Skip to main content
Log in

Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a major cause of hospital admission in the Western world, yet there remains a paucity of effective pharmacological management options. With the recent development of synthetic, next-generation nitroxyl (HNO) donors and their progress into clinical trials, it is timely to now provide an update on the therapeutic potential of HNO donors in the management of acute decompensated heart failure. In this article, we summarize current understanding of the pharmacology of HNO (in comparison with its redox sibling, nitric oxide), its spectrum of cardioprotective actions, and efforts to translate these into the clinic. Future research directions for this exciting new class of HF drugs are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark RA, Yallop JJ, Piterman L, Croucher J, Tonkin A, Stewart S, et al. Adherence, adaptation and acceptance of elderly chronic heart failure patients to receiving healthcare via telephone-monitoring. Eur J Heart Fail. 2007;9(11):1104–11.

    Article  PubMed  Google Scholar 

  2. Cotter G, Metzkor E, Kaluski E, Faigenberg Z, Miller R, Simovitz A, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998;351(9100):389–93.

    Article  CAS  PubMed  Google Scholar 

  3. Peacock WF, Hollander JE, Diercks DB, Lopatin M, Fonarow G, Emerman CL. Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis. Emerg Med J. 2008;25(4):205–9.

    Article  CAS  PubMed  Google Scholar 

  4. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur Heart J. 2012;33(14):1787–847.

    Article  PubMed  Google Scholar 

  5. Ellingsrud C, Agewall S. Morphine in the treatment of acute pulmonary oedema—why? Int J Cardiol. 2016;202:870–3.

    Article  CAS  PubMed  Google Scholar 

  6. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsiao R, Greenberg B. Contemporary treatment of acute heart failure. Prog Cardiovasc Dis. 2016;58(4):367–78.

    Article  PubMed  Google Scholar 

  8. Follath F, Cleland JGF, Just H, Papp JGY, Scholz H, Peuhkurinen K, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360(9328):196–202.

    Article  CAS  PubMed  Google Scholar 

  9. Beltrame JF, Zeitz CJ, Unger SA, Brennan RJ, Hunt A, Moran JL, et al. Nitrate therapy is an alternative to furosemide/morphine therapy in the management of acute cardiogenic pulmonary edema. J Cardiac Fail. 1998;4(4):271–9.

    Article  CAS  Google Scholar 

  10. Armstrong PW, Armstrong JA, Marks GS. Pharmacokinetic-hemodynamic studies of intravenous nitroglycerin in congestive cardiac-failure. Circulation. 1980;62(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  11. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.

    Article  CAS  PubMed  Google Scholar 

  12. Tran HA, Lin F, Greenberg BH. Potential new drug treatments for congestive heart failure. Expert Opin Investig Drugs. 2016;25(7):811–26.

    Article  CAS  PubMed  Google Scholar 

  13. Singh A, Laribi S, Teerlink JR, Mebazaa A. Agents with vasodilator properties in acute heart failure. Eur Heart J. 2016;pii:ehv755 [Epub ahead of print]

  14. Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka F, et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18(6):613–25.

    Article  PubMed  Google Scholar 

  15. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, et al. Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci USA. 2001;98(18):10463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, et al. Positive inotropic and lusitropic effects of HNO/NO- in failing hearts: independence from beta-adrenergic signaling. Proc Natl Acad Sci USA. 2003;100(9):5537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK. Nitroxyl (HNO): the Cinderella of the nitric oxide story. Trends Pharmacol Sci. 2008;29(12):601–8.

    Article  CAS  PubMed  Google Scholar 

  18. Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, et al. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid Redox Signal. 2011;14(9):1659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukuto JM, Carrington SJ. HNO signaling mechanisms. Antioxid Redox Signal. 2011;14(9):1649–57.

    Article  CAS  PubMed  Google Scholar 

  20. Fukuto JM, Wallace GC, Hszieh R, Chaudhuri G. Chemical oxidation of N-hydroxyguanidine compounds. Release of nitric oxide, nitroxyl and possible relationship to the mechanism of biological nitric oxide generation. Biochem Pharmacol. 1992;43(3):607–13.

    Article  CAS  PubMed  Google Scholar 

  21. Irvine JC, Favaloro JL, Widdop RE, Kemp-Harper BK. Nitroxyl anion donor, Angeli’s salt, does not develop tolerance in rat isolated aortae. Hypertension. 2007;49(4):885–92.

