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Abstract Paclitaxel is an anticancer agent efficacious in the

treatment of ovarian, breast, and lung cancer. Due to a strong

link between the pharmacokinetics and therapeutic efficacy of

paclitaxel, we reviewed the literature on paclitaxel pharma-

cokinetics. Systematic data mining was performed to extract

the maximum concentration (Cmax), clearance (CL), and time

of paclitaxel plasma concentration above 0.05 lmol/L

(T[0.05 lmol/L) followingmonotherapy of both the widely

used cremophor-diluted paclitaxel and nanoparticle albumin-

bound (nab-)paclitaxel. We identified a total of 53 studies

yielding 121 aggregated pharmacokinetic profiles for pacli-

taxel monotherapy and extracted reported mean and median

estimates of pharmacokinetic parameters. Paclitaxel has been

studied formally at doses of 15–825 mg/m2 and infused over

0.5–96 h; included studies examined both weekly and every

3-weeks dosing cycles. The most widely used dose of cre-

mophor-diluted paclitaxel, 175 mg/m2 given as a 3-h infusion,

leads to an interstudymedianCmax of 5.1 lmol/L [interquartile

range (IQR) 4.5–5.7], CLof 12.0 L/h/m2 (IQR10.9–12.9), and

T[0.05 lmol/L of 23.8 h (IQR 21.5–26.8). Importantly, the

significant interindividual variation widely reported in the lit-

erature is not reflected in these interstudy estimates of phar-

macokinetic parameters. Cremophor-diluted paclitaxel

pharmacokinetics are non-linear following short (\6 h)but not

long ([24 h) infusions. A similar pattern of non-linearity was

observed for nab-paclitaxel, although the number of studies

was limited. The pharmacokinetics of paclitaxel monotherapy

have been widely studied at numerous dose levels of the Cre-

mophor EL� formulation, but are less well-characterized for

the newer nab-paclitaxel formulation. In conclusion, paclitaxel

pharmacokinetics are non-linear for short infusion times but

not for longer infusions. Whether a similar conclusion can be

drawn for nab-paclitaxel formulations requires further study.

Key Points

The time above a threshold paclitaxel plasma

concentration (0.05 lmol/L) is important for the

efficacy and toxicity of the drug.

Paclitaxel is administered mainly as two

formulations: Cremophor EL� diluted or

nanoparticle albumin bound. The cremophor-diluted

formulation has been widely tested at different doses

and infusion times; data are more limited for the

nanoparticle formulation.

The plasma concentrations of paclitaxel do not

follow linear pharmacokinetics for short infusions.

This is particularly evident for cremophor-based

paclitaxel.
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1 Background

Paclitaxel is a widely used drug in the treatment of breast

[1], ovarian [2], and lung cancer [3]. Paclitaxel binds to and

promotes the assembly of tubulin into dysfunctional

microtubules, which leads to chromosome missegregation

on multipolar spindles at clinically observed concentrations

[4]. The consequence of microtubule dysfunction is inhi-

bition of mitosis and cell proliferation, resulting in the

death of rapidly proliferating tumor cells.

Paclitaxel is a high molecular weight drug (853.9 g/mol)

with a very low solubility in water (0.7 mg/mL) [5]. It is

metabolized primarily by cytochrome P450 (CYP) 2C8 to

the largely inactive metabolite 6-hydroxypaclitaxel and to a

lesser degree by CYP3A4 to 30-phenyl-hydroxypaclitaxel
[6]. Paclitaxel is a substrate for ATP-binding cassette

(ABC) efflux transporters, including multidrug resistance

protein 1 [MDR1/P-glycoprotein (P-gp), ABCB1] [7, 8],

breast cancer resistance protein (BCRP, ABCG2) [9], and

multidrug resistance-associated proteins 1/2 (MRP1/2,

ABCC1/C2) [10, 11]. ABC transporter-mediated efflux of

paclitaxel back into the intestinal lumen accounts for its

very low oral bioavailability and requirement for intra-

venous administration. The influx transporter organic anion

transporter (OAT) polypeptide 1B3 (OATP1B3,

SLCO1B3) has been shown to be involved in the hepatic

uptake of paclitaxel [12, 13]; paclitaxel is also a substrate

for the renal OAT2 (SLC22A7) [14]. Activity of these

hepatic and renal transporters may play an important role in

the distribution and elimination of paclitaxel and may

contribute to variability in the pharmacokinetics of the

drug. Paclitaxel activates pregnane X receptor (PXR)

[15, 16], leading to upregulation of key drug-metabolizing

enzymes such as CYP3A4 [16, 17] and transporters such as

ABCB1 [15]. However, the administration of paclitaxel

every 1, 2, or 3 weeks has not been associated with altered

metabolism over time [18–21], suggesting that autoinduc-

tion is minimal during standard dosing conditions.

