Skip to main content
Log in

Renal Drug Transporters and Drug Interactions

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug–drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate–inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kell DB, Dobson PD, Bilsland E, Oliver SG. The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today. 2013;18(5–6):218–39.

    Article  CAS  PubMed  Google Scholar 

  2. Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov Today. 2012;17(15–16):905–12.

    Article  CAS  PubMed  Google Scholar 

  3. Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993;73(4):765–96.

    CAS  PubMed  Google Scholar 

  4. Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–35.

    Article  CAS  PubMed  Google Scholar 

  5. Motohashi H, Inui K-I. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med. 2013;34(2–3):661–8.

    Article  CAS  PubMed  Google Scholar 

  6. Robertson EE, Rankin GO. Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther. 2006;109(3):399–412.

    Article  CAS  PubMed  Google Scholar 

  7. Masereeuw R, Russel FGM. Therapeutic implications of renal anionic drug transporters. Pharmacol Ther. 2010;126(2):200–16.

    Article  CAS  PubMed  Google Scholar 

  8. El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55.

    Article  CAS  PubMed  Google Scholar 

  9. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. AJP Renal Physiol. 2006;290(2):F251–61.

    Article  CAS  Google Scholar 

  10. Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. AJP Renal Physiol. 1999;276(1):F122–8.

    CAS  Google Scholar 

  11. Rizwan A, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24(3):450–70.

    Article  CAS  PubMed  Google Scholar 

  12. Russel FGM, Masereeuw R, van Aubel RAMH. Molecular aspects of renal anionic drug transport. Annu Rev Physiol. 2002;64(1):563–94.

    Article  CAS  PubMed  Google Scholar 

  13. Jutabha P, Anzai N, Wempe MF, Wakui S, Endou H, Sakurai H. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1302–11.

    Article  CAS  PubMed  Google Scholar 

  14. Aslamkhan A, Han YH, Walden R, Sweet DH, Pritchard JB. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. AJP Renal Physiol. 2003;285(4):F775–83.

    Article  CAS  Google Scholar 

  15. Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526–9.

    Article  CAS  PubMed  Google Scholar 

  16. Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sweet DH, Wolff NA, Pritchard JB. Expression cloning and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J Biol Chem. 1997;272(48):30088–95.

    Article  CAS  PubMed  Google Scholar 

  18. Sweet DH, Chan LMS, Walden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. AJP Renal Physiol. 2003;284(4):F763–9.

    Article  CAS  Google Scholar 

  19. Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505.

    Article  CAS  PubMed  Google Scholar 

  20. Cha SH, Sekine T, Ji Fukushima, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86.

    CAS  PubMed  Google Scholar 

  21. Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br J Pharmacol. 2002;135(2):555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nozaki Y, Kusuhara H, Endou H, Sugiyama Y. Quantitative evaluation of the drug–drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporters and reduced folate carrier. J Pharmacol Exp Ther. 2004;309(1):226–34.

    Article  CAS  PubMed  Google Scholar 

  23. Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9.

    Article  CAS  PubMed  Google Scholar 

  24. Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54.

    CAS  PubMed  Google Scholar 

  25. Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70.

    Article  CAS  PubMed  Google Scholar 

  26. Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, et al. Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol. 2004;499(1–2):45–51.

    Article  CAS  PubMed  Google Scholar 

  27. Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46.

    Article  CAS  PubMed  Google Scholar 

  28. Ueo H, Motohashi H, Katsura T, Inui KI. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13.

    Article  CAS  PubMed  Google Scholar 

  29. Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42.

    Article  CAS  PubMed  Google Scholar 

  30. VanWert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. AJP Renal Physiol. 2007;293(4):F1332–41.

    Article  CAS  Google Scholar 

  31. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71.

    Article  CAS  PubMed  Google Scholar 

  32. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui KI. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5.

    Article  CAS  PubMed  Google Scholar 

  33. Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.

    Article  CAS  PubMed  Google Scholar 

  35. Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158.

    Article  CAS  PubMed  Google Scholar 

  36. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu XY, Bleasby K, Yabut J, Cai X, Chan GH, Hafey MJ, et al. Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance p-glycoprotein. J Pharmacol Exp Ther. 2007;321(2):673–83.

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi H, Sugie M, Okada M, Mikkaichi T, Toyohara T, Abe T, et al. Transport of Estrone 3-sulfate mediated by organic anion transporter OATP4C1: Estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab Pharmacokinet. 2010;25(3):314–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos. 2012;40(3):617–24.

