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Abstract

Pharmacologic treatments targeting specific molecular mechanisms relevant for autism spectrum 

disorder (ASD) are beginning to emerge in early drug development. This article reviews the 

evidence for the disruption of glutamatergic neurotransmission in animal models of social deficits 

and summarizes key pre-clinical and clinical efforts in developing pharmacologic interventions 

based on modulation of glutamatergic systems in individuals with ASD. Understanding the 

pathobiology of the glutamatergic system has led to the development of new investigational 

treatments for individuals with ASD. Specific examples of medications that modulate the 

glutamatergic system in preclinical and clinical studies are described. Finally, we will discuss the 

limitations of current strategies and future opportunities in developing medications targeting the 

glutamatergic system for treating individuals with ASD.

1. Introduction

Autism spectrum disorder (ASD) is a large public health issue, as evidenced by the rising 

prevalence, with an estimated rate of one in 68 children (age 8 years) in the United States in 

the latest study by the Centers for Disease Control and Prevention [1]. Effective 

pharmacologic treatments for core symptoms of the disorder (i.e., deficits in social 

communication, sensory aberrations, stereotypic behaviors, and restricted interests) are 

lacking. Part of this challenge may be due to the lag in translation of basic findings of the 

pathophysiology of ASD to clinically testable hypotheses. In the largest ASD whole exome 

sequencing (WES) study, genes involving three critical classes of molecular machinery for 

typical development are damaged – synaptic formation, transcriptional regulation and 

chromatin-remodeling [2]. The first two classes are also related to neurotransmission, which 

is controlled by excitatory and inhibitory systems. Glutamate is the most common excitatory 

neurotransmitter, and gamma aminobutyric acid (GABA) is the most abundant inhibitory 

neurotransmitter. One highly regarded model of ASD suggests that the condition is a result 

of an increased ratio of excitation to inhibition (E/I) in key neural systems [3]. The balance 

between brain levels of glutamate and GABA in each brain region controls the major inputs 

and outputs of neural circuits involved in essentially all physiological functions of the brain. 
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Therefore, modulation of either the glutamatergic or GABAergic system is predicted to 

change the E/I ratio and may be considered as a strategy for treating symptoms in 

individuals with ASD. In this article, we will focus on the glutamatergic system in ASD. We 

will begin by providing a brief synopsis of the glutamatergic system, which will be followed 

by a review of the evidence on the association between the disruption of glutamatergic 

neurotransmission and the pathophysiology of ASD. In light of the relevance of the 

glutamatergic system, we will discuss the potential implications of modulating the 

glutamatergic system in the treatment of ASD, using specific drugs that affect the 

glutamatergic system and that have been explored in preclinical and/or clinical studies. 

Finally, we will conclude by discussing the potential pitfalls of current strategies as well as 

future opportunities in modulating the glutamatergic system for the treatment of core and 

associated features of ASD.

1.1. Glutamatergic Physiology

Glutamate is generated in the mitochondria of neurons from glutamine by glutaminase 1 and 

then transported into presynaptic vesicles via vesicular glutamate transporters (Vglut) or 

further metabolized to α-ketoglutarate by glutamate dehydrogenase as part of cellular 

metabolism (Fig 1). Glutamate is removed from the synaptic cleft by the glial transporter, 

excitatory amino acid transporter (EAAT1). In glial cells, glutamate is converted to 

glutamine and transported out by glutamine transporter (SN1), where it can be taken up by 

presynaptic excitatory neurons via neutral amino acid transporter (GLNT) and system amino 

acid transporter (SAT2). The glutamine is then converted back to glutamate by glutaminase 

(GLS) in the mitochondria to replenish the vesicular glutamate pool in the presynaptic 

terminal. Glial cells also contain glutamate decarboxylase 67 (GAD67) that converts 

glutamate to GABA. However, GABA released at neuronal synapses is primarily 

synthesized in the GABAergic interneuron.

Glutamate mediates excitatory neurotransmission via ionotropic and metabotropic receptors. 