    Article  CAS  PubMed  Google Scholar 

  22. Lin EQ, Irvine JC, Cao AH, Alexander AE, Love JE, Patel R, et al. Nitroxyl (HNO) stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation. PLoS ONE. 2012;7(4):e34892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irvine JC, Cao N, Gossain S, Alexander AE, Love JE, Qin C, et al. HNO/cGMP-dependent antihypertrophic actions of isopropylamine-NONOate in neonatal rat cardiomyocytes: potential therapeutic advantages of HNO over NO. Am J Physiol Heart Circ Physiol. 2013;305(3):H365–77.

    Article  CAS  PubMed  Google Scholar 

  24. Miller TW, Cherney MM, Lee AJ, Francoleon NE, Farmer PJ, King SB, et al. The effects of nitroxyl (HNO) on soluble guanylate cyclase activity. J Biol Chem. 2009;284(33):21788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeller A, Wenzl MV, Beretta M, Stessel H, Russwurm M, Koesling D, et al. Mechanisms underlying activation of soluble guanylate cyclase by the nitroxyl donor Angeli’s salt. Mol Pharmacol. 2009;76(5):1115–22.

    Article  CAS  PubMed  Google Scholar 

  26. Dierks EA, Burstyn JN. Nitric oxide (NO center dot), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase. Biochem Pharmacol. 1996;51(12):1593–600.

    Article  CAS  PubMed  Google Scholar 

  27. Stasch J-P, Schmidt PM, Nedvetsky PI, et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Investig. 2006;116(9):2552–61.

  28. Bullen ML, Miller AA, Dharmarajah J, Drummond GR, Sobey CG, Kemp-Harper BK. Vasorelaxant and antiaggregatory actions of the nitroxyl donor isopropylamine NONOate are maintained in hypercholesterolemia. Am J Physiol Heart Circ Physiol. 2011;301(4):H1405–14.

    Article  CAS  PubMed  Google Scholar 

  29. Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011;89(6):873–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheong E, Tumbev V, Abramson J, Salama G, Stoyanovsky DA. Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors. Cell Calcium. 2005;37:87–96.

    Article  CAS  PubMed  Google Scholar 

  31. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, et al. Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ Res. 2007;100(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  32. Dai T, Tian Y, Tocchetti CG, Katori T, Murphy AM, Kass DA, et al. Nitroxyl increases force development in rat cardiac muscle. J Physiol. 2007;580(3):951–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, et al. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem. 2001;276(3):1720–7.

    Article  CAS  PubMed  Google Scholar 

  34. Leo CH, Joshi A, Hart JL, Woodman OL. Endothelium-dependent nitroxyl-mediated relaxation is resistant to superoxide anion scavenging and preserved in diabetic rat aorta. Pharmacol Res. 2012;66(5):383–91.

    Article  CAS  PubMed  Google Scholar 

  35. Irvine JC, Kemp-Harper BK, Widdop RE. Chronic administration of the HNO donor, Angeli’s salt does not lead to tolerance, cross-tolerance or endothelial dysfunction: comparison with GTN and DEA/NO. Antioxid Redox Signal. 2011;14(9):1615–24.

    Article  CAS  PubMed  Google Scholar 

  36. Andrews KL, Lumsden NG, Farry J, Jefferis A-M, Kemp-Harper BK, Chin-Dusting JPF. Nitroxyl: a vasodilator of human vessels that is not susceptible to tolerance. Clin Sci. 2015;129(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  37. Dautov RF, Ngo DTM, Licari G, Liu S, Sverdlov AL, Ritchie RH, et al. The nitric oxide redox sibling nitroxyl partially circumvents impairment of platelet nitric oxide responsiveness. Nitric Oxide Biol Chem. 2013;35:72–8.

    Article  CAS  Google Scholar 

  38. Irvine JC, Favaloro JL, Kemp-Harper BK. NO activates soluble guanylate cyclase and Kv channels to vasodilate resistance arteries. Hypertension. 2003;41(6):1301–7.