    Article  CAS  PubMed  Google Scholar 

  40. Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 2010;33(3):498–503.

    Article  CAS  PubMed  Google Scholar 

  41. Leier I, Hummel-Eisenbeiss J, Cui Y, Keppler D. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57(4):1636–42.

    Article  CAS  PubMed  Google Scholar 

  42. Huls M, Brown CDA, Windass AS, Sayer R, van den Heuvel JJMW, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2007;73(2):220–5.

    Article  PubMed  CAS  Google Scholar 

  43. Smeets PHE, Van Aubel RAMH, Wouterse AC, van den Heuvel JJMW, Russel FGM. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol. 2004;15(11):2828–35.

    Article  CAS  PubMed  Google Scholar 

  44. Van Aubel RAMH, Peters JGP, Masereeuw R, Van Os CH, Russel FGM. Multidrug resistance protein Mrp2 mediates ATP-dependent transport of classic renal organic anion p-aminohippurate. AJP Renal Physiol. 2000;279(4):F713–7.

    Google Scholar 

  45. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.

    Article  CAS  PubMed  Google Scholar 

  46. Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol. 2000;57(4):760–8.

    CAS  PubMed  Google Scholar 

  47. Keppler D, Cui Y, König J, Leier I, Nies A. Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul. 1999;39(1):237–46.

    Article  CAS  PubMed  Google Scholar 

  48. El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007;320(1):229–35.

    Article  CAS  PubMed  Google Scholar 

  49. Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA. 2003;100(16):9244–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. AJP Gastrointes Liver Physiol. 2006;290(4):G640–9.

    Article  CAS  Google Scholar 

  51. Russel FGM, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29(4):200–7.

    Article  CAS  PubMed  Google Scholar 

  52. Van Aubel RAMH, Smeets PHE, Peters JGP, Bindels RJM, Russel FGM. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13(3):595–603.

    PubMed  Google Scholar 

  53. Chen ZS, Lee K, Walther S, Raftogianis RB, Kuwano M, Zeng H, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002;62(11):3144–50.

    CAS  PubMed  Google Scholar 

  54. Ci L, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol. 2007;71(6):1591–7.

    Article  CAS  PubMed  Google Scholar 

  55. Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007;71(2):619–27.

    Article  CAS  PubMed  Google Scholar 

  56. Reid G, Wielinga P, Zelcer N, de Haas M, van Deemter L, Wijnholds J, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094–103.

    Article  CAS  PubMed  Google Scholar 

  57. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333–40.

    Article  CAS  PubMed  Google Scholar 

  58. Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1091–7.

    Article  CAS  PubMed  Google Scholar 

  59. Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos. 2007;35(10):1873–9.

    Article  CAS  PubMed  Google Scholar 

  60. Mizuno N, Takahashi T, Kusuhara H, Schuetz JD, Niwa T, Sugiyama Y. Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug Metab Dispos. 2007;35(11):2045–52.

    Article  CAS  PubMed  Google Scholar 

  61. Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, et al. Transport of methotrexate, methotrexate polyglutamates, and 17{beta}-estradiol 17-({beta}-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003;63(14):4048–54.

    CAS  PubMed  Google Scholar 

  62. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–25.

    Article  CAS  PubMed  Google Scholar 

  63. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 2005;7(1):E118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007;35(7):1165–73.

    Article  CAS  PubMed  Google Scholar 

  65. van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53.

    Article  PubMed  CAS  Google Scholar 

  66. Velamakanni S, Wei S, Janvilisri T, van Veen H. ABCG transporters: structure, substrate specificities and physiological roles : a brief overview. J Bioenerg Biomembr. 2007;39(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  67. Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I, et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics. 2005;15(5):277–85.

    Article  CAS  PubMed  Google Scholar 

  68. Naesens M, Kuypers DRJ, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84.

    Article  CAS  PubMed  Google Scholar 

  69. Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.

    Article  CAS  PubMed  Google Scholar 

  70. Rau T, Erney B, Gores R, Eschenhagen T, Beck J, Langer T. High-dose methotrexate in pediatric acute lymphoblastic leukemia: Impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  71. de Jong FA, Scott-Horton TJ, Kroetz DL, McLeod HL, Friberg LE, Mathijssen RH, et al. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin Pharmacol Ther. 2007;81(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  72. Anderson PLP, Lamba J, Aquilante CLP, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47(3):298–303.