There are three types of ionotropic glutamate receptors (Figure 1). The names of these 

receptors originated from the synthetic glutamate derivatives that activated the receptors: N-

methyl-D-aspartate (NMDA), 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid 

(AMPA), and kainate. Both NMDA receptors (NMDARs) and AMPA receptors (AMPARs) 

are composed of four subunits surrounding a central pore, with receptor properties varying 

depending upon exact channel composition. Metabotropic glutamate receptors (mGluRs) are 

G-protein coupled receptors. mGluRs are divided into three groups (see Table 1) on the 

basis of their second messenger coupling and ligand sensitivity. Group I receptors (mGluR1 

and 5) predominantly potentiate both presynaptic glutamate release and postsynaptic 

NMDAR currents. In contrast, group II (mGluR2 and 3) receptors, in general, limit 

glutamate release, particularly during conditions of glutamate spillover from the synaptic 

cleft. Like Group II receptors, Group III receptors (mGluR4, 6, 7, and 8) generally inhibit 

glutamate function. Overall, ionotropic glutamate receptors are involved in fast excitatory 

neurotransmission and Group I metabotropic receptors are responsible for slower excitatory 

neurotransmission, whereas Group II and III metabotropic receptors exert inhibitory 

neurotransmission.
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In addition to the glutamate receptors, the dynamic interplays among these receptors and 

other molecular components such as adhesion proteins (e.g., neurexins (NRXNs), 

neuroligins (NLGNs), cadhedrins), scaffolding proteins (e.g., Shank 3), vesicle proteins 

(e.g., synapsin 1), and transporters (e.g., aspartate/glutamate carrier) are essential to 

maintain optimal glutamatergic neurotransmission. NLGNs are postsynaptic cell-adhesion 

molecules (CAMs) that are essential for proper synapse maturation and function. NRXNs 

are presynaptic CAMs that bind to NLGNs across the synaptic cleft. NLGNs bind to the 

postsynaptic density 95 (PSD95) that interacts with SHANK3 proteins.

2. Abnormalities of glutamatergic system in ASD

Given the many components of the glutamatergic system (and the other systems it interacts 

with), where do the abnormalities arise in ASD? The disruption of glutamatergic 

neurotransmission in individuals with ASD has been evidenced at the genetic, 

neurotransmitter levels, and receptor/protein levels. Furthermore, animal models of ASD 

have also provided support and tremendous insight into how the disruption of neural circuits 

is associated with aberrant behaviors.

In order to study the levels of glutamate receptors in the brain, investigators have employed 

postmortem approaches. Using postmortem brain samples of individuals with ASD, the 

glutamate receptor densities and protein levels were compared with samples of neurotypical 

individuals. The density of AMPA-type glutamate receptor was found to be decreased in the 

cerebellum of individuals with ASD [4]. Measurements of protein levels of metabotropic 

glutamate receptor 5 (mGluR5) revealed significant increases in the vermis of children with 

ASD [5]. To date, in vivo molecular imaging studies of glutamate receptors in ASD are 

lacking.

Concentrations of glutamate have been studied both peripherally and centrally. Increased 

peripheral levels of glutamate were found in both children [6–8] and adults [9] with ASD, 

compared to neurotypical controls. However, it is unclear if the elevated peripheral levels 

reflect central glutamate concentrations. Centrally, glutamate levels can be estimated in vivo 

in individuals with ASD by proton magnetic resonance spectroscopy (1H-MRS). Current 

MRS technologies allow us to separate the spectral peaks of glutamate from other 

substances, with the exception of glutamine (and sometimes GABA), in defined brain 

regions of interest. The combined peak of glutamate and glutamine in the MR spectra is 

often denoted as the Glx peak. Compared to control participants, higher Glx levels were 

found in the right hippocampus [10], anterior cingulate gyrus [11, 12], and auditory cortex 

[13] of individuals with ASD. However, the Glx levels in the thalamus of high-functioning 

adults [14] and children [15] with ASD were found to be indistinguishable from their 

neurotypical counterparts. A recent study found that Glx-to-creatine ratio in the thalamus 

was positively related to the social interaction score of the Autism Diagnostic Interview™ – 

Revised (ADI-R) in children with ASD [16]. Interestingly, the Glx levels (normalized by 

creatine levels) were found to be lower in the frontal lobes of children and adolescents with 

ASD compared to neurotypical controls [17]. Overall, despite the replicated elevation of 

glutamate levels in individuals with ASD, the results for central Glx levels determined by 

MRS are mixed. For more detailed review, please see Rojas et al. [18].
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Various genome wide association studies (GWAS) have uncovered the association between 

genes involved in glutamatergic neurotransmission and ASD (Table 2). GAD1, which 

encodes for GAD67, was found to be a candidate gene for ASD in one linkage study [19]. 