Due to the hydrophobic nature of paclitaxel, it was

originally diluted in the solvent Cremophor EL�, a poly-

oxy-ethylated oil mixed 1:1 with ethanol. This formulation

solves one problem, but is associated with hypersensitivity

reactions to Cremophor EL�. This was initially circum-

vented by using longer infusions times. However, the

addition of pretreatment with prophylactic antihistamines

(both histamine H1 and H2 receptor antagonists) and glu-

cocorticoids has made it possible to reduce infusion times

and achieve similarly low rates of hypersensitivity reac-

tions [22]. Recently, a nanoparticle albumin-bound for-

mulation of paclitaxel (nab-paclitaxel) was developed that

does not cause infusion hypersensitivity reactions and thus

eliminates the need for prophylactic treatment. Paclitaxel is

highly bound (90%) to plasma proteins [23], and the free

fraction of paclitaxel inversely correlates with Cremophor

EL� concentrations [24, 25].

The paclitaxel response rate differs significantly

between cancers, with ovarian cancer generally more sen-

sitive than breast cancer [26, 27]. Efficacy and toxicity also

depends on combination with other chemotherapeutic

agents and even the sequence of chemotherapy adminis-

tration. For example, in one study the clearance (CL) of

paclitaxel was lower when administered after cisplatin

compared to administration before the platinum agent [28],

though this effect was not replicated in another study [29].

Significant interpatient variability is also observed for

paclitaxel adverse events, although the frequency and

severity is quite similar across cancer types. The most

common and problematic adverse event is peripheral sen-

sory neuropathy, with significant neutropenia also

observed. Both peripheral neuropathy and neutropenia are

dose limiting and lead to reduced response rates to pacli-

taxel. Based on a database of 812 patients with various

solid tumors treated with single-agent paclitaxel, severe

neutropenia (\500 cells/cm3) occurred in 52% of the

patients. Peripheral neuropathy was reported for 60% of the

patients treated with mixed doses (135–300 mg/m2) and

infusion times (3 or 24 h), with 3% reporting severe

(grade 3 or higher) neuropathy [30]; these frequencies are

known to vary significantly between populations. Clinical

symptoms of neuropathy range from numbness and tingling

in fingers and hands to cold or heat intolerance and burning

pain. Normally, neuropathy symptoms are reversible, but

some patients continue to experience neuropathy up to

2 years after drug cessation, significantly impairing quality

of life [31].

The reasons for variability in paclitaxel response and

toxicity are multifaceted. Some studies have suggested that

polymorphisms in CYP2C8 or ABCB1 cause pharmacoki-

netic variation, while others show no effect. Even when a

pharmacogenetic difference in paclitaxel pharmacokinetics

has been demonstrated, such as for CYP2C8*3 (and *4),

clinical relevance is limited because of the small effect size

[32]. Recent genome-wide association studies (GWAS)

have found a multitude of genetic variants associated with

risk of peripheral neuropathy during treatment with pacli-

taxel [33–35]. Some findings are biologically plausible,

such as variants in genes involved in neuronal repair, while

others require further investigation to fully understand their

relevance. These hypothesis-generating studies are of merit

as they might provide new insight into the molecular

mechanisms underlying the toxicities; however, substantial

validation in multiple cohorts is required before their final

interpretation and potential translation into clinical

practice.
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Drug–drug interactions (DDIs) affecting the pharma-

cokinetics of paclitaxel have not been systematically

studied, likely because of ethical considerations of testing

potentially harmful DDIs in cancer patients. Clinicians

often extrapolate from case observations, in vitro data, and

limited epidemiological studies to optimally manage

polytherapy during cancer treatment. For example, a

metabolite of clopidogrel that inhibits CYP2C8 in vitro

was linked to a very low CL of paclitaxel and increased

risk of neuropathy in an ovarian cancer patient [36]. This

was later supported by a small case series in which seven

out of eight patients treated with clopidogrel and paclitaxel

experienced grade 3 neutropenia [37]. More recently, 48

patients treated with paclitaxel and clopidogrel were found

to have increased rates of neuropathy compared with a

control group of 88 patients using low-dose aspirin in place

of clopidogrel. The study concluded that the risk of

peripheral neuropathy is approximately two-fold higher in

patients using clopidogrel and paclitaxel in doses of

135 mg/m2 or greater [38].

