Skip to main content
Log in

Continuous Drug Delivery in Parkinson’s Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Development of motor and non-motor complications during the course of Parkinson’s disease (PD) is a major challenge for therapeutic management. At advanced disease stages, patients frequently fluctuate between PD symptoms–such as bradykinesia–and dyskinesias, in response to fluctuations in drug concentrations. Continuous subcutaneous infusion of the dopamine agonist apomorphine or intestinal infusion of levodopa reduce such fluctuations in both pharmacokinetics and motor function. This is the basis for the concept of continuous drug delivery in PD, and the more theoretical concept of continuous dopaminergic stimulation. These expressions are sometimes used to describe a treatment that is more continuous in its pharmacokinetic profile or that produces more sustained effects, compared with immediate-release levodopa, i.e. not only pump treatments. For example, sustained-release formulations of levodopa or dopamine agonists, transdermal delivery of rotigotine, and addition of catechol-O-methyltransferase inhibitors or monoamine oxidase-B inhibitors have been developed with the aim to provide more continuous drug concentrations, sustained benefits and minimized side effects. Progress has been made, but there are still knowledge gaps regarding how these treatment alternatives can be optimally used. New treatments are currently being developed to provide the continuous drug delivery that is known to successfully alleviate motor and non-motor complications. Hopefully, although not yet proven, these new methods may also prevent or postpone some of the late-stage complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chaudhuri KR, Rizos A, Sethi KD. Motor and nonmotor complications in Parkinson’s disease: an argument for continuous drug delivery? J Neural Transm. 2013;120:1305–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Marsden CD, Parkes JD. “On–off” effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet. 1976;1:292–6.

    Article  CAS  PubMed  Google Scholar 

  3. Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord. 2005;20:224–30.

    Article  PubMed  Google Scholar 

  4. Witjas T, Kaphan E, Azulay JP, Blin O, Ceccaldi M, Pouget J, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002;59:408–13.

    Article  PubMed  Google Scholar 

  5. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16:448–58.

    Article  CAS  PubMed  Google Scholar 

  6. Kostic V, Przedborski S, Flaster E, Sternic N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology. 1991;41:202–5.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma JC, Ross IN, Rascol O, Brooks D. Relationship between weight, levodopa and dyskinesia: the significance of levodopa dose per kilogram body weight. Eur J Neurol. 2008;15:493–6.

    Article  CAS  PubMed  Google Scholar 

  8. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–508.

    Article  CAS  PubMed  Google Scholar 

  9. Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28:1064–71.

    Article  CAS  PubMed  Google Scholar 

  10. Oh JD, Chase TN. Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson’s disease. Amino Acids. 2002;23:133–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gershanik O, Jenner P. Moving from continuous dopaminergic stimulation to continuous drug delivery in the treatment of Parkinson’s disease. Eur J Neurol. 2012;19:1502–8.

    Article  CAS  PubMed  Google Scholar 

  12. Olanow CW, Obeso JA, Stocchi F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Nat Clin Pract Neurol. 2006;2:382–92.

    Article  CAS  PubMed  Google Scholar 

  13. Chase TN, Baronti F, Fabbrini G, Heuser IJ, Juncos JL, Mouradian MM. Rationale for continuous dopaminomimetic therapy of Parkinson’s disease. Neurology. 1989;39:7–10 (discussion 19).

    Google Scholar 

  14. Jenner P. Preventing and controlling dyskinesia in Parkinson’s disease—a view of current knowledge and future opportunities. Mov Disord. 2008;23(Suppl 3):S585–98.

    Article  PubMed  Google Scholar 

  15. Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol. 2005;196:422–9.

    Article  CAS  PubMed  Google Scholar 

  16. Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Ploska A, et al. Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol. 1989;25:473–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt WJ, Lebsanft H, Heindl M, Gerlach M, Gruenblatt E, Riederer P, et al. Continuous versus pulsatile administration of rotigotine in 6-OHDA-lesioned rats: contralateral rotations and abnormal involuntary movements. J Neural Transm. 2008;115:1385–92.

    Article  CAS  PubMed  Google Scholar 

  18. Stockwell KA, Scheller DKA, Smith LA, Rose S, Iravani MM, Jackson MJ, et al. Continuous rotigotine administration reduces dyskinesia resulting from pulsatile treatment with rotigotine or L-DOPA in MPTP-treated common marmosets. Exp Neurol. 2010;221:79–85.