    Article  CAS  PubMed  Google Scholar 

  74. Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos. 2006;34(4):690–5.

    Article  CAS  PubMed  Google Scholar 

  75. Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–24.

    Article  CAS  PubMed  Google Scholar 

  76. Kim K-A, Joo H-J, Park J-Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol. 2011;67(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  77. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009;1(5):5ra11.

  78. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, et al. ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides, Nucleotides Nucleic Acids. 2011;30(12):1117–28.

    Article  CAS  PubMed  Google Scholar 

  79. Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Takada Y, et al. Identification of ABCG2 dysfunction as a major factor contributing to gout. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1098–104.

    Article  CAS  PubMed  Google Scholar 

  80. Nishimura M, Koeda A, Morikawa H, Satoh T, Narimatsu S, Naito S. Comparison of inducibility of multidrug resistance (MDR)1, multidrug resistance-associated protein (MRP)1, and MRP2 mRNAs by prototypical microsomal enzyme inducers in primary cultures of human and cynomolgus monkey hepatocytes. Biol Pharm Bull. 2008;31(11):2068–72.

    Article  CAS  PubMed  Google Scholar 

  81. Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  82. Hagos Y, Krick W, Braulke T, Mühlhausen C, Burckhardt G, Burckhardt B. Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflügers Arch. 2008;457(1):223–31.

    Article  CAS  PubMed  Google Scholar 

  83. Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–9.

    Article  CAS  PubMed  Google Scholar 

  84. Vormfelde SV, Schirmer M, Hagos Y, Toliat MR, Engelhardt S, Meineke I, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol. 2006;62(3):323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shin HJ, Takeda M, Enomoto A, Fujimura M, Miyazaki H, Anzai N, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology. 2011;16(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  86. Endou H, Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):578–84.

    Article  CAS  PubMed  Google Scholar 

  87. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Ho Cha S, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52.

    CAS  PubMed  Google Scholar 

  88. Iwanaga T, Kobayashi D, Hirayama M, Maeda T, Tamai I. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos. 2005;33(12):1791–5.

    CAS  PubMed  Google Scholar 

  89. Miura D, Anzai N, Jutabha P, Chanluang S, He X, Fukutomi T, et al. Human urate transporter 1 (hURAT1) mediates the transport of orotate. J Physiol Sci. 2011;61(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  90. Komatsuda A, Iwamoto K, Wakui H, Sawada KI, Yamaguchi A. Analysis of mutations in the urate transporter 1 (URAT1) gene of Japanese patients with hypouricemia in northern Japan and review of the literature. Ren Fail. 2006;28(3):223–7.

    Article  CAS  PubMed  Google Scholar 

  91. Shima Y, Teruya K, Ohta H. Association between intronic SNP in urate-anion exchanger gene, SLC22A12, and serum uric acid levels in Japanese. Life Sci. 2006;79(23):2234–7.

    Article  CAS  PubMed  Google Scholar 

  92. Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007;19(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  93. Jutabha P, Kanai Y, Hosoyamada M, Chairoungdua A, Kim DK, Iribe Y, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003;278(30):27930–8.

    Article  CAS  PubMed  Google Scholar 

  94. Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters. Drug Metab Dispos. 2006;34(4):547–55.

    Article  CAS  PubMed  Google Scholar 

  95. Temple CS, Boyd CAR. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochimica et Biophysica Acta (BBA) Biomembr. 1998;1373(1):277–81.

    Article  CAS  Google Scholar 

  96. Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246(2):470–5.

    Article  CAS  PubMed  Google Scholar 

  97. Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem. 1995;270(43):25672–7.

    Article  CAS  PubMed  Google Scholar 

  98. Tomita Y, Katsura T, Okano T, Inui K, Hori R. Transport mechanisms of bestatin in rabbit intestinal brush-border membranes: role of H+/dipeptide cotransport system. J Pharmacol Exp Ther. 1990;252(2):859–62.

    CAS  PubMed  Google Scholar 

  99. Sala-Rabanal M, Loo DDF, Hirayama BA, Wright EM. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. AJP Renal Physiol. 2008;294(6):F1422–32.

    Article  CAS  Google Scholar 

  100. Urakami Y, Akazawa M, Saito H, Okuda M, Inui KI. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002;13(7):1703–10.

    Article  CAS  PubMed  Google Scholar 

  101. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273(26):15971–9.

    Article  CAS  PubMed  Google Scholar 

  102. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007;24(7):1227–51.