The pharmacokinetics of paclitaxel are known to cor-

relate with treatment response [39, 40] and adverse effects

[41–44]. Thus, a comprehensive understanding may lead to

improved treatment outcomes. The pharmacokinetics of

paclitaxel were comprehensively reviewed by Sonnichsen

and Relling [45] in 1994. However, a large number of

paclitaxel pharmacokinetic studies have been published

since and a new formulation, nab-paclitaxel, has been

introduced to the market. These updates are captured in the

current literature review, along with a systematic analysis

of paclitaxel CL, maximum plasma concentration (Cmax),

and time of paclitaxel plasma concentration above

0.05 lmol/L (T[ 0.05 lmol/L) for a range of doses of

cremophor-diluted and albumin-bound paclitaxel given as

single-agent therapy.

2 Methods

PubMed was searched with the following sequence: (Pa-

clitaxel or Taxol) AND pharmacokinetics [(MESH) or (All

fields)] and restricted to clinical trials in English with

human subjects. The search was performed on 21 June

2016 and gave a total of 608 hits. Titles and abstracts for

studies with any formulation of paclitaxel were evaluated

twice by two independent reviewers and identified 322

publications for further consideration. Papers without

abstracts were only included if it was clear from the title

that they would be relevant. Full texts were then read by at

least one reviewer and 182 publications were identified that

described a minimum of 6 h of pharmacokinetic sampling

for paclitaxel or nab-paclitaxel. After exclusion of studies

where paclitaxel was not given as monotherapy or

pharmacokinetic parameters were not available, 53 publi-

cations remained [19, 21, 46–96] and serve as the basis for

this review (Fig. 1).

The following information was extracted from all pub-

lications: number of patients, duration of infusion (h),

formulation of paclitaxel (cremophor-diluted or nab-pa-

clitaxel), dose (mg/m2), Cmax (lmol/L), total CL (L/h/m2),

and T[ 0.05 lmol/L (h). In cases where a single publi-

cation had pharmacokinetic profiles at different dose levels,

every dose level was included separately. In studies with

repeated pharmacokinetic profiles, only the first visit was

included. Since data presentation varied among included

publications, both median and mean estimates were

extracted and pooled for analysis. Therefore, the summary

values for all parameters reported here reflect interstudy

variation and provide no indication of the significant

interindividual variation in paclitaxel pharmacokinetics

that is widely reported.

Correlation between dose and Cmax was evaluated by

linear and quadratic fits and r2 was used to evaluate the best

fit (STATA� 14.2, StataCorp, College Station, TX, USA).

Fig. 1 Flowchart showing overview of literature search. The criteria

for inclusion of papers for the final analysis are outlined as an iterative

process. IV intravenous, PK pharmacokinetic

Clinical Pharmacokinetics of Paclitaxel 9



3 Results

An overview of included publications and the corresponding

data extracted from these studies are provided as Electronic

Supplementary Material (Online Resource 1). Briefly, 53

papers yielded a total of 121 pharmacokinetic profiles with a

median number of six patients [interquartile range (IQR)

3–10 patients] in each study. Pharmacokinetic parameters

presented in this paper are medians with IQRs (25th–75th

percentiles), unless otherwise specified. A study with sub-

therapeutic radiolabeled paclitaxel [64] was not included in

the analysis due to the nature of the paclitaxel formulation.

Thus, 120 profiles were included in the final analysis.

3.1 Cremophor EL� Paclitaxel

A total of 104 pharmacokinetic profiles for Cremophor

EL� paclitaxel from administration of 32 different doses

(15–825 mg/m2) over six different infusion times (1, 3, 6,

24, 72, and 96 h) were evaluated. The diversity of pacli-

taxel dosage regimens is illustrated in Fig. 2.

Ninety-one paclitaxel CL estimates were extracted from

the included studies [67 for short infusion (B6 h) and 24

for long infusion ([6 h)]. Figure 3 shows the relationship

between CL and dose for short and long infusion of Cre-

mophor EL� paclitaxel. A single CL estimate was exclu-

ded from Fig. 3b (8.1 L/h/m2 for paclitaxel 825 mg/m2) to

limit the range of the dose-axis and allow for more accurate

representation of the majority of the data with lower doses.

Paclitaxel CL decreases up to three-fold with increasing

dose, which is most evident with shorter infusion times

(Fig. 3a). Furthermore, for a given dose, paclitaxel CL is

approximately two-fold higher when given as a long

infusion than as a short infusion.

The relationship between paclitaxel Cmax and dose is

illustrated in Fig. 4 for short (n = 75) and long (n = 24)

infusion times. A quadratic equation best described the

Cmax–dose relationship for paclitaxel given as a short

infusion; the data for the 1-h infusion time best fit this

relationship (r2 = 0.99). With a 1.7-fold increase in

paclitaxel dose given as 3-h infusion the Cmax increases

three-fold (Table 1). In contrast, a linear relationship pro-

vides the best fit for data from long infusion times. Cmax

values for long infusions were approximately tenfold lower

than for short infusions (Fig. 4). A single dose from the

long infusion data (825 mg/m2) was removed from Fig. 4b

to better illustrate the relationship for the majority of the

values.