    Article  CAS  PubMed  Google Scholar 

  39. Pino RZ, Feelisch M. Bioassay discrimination between nitric oxide (NO·) and nitroxyl (NO) using l-cysteine. Biochem Biophys Res Commun. 1994;201(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  40. Ellis A, Li CG, Rand MJ. Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br J Pharmacol. 2000;129:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, et al. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol. 2009;157(4):540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, et al. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension. 2015;65(2):385–92.

    Article  CAS  PubMed  Google Scholar 

  43. Favaloro JL, Kemp-Harper BK. The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature. Cardiovasc Res. 2007;73(3):587–96.

    Article  CAS  PubMed  Google Scholar 

  44. Favaloro JL, Kemp-Harper BK. Redox variants of NO (NO· and HNO) elicit vasorelaxation of resistance arteries via distinct mechanisms. Am J Physiol Heart Circ Physiol. 2009;296(5):H1274–80.

    Article  CAS  PubMed  Google Scholar 

  45. Miranda KM. The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev. 2005;249(3–4):433–55.

    Article  CAS  Google Scholar 

  46. Fukuto JM, Switzer CH, Miranda KM, Wink DA. Nitroxyl (HNO): Chemistry, biochemistry, and pharmacology. Ann Rev Pharmacol Toxicol. 2005;45:335–55.

    Article  CAS  Google Scholar 

  47. Arcaro A, Lembo G, Tocchetti CG. Nitroxyl (HNO) for treatment of acute heart failure. Curr Heart Fail Rep. 2014;11(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  48. Hammond AH, Fry JR. Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers. Chem Biol Interact. 1999;122(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  49. Lancel S, Zhang J, Evangelista A, Trucillo MP, Tong X, Siwik DA, et al. Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ Res. 2009;104(6):720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, et al. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal. 2013;19(11):1185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Froehlich JP, Mahaney JE, Keceli G, Pavlos CM, Goldstein R, Redwood AJ, et al. Phospholamban thiols play a central role in activation of the cardiac muscle sarcoplasmic reticulum calcium pump by nitroxyl. Biochemistry. 2008;47(50):13150–2.

    Article  CAS  PubMed  Google Scholar 

  52. Chin KY, Michel L, Qin CX, Nga C, Woodman OL, Ritchie RH. The HNO donor Angeli’s salt offers potential haemodynamic advantages over NO center dot or dobutamine in ischaemia-reperfusion injury in the rat heart ex vivo. Pharmacol Res. 2016;104:165–75.

    Article  CAS  PubMed  Google Scholar 

  53. Ding W, Li Z, Shen X, Martin J, King SB, Sivakumaran V, et al. Reversal of isoflurane-induced depression of myocardial contraction by nitroxyl via myofilament sensitization to Ca2+. J Pharmacol Exp Ther. 2011;339(3):825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kohr MJ, Kaludercic N, Tocchetti CG, Dong Gao W, Kass DA, Janssen PML, et al. Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling. Front Biosci. 2010;2:614–26.

    Google Scholar 

  55. Yong QC, Hu LF, Wang SH, Huang DJ, Bian JS. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res. 2010;88(3):482–91.

    Article  CAS  PubMed  Google Scholar 

  56. Chin KY, Qin C, Cao N, Kemp-Harper BK, Woodman OL, Ritchie RH. The concomitant coronary vasodilator and positive inotropic actions of the nitroxyl donor Angeli’s salt in the intact rat heart: contribution of soluble guanylyl cyclase-dependent and -independent mechanisms. Br J Pharmacol. 2014;171(7):1722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miranda KM, Katori T, Torres de Holding CL, Thomas L, Ridnour LA, McLendon WJ, et al. Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo. J Med Chem. 2005;48(26):8220–8.

    Article  CAS  PubMed  Google Scholar 

  58. Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, et al. Playing with cardiac “redox switches”: the “HNO way” to modulate cardiac function. Antioxid Redox Signal. 2011;14(9):1687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, et al. Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res. 2012;111(8):1002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miranda KM, Paolocci N, Katori T, Thomas DD, Ford E, Bartberger MD, et al. A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Natl Acad Sci USA. 2003;100(16):9196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Booth BP, Tabrizi-Farad MA, Fung HL. Calcitonin gene-related peptide-dependent vascular relaxation of rat aorta: an additional mechanism for nitroglycerin. Biochem Pharmacol. 2000;59(12):1603–9.

