Skip to main content
Log in

Mechanisms of Resistance to PD-1 Checkpoint Blockade

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors (ICIs), monoclonal antibodies to cytotoxic T-lymphocyte-associated protein 4, programmed cell death 1 or its ligand PD-L1 are rapidly changing the treatment landscape and prognosis of many cancer types. Following their initial approval in melanoma in 2011, ICIs are now approved in many other cancers. Despite the long-term, durable response that can be noted with ICIs, the majority of patients do not respond to ICIs and some of the initial responders develop relapsed disease during their treatment course. In order to improve the response rate to ICIs, an understanding of the mechanisms of resistance is critical. Given the number of different ways cancers can become resistant to ICIs, patient—rather than population-based strategies to reverse resistance will likely be needed. We review the currently defined mechanisms of resistance to ICIs and discuss possible methods to overcome these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumour mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2017;168(3):542.

    Article  CAS  PubMed  Google Scholar 

  6. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumour-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumours with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  9. Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, et al. UVB-Induced tumour heterogeneity diminishes immune response in melanoma. Cell. 2019;179(1):219–235.e221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76.

    Article  CAS  PubMed  Google Scholar 

  11. Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, et al. IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun. 2017;8:14607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao F, Sucker A, Horn S, Heeke C, Bielefeld N, Schrörs B, et al. Melanoma lesions independently acquire T-cell resistance during metastatic latency. Cancer Res. 2016;76(15):4347–58.

    Article  CAS  PubMed  Google Scholar 

  13. Pereira C, Gimenez-Xavier P, Pros E, Pajares MJ, Moro M, Gomez A, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies. Clin Cancer Res. 2017;23(12):3203–13.

    Article  CAS  PubMed  Google Scholar 

  14. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15(4):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Torrejon DY, Abril-Rodriguez G, Tsoi J, Champhekar A, Kalbasi A, Campbell KM, et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. ASCO Annu Meet J Clin Oncol. 2019;20:2584.

    Article  Google Scholar 

  16. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y, et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumour microenvironment in melanoma. Proc Natl Acad Sci USA. 2016;113(48):E7759–E7768768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5.

    Article  CAS  PubMed  Google Scholar 

  19. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumour microenvironment and immunotherapy. Blood. 2009;114(21):4713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–92.

    Article  CAS  PubMed  Google Scholar 

  21. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 2011;8(3):151–60.

    Article  CAS  PubMed  Google Scholar 

  22. Gibney GT, Kudchadkar RR, DeConti RC, Thebeau MS, Czupryn MP, Tetteh L, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res. 2015;21(4):712–20.

    Article  CAS  PubMed  Google Scholar 

  23. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumour immunity. Front Oncol. 2014;4:74.

    PubMed  PubMed Central  Google Scholar 

  25. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoural T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–1119.e1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host type I IFN signals are required for antitumour CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med. 2011;208(10):2005–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumours. J Exp Med. 2011;208(10):1989–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghaffari A, Peterson N, Khalaj K, Vitkin N, Robinson A, Francis JA, et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br J Cancer. 2018;119(4):440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: a pro- and anti-tumour double-edged sword. Immunobiology. 2017;222(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Chung YR, Eitzinger S, Palacio N, Gregory S, Bhattacharyya M, et al. TLR4 signaling improves PD-1 blockade therapy during chronic viral infection. PLoS Pathog. 2019;15(2):e1007583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milhem M, Gonzales R, Medine T et al. Intratumoural toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma. AACR annual meeting. Chicago, Illinois; 2018.

  32. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumour microenvironment. Science. 2015;348(6230):74–80.

    Article  CAS  PubMed  Google Scholar 

  33. Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol. 2014;193(10):5327–37.

    Article  CAS  PubMed  Google Scholar 

  34. Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumour immune responses in humans. Proc Natl Acad Sci USA. 2013;110(44):17945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, et al. Disruption of CXCR2-mediated MDSC tumour trafficking enhances anti-PD1 efficacy. Sci Transl Med. 2014;6(237):237ra267.

    Article  CAS  Google Scholar 

  36. Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015;2015:201703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu G, Wu Y, Wang W, Xu J, Lv X, Cao X, et al. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumour microenvironment. Cell Mol Immunol. 2019;16(4):401–9.