The non-linearity in paclitaxel pharmacokinetics is also

highlighted in Table 1 with data from the most commonly

used infusion time, 3 h. Median values with corresponding

IQR (25th–75th percentiles) for Cmax and CL indicate a

greater than dose-proportional increase in Cmax and

decrease in CL with increasing dose.

In comparison to CL and Cmax, T[ 0.05 lmol/L was

less commonly reported for the paclitaxel pharmacokinetic

studies included in this analysis. Only 28 values for

T[ 0.05 lmol/L paclitaxel were reported, 21 for short and

seven for long infusion times (Fig. 5). Interestingly,

increasing infusion time from 3 to 24 h does not substan-

tially increase T[ 0.05 lmol/L. All values for

T[ 0.05 lmol/L from a 24-h infusion are from the same

study [90].

3.2 Nab-Paclitaxel

Pharmacokinetic data for nab-paclitaxel were extracted

from 16 studies using nine different doses (80–375 mg/

m2). The majority of these studies (n = 14) used a 0.5-h

infusion; a single study used a 3-h infusion and the

remaining study did not indicate an infusion time and was

excluded from further analysis. The relationship between

nab-paclitaxel CL and dose is illustrated in Fig. 6. With

nab-paclitaxel doses above 200 mg/m2, the CL of nab-pa-

clitaxel decreases in a similar fashion as described for the

Cremophor EL� paclitaxel formulation. Non-linearity was

also observed for paclitaxel Cmax values over a [4-fold

range of nab-paclitaxel doses (Fig. 7), although the

increases in Cmax were less striking than those observed

with the cremophor-diluted formulation (Fig. 4).

3.3 Population Pharmacokinetic Modelling

Six population pharmacokinetic studies of paclitaxel

monotherapy were identified [96–101] and these are

Fig. 2 Distribution of dosage regimens for cremophor-diluted pacli-

taxel included in this analysis. The solid line represents the median

dose, the box represents the interquartile range (25th–75th per-

centiles), and the whiskers represent 5th–95th percentiles. A single

outlier with a dose of 825 mg/m2 infused over 24 h is excluded due to

extension of the dose-axis and compression of the majority of the data

10 T. B. Stage et al.



summarized in Table 2. Briefly, all but one of the studies

had dense sampling with study populations ranging from

seven to 150 individuals. The final models included two or

three compartments with unique sets of covariates. One

study developed a semi-mechanistic model with paclitaxel

in four different states: peripheral or central and vehicle

bound or not vehicle bound [100]. In one case, elimination

was considered to be saturable and represented by

Michaelis–Menten pharmacokinetics [99]. The estimates of

CL and volume of distribution varied significantly across

the models.

4 Discussion

In this review of paclitaxel pharmacokinetics, data were

extracted from 53 papers reporting paclitaxel administra-

tion as single-agent chemotherapy with either cremophor-

Fig. 3 Dose-dependent

clearance of Cremophor-EL�

paclitaxel. Paclitaxel clearance

(L/h/m2) plotted as a function of

dose for short (B6 h) (a) and
long ([6 h) (b) infusion times

Fig. 4 Maximum paclitaxel

concentrations are not dose

proportional with short infusion

times. Maximum concentration

(lmol/L) of paclitaxel during

short (a) and long (b) infusion is
expressed as a function of dose

and infusion time. Solid lines

represent a quadratic fit for short

infusion times and a linear fit for

long infusion times. Cmax

maximum concentration

Clinical Pharmacokinetics of Paclitaxel 11



diluted or nab-paclitaxel-bound paclitaxel. The effect of

dose and infusion time on CL, Cmax and T[ 0.05 lmol/L

were the main outcomes analyzed. Based on 120

pharmacokinetic profiles for cremophor-diluted and nab-

paclitaxel, paclitaxel CL is non-linear over commonly used

doses and infusion times. Non-linear paclitaxel CL results

in more than dose-proportional increases in Cmax, which is

particularly apparent when paclitaxel is administered as the

Cremophor EL� formulation. The most widely used

dosage regimen for cremophor-diluted paclitaxel is a 3-h

infusion of 175 mg/m2. This popular dosage regimen cor-

responds to median values for CL, Cmax, and

T[ 0.05 lmol/L of 12 L/h/m2, 5 lmol/L, and 24 h,

respectively. Increasing infusion time from 3 to 24 h does

not significantly increase T[ 0.05 lmol/L, and with the

implementation of glucocorticoid and antihistamine pre-

treatment to reduce hypersensitivity reactions, there is little

support for longer infusion times. While non-linear CL was

also observed with high doses of the nab-paclitaxel for-

mulation, non-linearities in Cmax were less pronounced.