However, other investigations did not replicate this finding [20]. GRIN2A and GRIN2B 

encoding for the NR2A and NR2B subunits of NMDA receptors were found to be associated 

with ASD in whole exome sequencing studies [2, 21]. In addition, many genes expressing 

molecular components related to the glutamatergic synapses have been found to be 

associated with ASD (Table 2). NRXNs and NLGNs are CAMs that are essential for 

synapse formation and function [22]. NLGN1, NLGN3, and NLGN4 localize to excitatory 

synapses, whereas NLGN2 localizes primarily to inhibitory synapses. Point mutations, 

translocation events, and deletions in NLGN1, NLGN3, and NLGN4 were found in rare cases 

of ASD [23–27]. Similarly, genes encoding neurexins (NRXN1, NRXN2 and NRXN3) were 

also found to be associated with ASD in large-scale linkage studies [28–32]. Within the 

NRXN superfamily, CNTNAP2 may be regarded as the most prominent member. CNTNAP2 

is involved in clustering potassium channels at the nodes of Ravier in myelinated axons, as 

well as neuron–glia interactions. CNTNAP2 has been found to be associated with language 

development delays in children with ASD [33–36]. In addition to CAMs, scaffolding 

proteins such as PSD95 are known to play an important role in synaptic plasticity [37]. For 

example, PSD95 anchors synaptic proteins, including NLGN, NMDA receptors, AMPA 

receptors, and potassium channels [38]. Variations of DLG4 (encoding PSD95) were found 

to associate with reduced intraparietal sulcus volume and abnormal cortico-amygdala 

coupling [39], which are manifested in individuals with ASD.

3. Current evidence of efficacy for glutamatergic agents in the treatment of 

ASD

Based on some of the evidence discussed above, investigators have started exploring 

pharmacologic treatments of common symptoms exhibited in ASD both pre-clinically and 

clinically. Below, we will describe the studies targeting the NMDAR, AMPAR/KR, 

mGluRs, as well as other relevant mechanisms in the glutamatergic system.

3.1. NMDA receptor partial agonists and antagonists

D-Cycloserine, a partial agonist of NMDAR, has been shown to ameliorate social alterations 

[40–44] and spontaneous stereotypic behaviors [41] in various mouse models of ASD. In a 

2-week, pilot, single-blind placebo lead-in study with children, adolescent and young adults 

with ASD (N=10; mean age 10.0±7.7; range 5–28 years), D-cycloserine resulted in 

significant improvement in the social withdrawal subscale of the Aberrant Behavioral 

Checklist (ABC-SW) [45]. In a double-blind randomized, 10-week pilot study (N=20; age 

range 14–25 years), the result on improvement in ABC-SW by D-cycloserine was not 

replicated [46]. However, D-cycloserine was found to reduce stereotypic symptoms (as 

measured by stereotypy subscale of the ABC) in young adults and adolescents [46].

Amantadine is a NMDAR antagonist that has been used to treat Parkinson’s disease [47]. In 

a 4-week, double-blind, placebo-controlled study of amantadine hydrochloride in the 

treatment of children with ASD (N=43; mean age 7; range 5–15 years), the amantadine-
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treated group was found to have statistically significant improvements in clinician-rated (but 

not parent rated) ABC subscales for hyperactivity and inappropriate speech [48].

Memantine is another NMDAR antagonist that has been used to treat Alzheimer’s disease 

[50]. A retrospective study of memantine in children and adolescents with ASD (N=18; 

mean age 11.4±3.3; range 6–19 years) showed improvement in Clinical Global Impressions 

– Improvement (CGI-I) [51]. A prospective, 8-week, open-label trial of memantine in 

children with ASD (N=14; mean age 7.8±1.8 years) showed significant reductions in 

multiple ABC subscales, including hyperactivity, lethargy, and irritability [52]. A large 48-

week, randomized controlled trial was completed examining the efficacy of memantine in 

children with autism (N=747; mean age 9.1±1.9 years), but unpublished report indicate that 

there was no evidence of benefit with this medication in this trial [54].