    Article  CAS  PubMed  Google Scholar 

  19. Treciokas LJ, Ansel RD, Markham CH. One to two year treatment of Parkinson’s disease with levodopa. Calif Med. 1971;114:7–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61:1044–53.

    PubMed  Google Scholar 

  21. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord. 2006;21:1844–50.

    Article  PubMed  Google Scholar 

  22. Shoulson I, Glaubiger GA, Chase TN. On–off response. Clinical and biochemical correlations during oral and intravenous levodopa administration in parkinsonian patients. Neurology. 1975;25:1144–8.

    Article  CAS  PubMed  Google Scholar 

  23. Schuh LA, Bennett JP Jr. Suppression of dyskinesias in advanced Parkinson’s disease. I. Continuous intravenous levodopa shifts dose response for production of dyskinesias but not for relief of parkinsonism in patients with advanced Parkinson’s disease. Neurology. 1993;43:1545–50.

    Article  CAS  PubMed  Google Scholar 

  24. Marion MH, Stocchi F, Quinn NP, Jenner P, Marsden CD. Repeated levodopa infusions in fluctuating Parkinson’s disease: clinical and pharmacokinetic data. Clin Neuropharmacol. 1986;9:165–81.

    Article  CAS  PubMed  Google Scholar 

  25. Quinn N, Parkes JD, Marsden CD. Control of on/off phenomenon by continuous intravenous infusion of levodopa. Neurology. 1984;34:1131–6.

    Article  CAS  PubMed  Google Scholar 

  26. Nyholm D, Lennernäs H, Gomes-Trolin C, Aquilonius S-M. Levodopa pharmacokinetics and motor performance during activities of daily living in patients with Parkinson’s disease on individual drug combinations. Clin Neuropharmacol. 2002;25:89–96.

    Article  CAS  PubMed  Google Scholar 

  27. Kurlan R, Nutt JG, Woodward WR, Rothfield K, Lichter D, Miller C, et al. Duodenal and gastric delivery of levodopa in parkinsonism. Ann Neurol. 1988;23:589–95.

    Article  CAS  PubMed  Google Scholar 

  28. Nyholm D, Lennernäs H. Irregular gastrointestinal drug absorption in Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2008;4:193–203.

    Article  CAS  PubMed  Google Scholar 

  29. Destée A, Rérat K, Bourdeix I. Is there a difference between levodopa/ dopa-decarboxylase inhibitor and entacapone and levodopa/dopa-decarboxylase inhibitor dose fractionation strategies in Parkinson’s disease patients experiencing symptom re-emergence due to wearing-off? The Honeymoon Study. Eur Neurol. 2009;61:69–75.

    Article  PubMed  Google Scholar 

  30. Metman LV, Hoff J, Mouradian MM, Chase TN. Fluctuations in plasma levodopa and motor responses with liquid and tablet levodopa/carbidopa. Mov Disord. 1994;9:463–5.

    Article  CAS  PubMed  Google Scholar 

  31. Nutt JG. On–off phenomenon: relation to levodopa pharmacokinetics and pharmacodynamics. Ann Neurol. 1987;22:535–40.

    Article  CAS  PubMed  Google Scholar 

  32. Pappert EJ, Buhrfiend C, Lipton JW, Carvey PM, Stebbins GT, Goetz CG. Levodopa stability in solution: time course, environmental effects, and practical recommendations for clinical use. Mov Disord. 1996;11:24–6.

    Article  CAS  PubMed  Google Scholar 

  33. Nyholm D, Ehrnebo M, Lewander T, Trolin CG, Bäckström T, Panagiotidis G, et al. Frequent administration of levodopa/carbidopa microtablets vs levodopa/carbidopa/entacapone in healthy volunteers. Acta Neurol Scand. 2013;127:124–32.

    Article  CAS  PubMed  Google Scholar 

  34. Grosset D, Antonini A, Canesi M, Pezzoli G, Lees A, Shaw K, et al. Adherence to antiparkinson medication in a multicenter European study. Mov Disord. 2009;24:826–32.

    Article  PubMed  Google Scholar 

  35. Pahwa R, Lyons K, McGuire D, Silverstein P, Zwiebel F, Robischon M, et al. Comparison of standard carbidopa-levodopa and sustained-release carbidopa-levodopa in Parkinson’s disease: pharmacokinetic and quality-of-life measures. Mov Disord. 1997;12:677–81.