The average Cmax of the four patients who received a dose

of 375 mg/m2 in the study by Ibrahim et al. [73] was

22.6 lmol/L. Without this observation, the nab-paclitaxel

Table 1 Pharmacokinetic parameters for cremophor-diluted paclitaxel following a 3-h infusion at commonly used dose levels

Dose level (mg/m2)a Cmax (lmol/L) CL (L/h/m2) T[ 0.05 lmol/L (h)

n Median (25th–75th percentile) n Median (25th–75th percentile) n Median (25th–75th percentile)

135 6 3.1 (2.7–3.3) 6 15.5 (13.1–16.7)

175 18 5.1 (4.5–5.7) 17 12.0 (10.9–12.9) 4 23.8 (21.5–26.8)

210 4 7.7 (6.7–8.6) 5 10.1 (9.7–10.7)

225 4 8.2 (7.3–10.3) 3 9.8 (8.5–11.6)

240 3 9.6 (9.0–9.6) 3 4.8 (4.8–9.1)

CL clearance, Cmax maximum concentration, n number of studies, T[ 0.05 lmol/L time of paclitaxel plasma concentration above 0.05 lmol/L
a More than three studies at a given dose were required for inclusion

Fig. 5 The time of Cremophor-EL� paclitaxel concentration above

0.05 lmol/L plotted as a function of dose and infusion time shows

that the time of paclitaxel concentration above 0.05 lmol/L is largely

independent of infusion time

Fig. 6 Non-linear clearance of paclitaxel administered in its nanopar-

ticle albumin-bound formulation

Fig. 7 Relationship between paclitaxel maximum concentration

(lmol/L) values and dose following nanoparticle albumin-bound

paclitaxel administration given as a function of dose and infusion

time. Cmax maximum concentration

12 T. B. Stage et al.



Table 2 Overview of population pharmacokinetic models describing single agent cremophor-diluted or nanoparticle albumin-bound paclitaxel

therapy. All studies used the software package NONMEM�

Studied population Sex

(%

male)

Paclitaxel dose

(mg/m2) and

infusion time

Structural

model

Clearance

estimatesa
Volume of

distribution

estimatesb

Significant covariates References

Cremophor-diluted paclitaxel

N = 7

Bladder, breast, lung,

and other

malignancies

43 225, 175, and

135 over 3-h

infusion

3-compartment CLc (±SD):

71 ± 13 L/

h

Q1 (±SD):

30 ± 8 L/h

Q2 (±SD):

34 ± 8 L/h

V1 (±SD):

41 ± 14 L

V2 (±SD):

51 ± 14 L

V3 (±SD):

340 ± 81 L

No covariates other

than Cremophor

EL� were tested

[96]

N = 18

Unknown malignancies

66 20–50 over 1-h

infusion

2-compartment CLTotal:

6.71 L/h

(70%)

Q1Total:

44.7 L/h

(126%)

V1: 3.64 L

(79%)

V2: 881 L

(NA)

None [97]

N = 45

Colorectal, gastric, gall

bladder, breast,

uterine, ovarian, and

pancreas cancer

31 175 over 3-h

infusion

2-compartment CLunbound:

343 L/h

(3.5%)

Qunbound:

188 L/h

(13%)

V1unbound:

418 L (7.1%)

V2unbound:

1010 L

(4.2%)

Body surface area on

CL, V1, and V2, and

bilirubin on CL. a-1
acid glycoprotein on

Bmax

[101]

N = 97d

Breast, ovarian,

esophagus, and other

malignancies

41 50–225 over 1-h

(n = 42), 3-h

(n = 49), or

24-h (n = 6)

infusion

3-compartment CLunbound:

301 L/h

(4.3%)

Q1unbound:

132 L/h

(6.6%)

Q2unbound:

151 L/h

(6.5%)

V1unbound:

225 L (6%)

V2unbound:

3450 L

(7.8%)

V3unbound:

303 L (6.6%)

None [98]

N = 35

Breast, ovarian,

gastrointestinal, and

other solid

malignancies;

multiple stages of

liver dysfunction

22 70–175 over 3-h

infusion

3-compartment

with

Michaelis–

Menten

elimination

Vmax:

6.4 lmol/h

(17.3%)

KMEl:

0.06 lmol/L

(35%)

VTr:

161 lmol/h

(13.2%)

KMTr:

0.55 lmol/L

(13.4%)

k21: 1.2 h-1

(12.5%)

Q: 16.1 L/h

(8.82%)

V1: 10.2 L

(15.3%)

V3: 642 L

(19.7%)

Sex, body surface

area, and liver

function for Vmax

[99]

Clinical Pharmacokinetics of Paclitaxel 13



Cmax approached a non-linear pattern similar to that of

cremophor-diluted paclitaxel. Further studies are needed to

fully understand the relationship between nab-paclitaxel

dose and Cmax.