    Article  CAS  PubMed  Google Scholar 

  39. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumour microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49(8):1140–6.

    CAS  PubMed  Google Scholar 

  41. Munn DH, Mellor AL. IDO in the tumour microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wada J, Suzuki H, Fuchino R, Yamasaki A, Nagai S, Yanai K, et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res. 2009;29(3):881–8.

    CAS  PubMed  Google Scholar 

  43. Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C, Merillon N, et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother. 2010;33(9):991–8.

    Article  CAS  PubMed  Google Scholar 

  44. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumour rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumour microenvironment. J Immunother Cancer. 2014;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20(8):1083–97.

    Article  CAS  PubMed  Google Scholar 

  46. Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci. 2018;1417(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  47. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  48. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. 2014;63(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  49. Fritz JM, Tennis MA, Orlicky DJ, Yin H, Ju C, Redente EF, et al. Corrigendum: depletion of tumour-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 2015;6:88.

    PubMed  PubMed Central  Google Scholar 

  50. Forero A, Bendell JC, Kumar P, Janisch L, Rosen M, Wang Q, et al. First-in-human study of the antibody DR5 agonist DS-8273a in patients with advanced solid tumours. Invest New Drugs. 2017;35(3):298–306.

    Article  CAS  PubMed  Google Scholar 

  51. Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Principe DR, DeCant B, Mascariñas E, Wayne EA, Diaz AM, Akagi N, et al. TGFβ signaling in the pancreatic tumour microenvironment promotes fibrosis and immune evasion to facilitate tumourigenesis. Cancer Res. 2016;76(9):2525–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oh SA, Liu M, Nixon BG, Kang D, Toure A, Bivona M, et al. Foxp3-independent mechanism by which TGF-β controls peripheral T cell tolerance. Proc Natl Acad Sci USA. 2017;114(36):E7536–E75447544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019;27(8):2411–2425.e2419.

    Article  CAS  PubMed  Google Scholar 

  55. Hay CM, Sult E, Huang Q, Mulgrew K, Fuhrmann SR, McGlinchey KA, et al. Targeting CD73 in the tumour microenvironment with MEDI9447. Oncoimmunology. 2016;5(8):e1208875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res. 2014;6:317–28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Han P, Goularte OD, Rufner K, Wilkinson B, Kaye J. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol. 2004;172(10):5931–9.

    Article  CAS  PubMed  Google Scholar 

  58. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  59. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beyrend G, van der Gracht E, Yilmaz A, van Duikeren S, Camps M, Höllt T, et al. PD-L1 blockade engages tumour-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. J Immunother Cancer. 2019;7(1):217.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 2017;30(12):1666–76.

    Article  CAS  PubMed  Google Scholar 

  62. McKee SJ, Doff BL, Soon MS, Mattarollo SR. Therapeutic efficacy of 4-1BB costimulation is abrogated by PD-1 blockade in a model of spontaneous B-cell lymphoma. Cancer Immunol Res. 2017;5(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  63. Fromm G, de Silva S, Johannes K, Patel A, Hornblower JC, Schreiber TH. Agonist redirected checkpoint, PD1-Fc-OX40L, for cancer immunotherapy. J Immunother Cancer. 2018;6(1):149.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zappasodi R, Sirard C, Li Y, Budhu S, Abu-Akeel M, Liu C, et al. Rational design of anti-GITR-based combination immunotherapy. Nat Med. 2019;25(5):759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwen Hu-Lieskovan.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Justin C. Moser has participated in an advisory board and received honoraria from Caris Life Sciences. Siwen Hu-Lieskovan has consulted for Amgen, Merck, Genmab, Xencor, and BMS; receives research support from BMS, Merck, and Vaccinex; and performs contracted research for Pfizer, Plexxikon, Genentech, Xencor, Neon Therapuetics, Astellas, and F Star.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, J.C., Hu-Lieskovan, S. Mechanisms of Resistance to PD-1 Checkpoint Blockade. Drugs 80, 459–465 (2020). https://doi.org/10.1007/s40265-020-01270-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01270-7

Navigation