented in this paper can also be used to

reverse engineer the power that a specific design has for a

given sample size. This can help researchers who find an

insignificant result to ensure that they had sufficient power

to detect a reasonably sized effect.

6 Conclusion

The use of sample size calculations for healthcare-related

DCE studies is largely lacking. We have shown how

sample size calculations can be conducted for DCEs when

researchers are interested in testing whether a particular

attribute (level) affects the choices that patients or physi-

cians make. Such sample size calculations should be

executed far more often than is currently the case in

healthcare, as under-powered studies may lead to false

insights and incorrect decisions for policy makers.
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