The main limitation of this analysis is the exclusion of

papers where paclitaxel was given concomitantly with other

chemotherapeutics. This limitation was necessary to limit

variability in paclitaxel pharmacokinetic parameters and to

identify robust dose-dependent changes in paclitaxel elimi-

nation. The strong correlation between Cmax and dose for a

given short infusion time (Fig. 4a) supports the study design

that was utilized. Furthermore, data regarding

interindividual variability in paclitaxel pharmacokinetics

were not widely available for the included studies. Both

medians and means from pooled data in each study were

used for the analyses described in this review. Thus, all

measures for variability presented in the current study reflect

interstudy variability rather than interpatient variability.

The main strength of this study is the number and

diversity of paclitaxel pharmacokinetic profiles that were

analyzed. Data were included for more than 30 different

doses and six different infusion times, representing the

most extensive analysis to date of single-agent paclitaxel

pharmacokinetics. This allows for the detection of strong

Table 2 continued

Studied population Sex

(%

male)

Paclitaxel dose

(mg/m2) and

infusion time

Structural

model

Clearance

estimatesa
Volume of

distribution

estimatesb

Significant covariates References

N = 38

Advanced or metastatic

solid tumors

NA 175 over 3-h

infusion

Semi-

mechanistic

model with 4

compartments

CL (90% CI):

101.0 L/h

(83.8–113.4)

Q1 (90% CI):

10.9 L/h

(8.3–14.3)

Q2 (90% CI):

0.6 L/h

(0.1–7.4)

Q3 (90% CI):

42.0 L/h

(33.3–50.0)

V1 (90% CI):

24.8 L

(18.2–32.1)

V2 (90% CI):

271.0 L

(183.1–447.8)

V3 (90% CI):

16.5 L

(0.4–56.9)

V4 (90% CI):

178.0 L

(146.3–319.1)

None [100]

Nanoparticle albumin-bound paclitaxel

N = 150

Advanced or metastatic

breast, melanoma, or

other solid tumors

40 80–375 over

30-min

infusion,

infusion time

was 3 h in 1

individual

Semi-

mechanistic

model with 4

compartments

CL (90% CI):

260 L/h

(226–307)

Q1 (90% CI):

39.4 L/h

(32.7–46.3)

Q2 (90% CI):

7.2 L/h

(1.7–12.0)

Q3 (90% CI):

49.6 L/h

(44.4–55.6)

V1 (90% CI):

11.8 L

(10.5–13.5)

V2 (90% CI):

270.6 L

(192.8–367.0)

V3 (90% CI):

169.6 L

(133.5–195.0)

V4 (90% CI):

399.1 L

(300.8–507.6)

None [100]

Bmax maximal non-linear binding to plasma components, CI confidence interval, CL clearance, CLtotal total clearance, CLunbound unbound

clearance, KMEL plasma concentration at half of the maximal elimination rate, KMTr plasma concentration at half VTr, k21 transfer rate constant

(first-order) from the peripheral to central compartment, NA not available, Q intercompartmental clearance, Q1total total intercompartmental

clearance in compartment 1, Q1unbound unbound intercompartmental clearance in compartment 1, Q2unbound unbound intercompartmental

clearance in compartment 2, Qunbound unbound intercompartmental clearance, RSE relative standard error, SD standard deviation, V1 volume of

compartment 1, V2 volume of compartment 2, V3 volume of compartment 3, V4 volume of compartment 4, V1unbound unbound volume of

compartment 1, V2unbound unbound volume of compartment 2, V3unbound unbound volume of compartment 3, Vmax maximum rate, VTR maxi-

maltransport rate from the central to the first peripheral compartment
a Data are shown as mean (RSE%) unless otherwise specified
b Data are shown as population estimate (RSE%) unless otherwise specified
c Overall CL based on unbound (non-micellar) paclitaxel
d 15 of 82 (18%) were also treated with carboplatin
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correlations between paclitaxel dose and Cmax and clearly

illustrates that paclitaxel CL is dose dependent, with CL

decreasing with increasing dose. The robustness of the

analyses is even more striking, considering that the data

was from more than 50 studies performed between 1991

and 2015 that employed a wide range of drug assays and

dosage regimens. Patient heterogeneity with respect to age,

ethnicity, co-morbidities, and treatment indication was also

significant. The conclusions drawn from the current anal-

ysis can therefore be applied broadly across diverse patient

populations and a broad range of paclitaxel dosage regi-

mens. Due to the nature of the data mining implemented in

this study, the results do not provide insight regarding

interpatient variability.