    Article  CAS  PubMed  Google Scholar 

  62. Katori T, Hoover DB, Ardell JL, Helm RH, Belardi DF, Tocchetti CG, et al. Calcitonin gene-related peptide in vivo positive inotropy is attributable to regional sympatho-stimulation and is blunted in congestive heart failure. Circ Res. 2005;96(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  63. Ritchie RH, Schiebinger RJ, Lapointe MC, Marsh JD. Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol Heart Circ Physiol. 1998;275(4):H1370–4.

    CAS  Google Scholar 

  64. DuMond JF, King SB. The chemistry of nitroxyl-releasing compounds. Antioxid Redox Signal. 2011;14(9):1637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paolocci N, Jackson MI, Lopez BE, Miranda KM, Tocchetti CG, Wink DA, et al. The pharmacology of nitroxyl (HNO) and its therapeutic potential: not just the Janus face of NO. Pharmacol Ther. 2007;113(2):442–58.

    Article  CAS  PubMed  Google Scholar 

  66. Miranda KM, Nagasawa HT, Toscano JP. Donors of HNO. Curr Top Med Chem. 2005;5(7):649–64.

    Article  CAS  PubMed  Google Scholar 

  67. Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, et al. Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc. 2010;132(46):16526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sha X, Isbell TS, Patel RP, Day CS, King SB. Hydrolysis of acyloxy nitroso compounds yields nitroxyl (HNO). J Am Chem Soc. 2006;128(30):9687–92.

    Article  CAS  PubMed  Google Scholar 

  69. Shoman ME, DuMond JF, Isbell TS, Crawford JH, Brandon A, Honovar J, et al. Acyloxy nitroso compounds as nitroxyl (HNO) donors: kinetics, reactions with thiols, and vasodilation properties. J Med Chem. 2011;54(4):1059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang Z, Kaur J, Bhardwaj A, Alsaleh N, Reisz JA, DuMond JF, et al. O-2-Sulfonylethyl protected isopropylamine diazen-1-ium-1,2-diolates as nitroxyl (HNO) donors: synthesis, beta-elimination fragmentation, hno release, positive inotropic properties, and blood pressure lowering studies. J Med Chem. 2012;55(22):10262–71.

    Article  CAS  PubMed  Google Scholar 

  71. El-Armouche A, Wahab A, Wittkoepper K, Schulze T, Boettcher F, Pohlmann L, et al. The new HNO donor, 1-nitrosocyclohexyl acetate, increases contractile force in normal and beta-adrenergically desensitized ventricular myocytes. Biochem Biophys Res Commun. 2010;402(2):340–4.

    Article  CAS  PubMed  Google Scholar 

  72. Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, et al. Nitroxyl (HNO). A novel approach for the acute treatment of heart failure. Circ Heart Fail. 2013;6:1250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cowart D, Aranda J, Haas G, Neutel J, Smith W, Mazhari R, et al. A phase I/IIA first in man safety and tolerability study of a novel HNO donor, CXL-1020, in patients with stable congestive heart failure. J Am Coll Cardiol. 2011;57(14 Supplement):E299.

    Article  Google Scholar 

  74. Mebazaa A, Longrois D, Metra M, Mueller C, Richards AM, Roessig L, et al. Agents with vasodilator properties in acute heart failure: how to design successful trials. Eur J Heart Fail. 2015;17(7):652–64.

    Article  PubMed  Google Scholar 

  75. del Rio CL, George RS, Youngblood BL, Ueyama Y, May JR, Humphries DJ, et al. Nitroxyl (HNO) donated via slow-release oral pro-drug improves ventriculo-arterial coupling in conscious dogs with induced heart failure: enhanced load-independent mechano-energetics. Circulation. 2014;130(Suppl 2):A13228.

    Google Scholar 

  76. Cowart D, Venuti R, Guptill J, Noveck R, Foo S. A phase 1 study of the safety and pharmacokinetics of the intravenous nitroxyl prodrug, CXL-1427 [Presentation Number: 1146-206]. J Am Coll Cardiol. 2015;65(10 Suppl):A876. doi:10.1016/S0735-1097(15)60876-2. http://content.onlinejacc.org/article.aspx?articleid=2198487&resultClick=1. Accessed 22 July 2016.