Riluzole is another NMDAR antagonist [55] that was approved to treat patients with 

amyotrophic lateral sclerosis [56]. A case series of the use of riluzole as an adjunctive 

treatment in children with ASD (N=3; age range 15–20 years) has shown improvement in 

CGI scores [57].

Acamprosate is also a NMDAR antagonist that has been used for maintaining abstinence 

from alcohol in patients with alcohol dependence [59]. A pilot single-blind placebo lead-in 

study of acamprosate in youth with ASD (N=15; mean age 10.4; range 5–15 years) 

demonstrated that the medication reduced various ABC subscale scores including 

hyperactivity and social withdrawal [60]. A pilot analysis in fragile X syndrome (FXS)-

associated ASD also suggested that reduction in amyloid-β precursor protein (APP) may be 

a novel pharmacodynamic property of acamprosate [60].

3.2. AMPA/kainate antagonists

Topiramate is an antagonist of AMPAR/KR [61]. In addition, it is also an agonist of 

GABAA receptors, and an inhibitor of voltage-gated sodium channels, high-voltage-

activated calcium channels, as well as specific isoforms of carbonic anhydrase. Topiramate 

as an adjunctive pharmacologic agent was retrospectively studied in children with ASD 

(N=15; mean age 14.7±3.3 years), and was found to be potentially useful in treating 

secondary symptoms of ASD, including inattention, hyperactivity and conduct behaviors 

[62].

3.3. mGluR5 antagonists

Antagonists of mGluR5 have been studied extensively in fragile X syndrome (FXS), the 

most common genetic cause of ASD [64] and inherited cause of intellectual disability [65]. 

The mutation responsible for FXS consists of trinucleotide CGG repeats (>200) within the 

FMR1 gene on the long arm of the X chromosome. The expansion of CGG repeats leads to 

DNA hypermethylation within FMR1, resulting in its transcriptional silencing, and therefore 

the absence or attenuation of the gene product, FMR1 protein (FMRP). The general 

prevalence of males with a full mutation of the affected gene FMR1 is estimated as 1 in 

4000, while the female prevalence is approximately 1 in 5000–8000 [66]. Approximately 

20–50% of individuals with FXS meet the diagnostic criteria for ASD [67–69]. Individuals 

Fung and Hardan Page 5

CNS Drugs. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with FXS exhibit deficits in executive function [70], gaze aversion, increased social anxiety, 

social avoidance [71], as well as impairments in visuospatial processing.

A 3-week treatment with a specific mGluR5 antagonist, AFQ056, was able to restore 

sociability behavior of Fmr1 knockout mice (an animal model of ASD and FXS) to levels of 

wild type littermates. These results support the importance of mGluR5 signaling pathways 

on social interaction behavior and that AFQ056 might be useful as potential therapeutic 

intervention to rescue various behavioral aspects of the fragile X phenotype [72]. However, 

in the first randomized, double-blind (two-treatment (4 weeks each), two-period, crossover 

study) study of a mGluR5 antagonist, AFQ056, in adult patients with FXS [N=30; mean age 

25–26, range 18–36 years], the compound failed to show improvement in the primary 

behavioral endpoint [ABC – Irritability Subscale (ABCI)] [73]. Several other mGluR5 

antagonists (e.g. RO4917523 [74] and STX107) are being tested in individuals with FXS.

3.4. Other agents targeting the glutamatergic system

N-acetylcysteine (NAC) is a glutamatergic modulator as well as an antioxidant. Clinically, 

NAC is best known as the antidote for acetaminophen overdose. More recently, this 

medication has been shown to be efficacious in randomized controlled trials in 

neuropsychiatric disorders, including trichotillomania [75], bipolar disorder [76], and 

schizophrenia [77]. In a 12-week, double-blind randomized, placebo-controlled study of 

NAC in children with ASD (N=29), this compound was found to be well-tolerated and 

effective for targeting irritability and associated behaviors in ASD. In addition, data from 

this study also suggested that NAC might improve stereotypic/repetitive behaviors in this 

population [78].