The non-linearity of paclitaxel pharmacokinetics, which

is easily visible for both Cmax and CL (Figs. 3, 4), was first

recognized in the 1990s [67]. Initial reports suggested

saturation of CYP-mediated metabolism of paclitaxel, but

the non-linear CL is now largely attributed to the formu-

lation of paclitaxel. Because of the high hydrophobicity of

paclitaxel, it requires dilution in Cremophor EL�, a poly-

oxy-ethylated oil mixed 1:1 with ethanol. Free concentra-

tions of paclitaxel are inversely correlated with Cremophor

EL� concentrations [102], which means that less paclitaxel

is available for distribution at higher doses. As a result,

tissue distribution and pharmacodynamics are largely

assumed to be linear. In this review, we see indications of

non-linear CL of nab-paclitaxel at higher doses, which

could indicate saturation of metabolism at high paclitaxel

concentrations. Gemfibrozil, another CYP2C8 substrate, is

known for non-linear pharmacokinetics [103, 104] at

higher concentrations. Although gemfibrozil non-linear

pharmacokinetics have no apparent implications for its

clinical use, CYP2C8 saturation could clinically affect nab-

paclitaxel elimination.

Population pharmacokinetic modeling is a useful tool to

describe and investigate the effect of covariates in drug

variation. A number of population pharmacokinetic models

have described the pharmacokinetics of paclitaxel

monotherapy and have provided important insight into

paclitaxel pharmacokinetics and pharmacodynamics.

Hempel et al. [97] estimated the total paclitaxel plasma CL

to be 6.7 L/h for 13 predominantly male patients treated

with 20–50 mg/m2 as a 1-h infusion. This is in agreement

with the reported values for non-compartmental analyses of

higher doses of paclitaxel. While this study did not report

pharmacokinetic non-linearity, this is likely due to the low

paclitaxel doses that were analyzed. Zuylen et al. [96] were

elegantly able to demonstrate that both non-linear distri-

bution and elimination could be explained by micelle

encapsulation of paclitaxel by Cremophor EL�. Hen-

ningsson et al. [98] concluded that the CYP2C8 genotype

did not impact CL of unbound paclitaxel, a finding

disputed by Bergmann et al. [32] who found a small effect

of the CYP2C8*3 variant on paclitaxel CL that may depend

on the ABCB1 genotype [105]. A direct relationship

between liver impairment and paclitaxel elimination was

linked to susceptibility to paclitaxel-induced neutropenia

by Joerger et al. [99]. A model proposed by Li et al. [100]

demonstrated that the similar paclitaxel concentration–time

profiles of nab-paclitaxel and cremophor-diluted paclitaxel

mask discordant paclitaxel tissue concentration profiles.

Based on these findings, the authors conclude that the

paclitaxel plasma profile is a poor marker for clinical

outcome.

Paclitaxel is rarely given as monotherapy, but often

administered in combination with a platinum (cisplatin,

carboplatin) or doxorubicin. There are no reported phar-

macokinetic interactions between paclitaxel and cisplatin

[106–108] or carboplatin [109–111], although the toxicities

of the drugs may be affected by the sequence of their

administration [28]. When doxorubicin and paclitaxel are

administered within a short time interval, the exposure to

doxorubicin is significantly increased [112], which results

in dose-dependent cardiotoxicity [67, 113]. Furthermore, a

number of relevant pharmacokinetic interactions with

paclitaxel have been reported, largely due to inhibition of

the major paclitaxel efflux transporter, P-gp. Recent evi-

dence also indicates that a metabolite of the widely used

anticoagulant drug clopidogrel reduces CYP2C8-mediated

paclitaxel metabolism and can lead to neurotoxicity

[36, 38, 114].

Accumulation of paclitaxel in the peripheral nervous

system has been associated with its toxicity. In mice,

paclitaxel accumulates in the dorsal root ganglia and sciatic

nerve following both single and multiple doses [115].

Paclitaxel was still detectable up to 72 h after a single dose,

which was significantly after the drug could be detected in

the systemic circulation. Following six doses of paclitaxel,

the drug was measurable in these peripheral sites for up to

2 weeks. While such accumulation is not expected to be

reflected in the plasma, these findings in mice are consis-

tent with the observation that cumulative exposure to

paclitaxel is highly correlated with the risk of paclitaxel-

induced sensory neuropathy. Further exploration into the

mechanisms underlying accumulation of paclitaxel in the

peripheral nervous system may lead to better prediction of

an individual patient’s risk for developing sensory

neuropathy.