    Article  CAS  PubMed  Google Scholar 

  36. Sage JI, Mark MH. Pharmacokinetics of continuous-release carbidopa/levodopa. Clin Neuropharmacol. 1994;17(Suppl 2):S1–6.

    PubMed  Google Scholar 

  37. Koller WC, Hutton JT, Tolosa E, Capilldeo R. Immediate-release and controlled-release carbidopa/levodopa in PD: a 5-year randomized multicenter study. Carbidopa/Levodopa Study Group. Neurology. 1999;53:1012–9.

    Article  CAS  PubMed  Google Scholar 

  38. Iansek R, Danoudis M. A single-blind cross over study investigating the efficacy of standard and controlled release levodopa in combination with entacapone in the treatment of end-of-dose effect in people with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:533–6.

    Article  CAS  PubMed  Google Scholar 

  39. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12:346–56.

    Article  CAS  PubMed  Google Scholar 

  40. Chen C, Cowles VE, Sweeney M, Stolyarov ID, Illarioshkin SN. Pharmacokinetics and pharmacodynamics of gastroretentive delivery of levodopa/carbidopa in patients with Parkinson disease. Clin Neuropharmacol. 2012;35:67–72.

    Article  CAS  PubMed  Google Scholar 

  41. Lewitt PA, Ellenbogen A, Chen D, Lal R, McGuire K, Zomorodi K, et al. Actively transported levodopa prodrug XP21279: a study in patients with Parkinson disease who experience motor fluctuations. Clin Neuropharmacol. 2012;35:103–10.

    Article  CAS  PubMed  Google Scholar 

  42. Baas H, Zehrden F, Selzer R, Kohnen R, Loetsch J, Harder S. Pharmacokinetic-pharmacodynamic relationship of levodopa with and without tolcapone in patients with Parkinson’s disease. Clin Pharmacokinet. 2001;40:383–93.

    Article  CAS  PubMed  Google Scholar 

  43. Kuoppamäki M, Korpela K, Marttila R, Kaasinen V, Hartikainen P, Lyytinen J, et al. Comparison of pharmacokinetic profile of levodopa throughout the day between levodopa/carbidopa/entacapone and levodopa/carbidopa when administered four or five times daily. Eur J Clin Pharmacol. 2009;65:443–55.

    Article  PubMed  Google Scholar 

  44. Ingman K, Naukkarinen T, Vahteristo M, Korpela I, Kuoppamäki M, Ellmén J. The effect of different dosing regimens of levodopa/carbidopa/entacapone on plasma levodopa concentrations. Eur J Clin Pharmacol. 2012;68:281–9.

    Article  CAS  PubMed  Google Scholar 

  45. LeWitt PA, Jennings D, Lyons KE, Pahwa R, Rabinowicz AL, Wang J, et al. Pharmacokinetic-pharmacodynamic crossover comparison of two levodopa extension strategies. Mov Disord. 2009;24:1319–24.

    Article  PubMed  Google Scholar 

  46. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68:18–27.

    Article  CAS  PubMed  Google Scholar 

  47. Kvernmo T, Härtter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28:1065–78.

    Article  CAS  PubMed  Google Scholar 

  48. Parkinson Study Group CALM Cohort Investigators. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66:563–70.

    Article  Google Scholar 

  49. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342:1484–91.

    Article  CAS  PubMed  Google Scholar 

  50. Baker WL, Silver D, White CM, Kluger J, Aberle J, Patel AA, et al. Dopamine agonists in the treatment of early Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2009;15:287–94.

    Article  PubMed  Google Scholar 

  51. Stowe RL, Ives NJ, Clarke C, Van Hilten J, Ferreira J, Hawker RJ, et al. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev. 2008;CD006564.

  52. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71:474–80.

    Article  CAS  PubMed  Google Scholar 

  53. Jenner P, Könen-Bergmann M, Schepers C, Haertter S. Pharmacokinetics of a once-daily extended-release formulation of pramipexole in healthy male volunteers: three studies. Clin Ther. 2009;31:2698–711.

    Article  CAS  PubMed  Google Scholar 

  54. Tompson DJ, Vearer D. Steady-state pharmacokinetic properties of a 24-hour prolonged-release formulation of ropinirole: results of two randomized studies in patients with Parkinson’s disease. Clin Ther. 2007;29:2654–66.