Medications targeting specific targets of the glutamatergic system are represented in Figure 

2. Overall, preliminary evidence for the utility of pharmacologic agents targeting 

components of the glutamatergic system (NMDA, AMPA/kainate, and mGlu receptors) in 

the treatment of behavioral symptoms (irritability, stereotypic behaviors, and hyperactivity) 

in individuals with ASD is emerging. In order to confirm these results, randomized 

controlled trials are needed to replicate these findings. In the remaining sections, we will 

discuss the limitations of current methods and future opportunities in developing compounds 

for the treatment of symptoms present in individuals with ASD.

4. Limitations to current strategies

Despite the potentially encouraging preliminary findings of the above clinical trials, current 

methodologies to develop treatments for individuals with ASD are limiting. First of all, ASD 

is a very heterogeneous disorder with many potential etiologies including those where a 

glutamatergic dysfunction might not play a key role in the pathophysiology. Treatments 

targeting a specific molecular component of the glutamatergic system are likely to benefit 

only a subset of the ASD population. Therefore, we expect that most individuals with ASD 

who do not have deficits in the glutamatergic system are less likely to respond. As a result, 

the probability for successfully treating the general ASD population without stratifying for 

deficits in the glutamatergic system is expected to be low. A second limitation of current 

medication trials is the use of behavioral endpoints as the primary outcome measures. These 
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endpoints are often determined by subjective informant-based questionnaires instead of 

objective biological measures relevant to a specific molecular mechanism. Specifically, after 

the successful use of the ABC-I as the primary outcome measure for the treatment of severe 

tantrums, aggression, or self-injurious by risperidone [79], the ABC-I has become a gold 

standard in measuring irritability and associated aggressive behaviors in clinical trials for the 

ASD population. While the ABC-I will continue to be very helpful to determine behavioral 

efficacy, it is important to note that objective assessments of the mechanism of action should 

be central in the development of treatments targeting specific biological targets. Thirdly, 

clinical trials can fail because of improper dose selection. Due to the high costs of clinical 

trials, many novel medications were tested at the maximum tolerated dose (MTD). The 

MTD is chosen at the highest dose with no significant severe adverse events. While this 

approach may be appropriate for novel medications in other therapeutic areas, it is 

inadequate for most central nervous system targets [80]. For example, many glutamate 

receptors require partial activation for effective stimulation due to down-regulation at full 

occupancy. Therefore, doses above the effective range may result in lack of efficacy. 

Finally, the developmental perspective of ASD as a neurodevelopmental disorder has not 

been fully appreciated and incorporated in the drug discovery and development process. For 

example, imaging studies of toddlers with ASD have shown that the neuroanatomy of these 

children was distinctly different from neurotypical controls and idiopathic intellectual 

disability [81]. Therefore, accounting for the impact of development on neuroanatomy and 

consequently on neural circuits mediating the pathophysiology of ASD will provide us with 

opportunities to understand when and what to target.

5. Future Directions

Targeting specific molecular targets can be an attractive tactic but we need neural-based 

biomarkers to develop treatments for diseases in psychiatry. Molecular mechanisms, such as 

the glutamatergic and GABAergic systems, appear to be good starting points for developing 

more specific biological treatments for ASD. As discussed above, a main challenge in 

studies conducted to date is the non-specific nature of behavioral endpoints (ABC-I) and the 

lack of measures that are sensitive to change. As we march toward the future of 

neuroscience-based psychiatric research, we will need to consider using more objective 

neural based recruitment criteria and endpoints to track treatment effects. For example, 

molecular imaging can be used to generate biomarkers for selecting research participants 

based on their neural phenotype; it can also be used to track treatment progression. This 

approach has been employed successfully in the development of new investigational agents 

for Alzheimer’s disease [82]. In addition to molecular imaging, multi-modal magnetic 

resonance imaging (MRI) may also yield neural-based biomarkers.

Neurodevelopmental trajectories are key to understanding neuropsychiatric diseases and 

developing the next generation of treatments. We anticipate that one of the next steps to 

advance our understanding of brain development is to supplement our knowledge of 

anatomical neurodevelopment by charting the developmental course of molecular targets 

relevant to specific ASD subtypes. If abnormalities in structural and/or molecular brain 

biomarkers can be detected early in life (e.g. infancy), we may be able to prevent “at risk” 
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brains from further developing abnormal neurocircuits by intervening early when the brain 

is most plastic.