5 Conclusion

The data presented in this review demonstrates non-lin-

earity in paclitaxel pharmacokinetics when administered as

a short infusion of B6 h. This is largely a result of the

Clinical Pharmacokinetics of Paclitaxel 15



dilution of paclitaxel in Cremophor EL� [24], and possibly

to a lesser extent by saturation of CYP2C8-mediated

metabolism. A strong correlation between paclitaxel Cmax

and CL values and dose is also demonstrated. The limited

data available for paclitaxel T[ 0.05 lmol/L do not allow

for an accurate prediction of its relationship with dose.
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sen RS, Nielsen F, et al. Impact of CYP2C8*3 on paclitaxel

clearance: a population pharmacokinetic and pharmacogenomic

study in 93 patients with ovarian cancer. Pharmacogenom J.

2011;11:113–20.

33. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-

Sundberg M, Eliasson E, et al. Increased omeprazole metabo-

lism in carriers of the CYP2C19*17 allele; a pharmacokinetic

study in healthy volunteers. Br J Clin Pharmacol.

2008;65:767–74.

34. Apellániz-Ruiz M, Lee M-Y, Sánchez-Barroso L, Gutiérrez-

Gutiérrez G, Calvo I, Garcı́a-Estévez L, et al. Whole-exome
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et al. Nonlinear pharmacokinetics and metabolism of paclitaxel

and its pharmacokinetic/pharmacodynamic relationships in

humans. J Clin Oncol. 1995;13:180–90.

68. Herbst RS, Madden TL, Tran HT, Blumenschein GR, Meyers

CA, Seabrooke LF, et al. Safety and pharmacokinetic effects of

TNP-470, an angiogenesis inhibitor, combined with paclitaxel in

patients with solid tumors: evidence for activity in non-small-

cell lung cancer. J Clin Oncol. 2002;20:4440–7.

69. Horton TM, Ames MM, Reid JM, Krailo MD, Pendergrass T,

Mosher R, et al. A Phase 1 and pharmacokinetic clinical trial of

paclitaxel for the treatment of refractory leukemia in children: a

Children’s Oncology Group study. Pediatr Blood Cancer.

2008;50:788–92.

70. Huizing MT, Keung AC, Rosing H, van der Kuij V, ten Bokkel

Huinink WW, Mandjes IM, et al. Pharmacokinetics of paclitaxel

and metabolites in a randomized comparative study in platinum-

pretreated ovarian cancer patients. J Clin Oncol.

1993;11:2127–35.

71. Huizing MT, Vermorken JB, Rosing H, ten Bokkel Huinink

WW, Mandjes I, Pinedo HM, et al. Pharmacokinetics of pacli-

taxel and three major metabolites in patients with advanced

breast carcinoma refractory to anthracycline therapy treated with

a 3-hour paclitaxel infusion: a European Cancer Centre (ECC)

trial. Ann Oncol. 1995;6:699–704.

72. Hurria A, Blanchard MS, Synold TW, Mortimer J, Chung CT,

Luu T, et al. Age-related changes in nanoparticle albumin-bound

paclitaxel pharmacokinetics and pharmacodynamics: influence of

chronological versus functional age. Oncologist. 2015;20:37–44.

73. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL,

Rivera E, et al. Phase I and pharmacokinetic study of ABI-007, a

cremophor-free, protein-stabilized, nanoparticle formulation of

paclitaxel. Clin Cancer Res. 2002;8:1038–44.

74. Juan O, Rocher A, Sánchez A, Sánchez JJ, Alberola V. Influence

of the cyto-protective agent amifostine on the pharmacokinetics

of low-dose paclitaxel. Chemotherapy. 2005;51:200–5.

75. Kendra KL, Plummer R, Salgia R, O’Brien MER, Paul EM,

Suttle AB, et al. A multicenter phase I study of pazopanib in

combination with paclitaxel in first-line treatment of patients

with advanced solid tumors. Mol Cancer Ther. 2015;14:461–9.

76. Maier-Lenz H, Hauns B, Haering B, Koetting J, Mross K, Unger

C, et al. Phase I study of paclitaxel administered as a 1-hour

infusion: toxicity and pharmacokinetics. Semin Oncol.

1997;24:19-16–9.

77. Martin LP, Kozloff MF, Herbst RS, Samuel TA, Kim S, Ros-

brook B, et al. Phase I study of axitinib combined with pacli-

taxel, docetaxel or capecitabine in patients with advanced solid

tumours. Br J Cancer. 2012;107:1268–76.

78. Miller TP, Chase EM, Dorr R, Dalton WS, Lam KS, Salmon SE.

A phase I/II trial of paclitaxel for non-Hodgkin’s lymphoma

followed by paclitaxel plus quinine in drug-resistant disease.

Anticancer Drugs. 1998;9:135–40.

79. Minami H, Sasaki Y, Watanabe T, Ogawa M. Pharmacodynamic

modeling of the entire time course of leukopenia after a 3-hour

infusion of paclitaxel. Jpn J Cancer Res. 2001;92:231–8.
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