    Article  CAS  PubMed  Google Scholar 

  55. Hauser RA. Early pharmacologic treatment in Parkinson’s disease. Am J Manag Care. 2010;16 Suppl Implications:S100–7.

    Google Scholar 

  56. Stocchi F, Tagliati M, Olanow CW. Treatment of levodopa-induced motor complications. Mov Disord. 2008;23(Suppl 3):S599–612.

    Article  PubMed  Google Scholar 

  57. Bonuccelli U, Del Dotto P, Rascol O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl 4):S44–53.

    Article  PubMed  Google Scholar 

  58. Fenu S, Wardas J, Morelli M. Impulse control disorders and dopamine dysregulation syndrome associated with dopamine agonist therapy in Parkinson’s disease. Behav Pharmacol. 2009;20:363–79.

    Article  CAS  PubMed  Google Scholar 

  59. Pondal M, Marras C, Miyasaki J, Moro E, Armstrong MJ, Strafella AP, et al. Clinical features of dopamine agonist withdrawal syndrome in a movement disorders clinic. J Neurol Neurosurg Psychiatr. 2013;84:130–5.

    Article  PubMed  Google Scholar 

  60. Olanow CW, Kieburtz K, Schapira AHV. Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol. 2008;64(Suppl 2):S101–10.

    CAS  PubMed  Google Scholar 

  61. Effect of deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med. 1989;321:1364–71.

  62. Elshoff J-P, Braun M, Andreas J-O, Middle M, Cawello W. Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies. Clin Ther. 2012;34:966–78.

    Article  CAS  PubMed  Google Scholar 

  63. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6:513–20.

    Article  CAS  PubMed  Google Scholar 

  64. Trenkwalder C, Kies B, Rudzinska M, Fine J, Nikl J, Honczarenko K, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011;26:90–9.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sprenger FS, Seppi K, Poewe W. Drug safety evaluation of rotigotine. Expert Opin Drug Saf. 2012;11:503–12.

    Article  CAS  PubMed  Google Scholar 

  66. Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. Int J Pharm. 2012;422:436–44.

    Article  CAS  PubMed  Google Scholar 

  67. Nyholm D. Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin Pharmacokinet. 2006;45:109–36.

    Article  CAS  PubMed  Google Scholar 

  68. Antonini A, Odin P. Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl 4):S97–100.

    Article  PubMed  Google Scholar 

  69. Tyne HL, Parsons J, Sinnott A, Fox SH, Fletcher NA, Steiger DMJ. A 10 year retrospective audit of long-term apomorphine use in Parkinson’s disease. J Neurol. 2004;251:1370–4.

    Article  PubMed  Google Scholar 

  70. García Ruiz PJ, Sesar Ignacio Á, Ares Pensado B, Castro García A, Alonso Frech F, Álvarez López M, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: a multicenter study. Mov Disord. 2008;23:1130–6.

    Article  PubMed  Google Scholar 

  71. Antonini A, Isaias IU, Rodolfi G, Landi A, Natuzzi F, Siri C, et al. A 5-year prospective assessment of advanced Parkinson disease patients treated with subcutaneous apomorphine infusion or deep brain stimulation. J Neurol. 2011;258:579–85.

    Article  CAS  PubMed  Google Scholar 

  72. Hayashi R, Tako K, Makishita H, Koyama J, Yanagisawa N. Efficacy of a low-dose subcutaneous lisuride infusion in Parkinson’s disease. Intern Med. 1998;37:444–8.

    Article  CAS  PubMed  Google Scholar 

  73. Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain. 2002;125:2058–66.

    Article  PubMed  Google Scholar 

  74. Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007;6:826–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hofmann C, Penner U, Dorow R, Pertz HH, Jähnichen S, Horowski R, et al. Lisuride, a dopamine receptor agonist with 5-HT2B receptor antagonist properties: absence of cardiac valvulopathy adverse drug reaction reports supports the concept of a crucial role for 5-HT2B receptor agonism in cardiac valvular fibrosis. Clin Neuropharmacol. 2006;29:80–6.

    Article  CAS  PubMed  Google Scholar 

  76. Nyholm D, Askmark H, Gomes-Trolin C, Knutson T, Lennernäs H, Nyström C, et al. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol. 2003;26:156–63.

    Article  CAS  PubMed  Google Scholar 

  77. Nyholm D, Odin P, Johansson A, Chatamra K, Locke C, Dutta S, et al. Pharmacokinetics of levodopa, carbidopa, and 3-O-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. AAPS J. 2013;15:316–23.