  77. Mitrovic V. Latest nitroxyl prodrug boosts cardiac performance in advanced HF [abstract FP99]. ESC-Heart Failure Congress, May 21, 2016, London, UK. https://www.escardio.org/Congresses-&-Events/Upcoming-congresses/Heart-Failure/Congress-resources/latest-nitroxyl-prodrug-boosts-cardiac-performance-in-advanced-hf. Accessed 22 July 2016.

  78. Vaananen AJ, Moed M, Tuominen RK, Helkamaa TH, Wiksten M, Liesi P, et al. Angeli’s salt induces neurotoxicity in dopaminergic neurons in vivo and in vitro. Free Radic Res. 2003;37(4):381–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hewett SJ, Espey MG, Uliasz TF, Wink DA. Neurotoxicity of nitroxyl: insights into HNO and NO biochemical imbalance. Free Radic Biol Med. 2005;39(11):1478–88.

    Article  CAS  PubMed  Google Scholar 

  80. Norris AJ, Sartippour MR, Lu M, Park T, Rao JY, Jackson MI, et al. Nitroxyl inhibits breast tumor growth and angiogenesis. Int J Cancer. 2008;122(8):1905–10.

    Article  CAS  PubMed  Google Scholar 

  81. Ma XL, Gao F, Liu G-L, Lopez BL, Christopher TA, Fukuto JM, et al. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci USA. 1999;96(25):14617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. C-u Choe, Lewerenz J, Fischer G, Uliasz TF, Espey MG, Hummel FC, et al. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity. J Neurochem. 2009;110(6):1766–73.

    Article  Google Scholar 

  83. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, et al. Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003;34(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  84. DeMaster EG, Redfern B, Nagasawa HT. Mechanisms of inhibition of aldehyde dehydrogenase by nitroxyl, the active metabolite of the alcohol deterrent agent cyanamide. Biochem Pharmacol. 1998;55(12):2007–15.

    Article  CAS  PubMed  Google Scholar 

  85. Bermejo E, Saenz DA, Alberto F, Rosenstein RE, Bari SE, Lazzari MA. Effect of nitroxyl on human platelets function. Thromb Haemost. 2005;94(3):578–84.

    CAS  PubMed  Google Scholar 

  86. Tsihlis ND, Murar J, Kapadia MR, Ahanchi SS, Oustwani CS, Saavedra JE, et al. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J Vasc Surg. 2010;51(5):1248–59.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Miller AA, Maxwell KF, Chrissobolis S, Bullen ML, Ku JM, De Silva TM, et al. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radic Biol Med. 2013;60:264–71.

    Article  CAS  PubMed  Google Scholar 

  88. Andrews KL, Sampson AK, Irvine JC, Shihata WA, Michell DL, Lumsden NG, et al. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization. Clin Sci. 2016;130(18):1629–40.

    Article  PubMed  Google Scholar 

  89. Bullen ML, Miller AA, Andrews KL, Irvine JC, Ritchie RH, Sobey CG, et al. Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal. 2011;14(9):1675–86.

    Article  CAS  PubMed  Google Scholar 

  90. Roof SR, Hartman C, Reardon J, del Rio C, Ziolo M, Hamlin R. Nitroxyl (HNO) improves ventricular relaxation and Ca2+-handling in rats with induced chronic diastolic dysfunction. Circulation. 2014;130(Suppl 2):A18092.

    Google Scholar 

  91. Cao N, Wong YG, Rosli S, Kiriazis H, Huynh K, Qin C, et al. Chronic administration of the nitroxyl donor 1-nitrosocyclo hexyl acetate limits left ventricular diastolic dysfunction in a mouse model of diabetes mellitus in vivo. Circ Heart Fail. 2015;8(3):572–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca H. Ritchie.

Ethics declarations

Funding

This work was supported in part by the Victorian Government’s Operational Infrastructure Support Program. RHR is an NHMRC of Australia Senior Research Fellow (ID1059960).

Conflict of interest

Barbara K. Kemp-Harper, John D. Horowitz and Rebecca H. Ritchie declare that they have no conflict of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemp-Harper, B.K., Horowitz, J.D. & Ritchie, R.H. Therapeutic Potential of Nitroxyl (HNO) Donors in the Management of Acute Decompensated Heart Failure. Drugs 76, 1337–1348 (2016). https://doi.org/10.1007/s40265-016-0631-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0631-y

Keywords

Navigation