Inasmuch as we expect novel pharmacologic treatments will yield new interventions for 

individuals with ASD by modulating the pathophysiologic processes responsible for ASD 

symptoms, medication treatments alone may not result in most favorable outcome without 

behavioral treatments. Experience-dependent neuroplasticity is a well-known phenomenon 

in neuroscience [83] and is key in neurodevelopmental disorders in general and in ASD in 

particular. In Fmr1 KO mice, environmental enrichment (EE) was shown to enhance 

expression of the AMPA receptor subunit GluR1 in the visual cortex, increase dendritic 

branching, spine number, and appearance of mature spines, and rescue alterations in 

exploratory behavior [84]. Furthermore, animal models of other brain disorders such as 

Down syndrome and Alzheimer’s disease have also shown the utility of EE in restoring a 

myriad of behavioral functions [83]. While EE works by modulating experience-dependent 

neuroplasticity in animals, we predict that cognitive-behavioral interventions may modulate 

the same process in humans with ASD and other neuropsychiatric disorders. In the future, 

for infants and toddlers identified with specific subtypes of ASD defined by molecular and 

circuit abnormalities, pharmacologic treatments will be utilized to modulate neuroplasticity 

while cognitive-behavioral treatments will be used to habilitate these individuals who have 

never acquired the neural architecture underlying adaptive cognitive-behavioral functions. 

For those who have already developed symptoms, the goal of intervention will be to reverse 

their symptoms. Collectively, we anticipate that targeted molecular and circuit-based 

pharmacologic treatments combined with cognitive-behavioral interventions will likely have 

the highest potential to enhance neuroplasticity and improve therapeutic outcomes. We have 

high hopes that novel medications modulating the glutamatergic system will become part of 

future molecular and circuit-based pharmacologic treatments for individuals with ASD.
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Key Points

• Dysfunction of the glutamatergic system represents a potential pathophysiologic 

mechanism responsible for behavioral manifestations in autism spectrum 

disorder (ASD).

• Recent pre-clinical and clinical investigations of glutamatergic agents are 

encouraging. However, clinical testing continues to present significant 

limitations – for example, heterogeneity of ASD population, and reliance of 

relatively subjective informant-based rating scales instead of objective 

biological measures of the glutamatergic system.

• In the future, approaches to monitor molecular mechanisms of medication 

response (for example, by positron emission tomography and magnetic 

resonance spectroscopy) may help in developing medications targeting the 

glutamatergic system and other specific mechanisms relevant for ASD.
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Figure 1. 
Major receptors amenable to therapeutic manipulation in the glutamatergic synapse. NMDA 

and AMPA-type glutamate receptors, type 1/5 of metabotropic glutamate receptors, and 

XC− antiporter are major targets for current pre-clinical and clinical investigations in the 

treatment of individuals with autism spectrum disorder. Please see text for detail description 

of the glutamatergic synapse.

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EAAT, 

excitatory amino acid transporter; GABA, γ-aminobutyric acid; GAD, glutamate 

decarboxylase; GLS, glutaminase; Glu, glutamate; Gln, glutamine; GLUD1, glutamate 

dehydrogenase; mGluR, metabotropic glutamate receptor; NMDA, N-methyl-D-aspartate; 

Vglut, vesicular glutamate transporter; XC−, cystine/glutamate antiporter.
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Figure 2. 
Potential pharmacological targets for the treatment of autism spectrum disorder. Numbers 

identify loci of action of pharmacological compounds targeting components of the 

glutamatergic system: (1) NMDR-type glutamate receptors (NMDAR), (2) type 1/5 

metabotropic glutamate receptors (mGluR1/5), (3) AMPA-type glutamate receptors 

(AMPAR), (4) kainate receptors, and (5) XC− antiporter.
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Table 1

Classification of glutamate receptors

Group Sub-type Subunits Function

Ionotropic NMDA “NR1-NR2” NR1 Fast excitatory

NR2A

NR2B

NR2C

NR2D

“NR1-NR3” NR1

NR3A

NR3B

AMPA GluR1

GluR2

GluR3

GluR4

Kainate KA1

KA2

GluR5

GluR6

GluR7

Metabotropic Group I mGluR1 Slow excitatory

mGluR5

Group II mGluR2 Slow inhibitory

mGluR3

Group III mGluR4

mGluR6

mGluR7

mGluR8
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Table 2

Genes and proteins important for optimal functioning of glutamate receptors and associated with autism 

spectrum disorder.