    Article  CAS  PubMed  Google Scholar 

  78. Nilsson D, Nyholm D, Aquilonius S-M. Duodenal levodopa infusion in Parkinson’s disease—long-term experience. Acta Neurologica Scandinavica. 2001;104:343–8.

    Article  CAS  PubMed  Google Scholar 

  79. Antonini A, Mancini F, Canesi M, Zangaglia R, Isaias IU, Manfredi L, et al. Duodenal levodopa infusion improves quality of life in advanced Parkinson’s disease. Neurodegener Dis. 2008;5:244–6.

    Article  CAS  PubMed  Google Scholar 

  80. Pålhagen SE, Dizdar N, Hauge T, Holmberg B, Jansson R, Linder J, et al. Interim analysis of long-term intraduodenal levodopa infusion in advanced Parkinson disease. Acta Neurologica Scandinavica. 2012;126:e29–33.

    Article  PubMed  Google Scholar 

  81. Devos D. Patient profile, indications, efficacy and safety of duodenal levodopa infusion in advanced Parkinson’s disease. Mov Disord. 2009;24:993–1000.

    Article  PubMed  Google Scholar 

  82. Foltynie T, Magee C, James C, Webster GJM, Lees AJ, Limousin P. Impact of duodopa on quality of life in advanced Parkinson’s disease: a UK case series. Parkinson’s disease [Internet]. 2013 [cited 2013 Jun 30];2013. Available from: http://www.hindawi.com/journals/pd/2013/362908/abs/.

  83. Fernandez HH, Vanagunas A, Odin P, Espay AJ, Hauser RA, Standaert DG, et al. Levodopa–carbidopa intestinal gel in advanced Parkinson’s disease open-label study: Interim results. Parkinsonism Relat Disord. 2013;19:339–45.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Nyholm D, Nilsson Remahl AIM, Dizdar N, Constantinescu R, Holmberg B, Jansson R, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology. 2005;64:216–23.

    Google Scholar 

  85. Olanow CW, Antonini A, Kieburtz K, Fernandez H, Espay A, Standaert D, et al. Randomized, double-blind, double-dummy study of continuous infusion of levodopa–carbidopa intestinal gel in patients with advanced Parkinson’s disease: efficacy and safety. Neurology. 2012;11:e87.

    Google Scholar 

  86. Nyholm D. Duodopa® treatment for advanced Parkinson’s disease: a review of efficacy and safety. Parkinsonism Relat Disord. 2012;18:916–29.

    Article  PubMed  Google Scholar 

  87. Klostermann F, Jugel C, Müller T, Marzinzik F. Malnutritional neuropathy under intestinal levodopa infusion. J Neural Transm. 2012;119:369–72.

    Article  CAS  PubMed  Google Scholar 

  88. Müller T, van Laar T, Cornblath DR, Odin P, Klostermann F, Grandas FJ, et al. Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord. 2013;19:501–7.

    Article  PubMed  Google Scholar 

  89. Jugel C, Ehlen F, Taskin B, Marzinzik F, Müller T, Klostermann F. Neuropathy in Parkinson’s disease patients with intestinal levodopa infusion versus oral drugs. PLoS ONE. 2013;8:e66639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Merola A, Zibetti M, Rizzone MG, Troiano M, Artusi CA, Angrisano S, et al. Prospective assessment of peripheral neuropathy in duodopa-treated parkinsonian patients. Acta Neurol Scand. 2013. [Epub ahead of print]

  91. Kimber T, Blumbergs P, Thompson P. Severe ataxic polyneuropathy associated with chronic levodopa use in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:847–9.

    Article  PubMed  Google Scholar 

  92. Santos-García D, De la Fuente-Fernández R, Valldeoriola F, Palasí A, Carrillo F, Grande M, et al. Polyneuropathy while on duodenal levodopa infusion in Parkinson’s disease patients: we must be alert. J Neurol. 2012;259:1668–72.

    Article  PubMed  Google Scholar 

  93. Ceravolo R, Cossu G, Bandettini di Poggio M, Santoro L, Barone P, Zibetti M, et al. Neuropathy and levodopa in Parkinson’s disease: evidence from a multicenter study. Mov Disord. 2013;28:1391–7.

    Google Scholar 

  94. Busk K, Nyholm D. Long-term 24-h levodopa/carbidopa gel infusion in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:1000–1.