Gene Protein Loci Protein Function Reference

CDH8 Cadhedrin 16q21 Glycosylated transmembrane proteins that [85]

CDH9 Cadhedrin 5p14.1 mediate cell–cell adhesion, neuronal migration, [86]

CDH10 Cadhedrin 5p14.1 spine morphology, synapse formation, and [86]

CDH13 Cadhedrin 16q23 synaptic remodeling [87]

CNTNAP2 Contactin-associated 
protein-like 2 
(CASPR2)

7q35-q36 Transmembrane scaffolding protein involved in the clustering of 
Kv1.1 at the nodes of Ranvier.

[33–36]

DLG4 PSD-95 17p13.1 Regulation of localization and trafficking of AMPA receptors [39]

DYRK1A Dual-specificity 
tyrosine 
phosphorylation-
regulated kinase 
(DYRK)

21q22.13 DYRK1A-dependent phosphorylation of NR2A hinders the 
internalization of NR1/NR2A, causing an increase of surface 
NMDA receptor density

[88]

GAD1 GAD67 2q31.1 Catalyzes the conversion of glutamic acid to GABA [19]

GRIN2A NR2A of NMDAR 16p13.2 NR2A subunit of NMDA receptor [21]

GRIN2B NR2A of NMDAR 12p13.1 [2]

NRXN1 Neurexin 2p16.3 Synaptic adhesion proteins that are located on the presynaptic 
membrane and bind to their postsynaptic counterpart, neuroligins.

[28–31]

NRXN2 Neurexin 11q13 [31]

NRXN3 Neurexin 14q31 [32]

NLGN1 Neuroligin 3q26 Synaptic adhesion proteins that are located on the postsynaptic 
membrane and bind to their presynaptic counterpart, neurexins.

[23, 24]

NLGN3 Neuroligin Xq13 [23, 25, 26]

NLGN4 Neuroligin Xp22.3 [23, 27]

PCDH9 Protocadhedrin 13q21.32 The largest subgroup of the cadherin superfamily (see above) of 
homophilic cell-adhesion proteins.

[89]

PCDH10 Protocadhedrin 4q28.3 [89]

SLC25A12 AGC1 2q24-q33 Catalyze the exchange of aspartate for glutamate and a proton; 
involved in the malate/aspartate NADH shuttle; involved in the 
urea cycle.

[90]

SHANK3 Shank 3 22q13.3 Synaptic scaffolding proteins that bind neurexin-neuroligin and 
NMDAR complexes at the PSD of excitatory glutamatergic 
synapses

[91–93]

SHANK2 Shank 2 11q13.3-q13.4 [30, 94]

SHANK1 Shank 1 19q13.33 [95, 96]

SYNAPSIN 1 Synapsin 1 Xp11.23 Presynaptic phosphoproteins that account for 9% of the vesicle 
protein and can regulate neurotransmitter release and neurite 
outgrowth.

[97]

SYNAPSIN 2 Synapsin 2 3p25.2 [98]

SYNGAP1 SYNGAP1 6p21.32 Suppresses signaling pathways linked to NMDAR- mediated 
synaptic plasticity and AMPAR membrane insertion

[2]

TAOK2 TAOK2 16p11.2 A kinase involved in membrane blebbing and the MAPK14/
p38MAPK stress-activated MAPK cascade.

[99]

Abbreviations: AGC1, Mitochondrial aspartate/glutamate carrier; AMPA, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid; DYRK, 
Dual-specificity tyrosine phosphorylation-regulated kinase; GABA, gamma aminobutyric acid; MAPK, mitogen-activated protein kinase; NADH, 
nicotinamide adenine dinucleotide; NMDA, N-methyl-D-aspartate; PSD, postsynaptic density; SYNGAP1, synaptic Ras-GTPase-activating protein 
1; TAOK2, thousand-and-one-amino acid 2 kinase
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