    Article  PubMed  Google Scholar 

  95. Elia AE, Dollenz C, Soliveri P, Albanese A. Motor features and response to oral levodopa in patients with Parkinson’s disease under continuous dopaminergic infusion or deep brain stimulation. Eur J Neurol. 2012;19:76–83.

    Article  CAS  PubMed  Google Scholar 

  96. Volkmann J, Albanese A, Antonini A, Chaudhuri KR, Clarke CE, De Bie RMA, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review. J Neurol. 2013;11:2701–14.

    Google Scholar 

  97. Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol. 2013;26:374–80.

    Article  PubMed  Google Scholar 

  98. Cederfjäll E, Sahin G, Kirik D. Key factors determining the efficacy of gene therapy for continuous DOPA delivery in the Parkinsonian brain. Neurobiol Dis. 2012;48:222–7.

    Article  PubMed  Google Scholar 

  99. Garbayo E, Ansorena E, Blanco-Prieto MJ. Drug development in Parkinson’s disease: from emerging molecules to innovative drug delivery systems. Maturitas. 2013;76:272–8.

    Google Scholar 

  100. Clarke CE, Worth P, Grosset D, Stewart D. Systematic review of apomorphine infusion, levodopa infusion and deep brain stimulation in advanced Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:728–41.

    Article  PubMed  Google Scholar 

  101. Fox SH, Katzenschlager R, Lim S-Y, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S2–41.

    Article  PubMed  Google Scholar 

  102. Worth PF. When the going gets tough: how to select patients with Parkinson’s disease for advanced therapies. Pract Neurol. 2013;13:140–52.

    Article  PubMed  Google Scholar 

  103. Nyholm D, Johansson A, Aquilonius S-M, Hellquist E, Lennernäs H, Askmark H. Complexity of motor response to different doses of duodenal levodopa infusion in Parkinson disease. Clin Neuropharmacol. 2012;35:6–14.

    Article  CAS  PubMed  Google Scholar 

  104. Stocchi F. Optimising levodopa therapy for the management of Parkinson’s disease. J Neurol. 2005;252(Suppl 4):IV43–IV48.

    Google Scholar 

  105. Kurlan R. “Levodopa phobia”: a new iatrogenic cause of disability in Parkinson disease. Neurology. 2005;64:923–4.

    Article  PubMed  Google Scholar 

  106. Wüllner U, Fuchs G, Reketat N, Randerath O, Kassubek J. Requirements for Parkinson’s disease pharmacotherapy from the patients’ perspective: a questionnaire-based survey. Curr Med Res Opin. 2012;28:1239–46.

    Article  PubMed  Google Scholar 

  107. Deuschl G, Schüpbach M, Knudsen K, Pinsker MO, Cornu P, Rau J, et al. Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson’s disease: concept and standards of the EARLYSTIM-study. Parkinsonism Relat Disord. 2013;19:56–61.

    Article  PubMed  Google Scholar 

  108. Pirtošek Z. Myths and realities of continuous dopaminergic stimulation. Psychiatr Danub. 2011;23:80–3.

    PubMed  Google Scholar 

  109. Nyholm D. The rationale for continuous dopaminergic stimulation in advanced Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(Suppl):S13–7.

    Article  PubMed  Google Scholar 

  110. Nyholm D, Lewander T, Gomes-Trolin C, Bäckström T, Panagiotidis G, Ehrnebo M, et al. Pharmacokinetics of levodopa/carbidopa microtablets versus levodopa/benserazide and levodopa/carbidopa in healthy volunteers. Clin Neuropharmacol. 2012;35:111–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

There was no funding for writing this manuscript. Marina Senek reports no conflicts of interest. Dag Nyholm receives royalties from Liber AB; has served as a consultant to AbbVie, AstraZeneca and Sensidose AB; has received honoraria from H. Lundbeck AB and NordicInfu Care; has received research support from Kibion AB, Selanders Foundation, Swedish Knowledge Foundation, Swedish Parkinson’s Disease Foundation and Swedish Research Council; is a co-founder and stock owner in Jemardator AB; receives remuneration from the website netdoktor.se for participation in an expert panel; received postdoctoral support from the Swedish Society for Medical Research; and received institutional postdoctoral support from Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Nyholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senek, M., Nyholm, D. Continuous Drug Delivery in Parkinson’s Disease. CNS Drugs 28, 19–27 (2014). https://doi.org/10.1007/s40263-013-0127-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0127-1

Keywords

Navigation