    Article  CAS  PubMed  Google Scholar 

  103. Ciarimboli G. Organic cation transporters. Xenobiotica. 2008;38(7–8):936–71.

    Article  CAS  PubMed  Google Scholar 

  104. Schmitt BM, Koepsell H. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J Biol Chem. 2005;280(26):24481–90.

    Article  CAS  PubMed  Google Scholar 

  105. Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50(8):941–52.

    Article  CAS  PubMed  Google Scholar 

  106. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.

    CAS  PubMed  Google Scholar 

  107. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81.

    Article  CAS  PubMed  Google Scholar 

  108. Gründemann D, Köster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, et al. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998;273(47):30915–20.

    Article  PubMed  Google Scholar 

  109. Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol. 2005;33(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  110. Urakami Y, Kimura N, Okuda M, Inui KI. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21(6):976–81.

    Article  CAS  PubMed  Google Scholar 

  111. Dudley AJ, Bleasby K, Brown CD. The organic cation transporter OCT2 mediates the uptake of ß-adrenoceptor antagonists across the apical membrane of renal LLC-PK1 cell monolayers. Br J Pharmacol. 2000;131(1):71–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315(3):1288–97.

    Article  CAS  PubMed  Google Scholar 

  113. Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos. 2008;36(8):1616–23.

    Article  CAS  PubMed  Google Scholar 

  114. Sato T, Masuda S, Yonezawa A, Tanihara Y, Katsura T, Inui K. Transcellular transport of organic cations in double-transfected MDCK cells expressing human organic cation transporters hOCT1/hMATE1 and hOCT2/hMATE1. Biochem Pharmacol. 2008;76(7):894–903.

    Article  CAS  PubMed  Google Scholar 

  115. Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E, et al. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther. 2005;315(1):337–45.

    Article  CAS  PubMed  Google Scholar 

  116. Ciarimboli G, Lancaster CS, Schlatter E, Franke RM, Sprowl JA, Pavenstädt H, et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res. 2012;18(4):1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lepist EI, Zhang X, Hao J, Huang J, Kosaka A, Birkus G, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 2014;86(2):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koteff J, Borland J, Chen S, Song I, Peppercorn A, Koshiba T, et al. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol. 2013;75(4):990–6.

    Article  CAS  PubMed  Google Scholar 

  119. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY, Shon JH, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–62.

    Article  CAS  PubMed  Google Scholar 

  120. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M, et al. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 2012;16(6):843–51.

    Article  CAS  PubMed  Google Scholar 

  122. Gai Z, Visentin M, Hiller C, Krajnc E, Li T, Zhen J, et al. Organic cation transporter 2 overexpression may confer an increased risk of gentamicin-induced nephrotoxicity. Antimicrob Agents Chemother. 2016;60(9):5573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18(7):637–45.

    Article  CAS  PubMed  Google Scholar 

  124. Lazar A, Zimmermann T, Koch W, Gründemann D, Schömig A, Kastrati A, et al. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin Exp Hypertens. 2006;28(7):645–53.

    Article  CAS  PubMed  Google Scholar 

  125. Tsuruoka S, Ioka T, Wakaumi M, Sakamoto KI, Ookami H, Fujimura A. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther. 2006;79(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  126. Shiga T, Hashiguchi M, Urae A, Kasanuki H, Rikihisa T. Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin Pharmacol Ther. 2000;67(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  127. Somogyi A, McLean A, Heinzow B. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur J Clin Pharmacol. 1983;25(3):339–45.

    Article  CAS  PubMed  Google Scholar 

  128. Bauer LA, Black DJ, Lill JS, Garrison J, Raisys VA, Hooton TM. Levofloxacin and ciprofloxacin decrease procainamide and n-acetylprocainamide renal clearances. Antimicrob Agents Chemother. 2005;49(4):1649–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Umehara KI, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica. 2008;38(9):1203–18.

    Article  CAS  PubMed  Google Scholar 

  130. Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.

    Article  PubMed  Google Scholar 

  131. Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica. 2008;38(7–8):1107–18.

    Article  CAS  PubMed  Google Scholar 

  132. Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75(9):1689–96.

    Article  CAS  PubMed  Google Scholar 

  133. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA. 2005;102(50):17923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui KI. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.

    Article  CAS  PubMed  Google Scholar 

  135. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27(11):587–93.

    Article  CAS  PubMed  Google Scholar 

  136. Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, et al. Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol. 2011;43(6):913–8.

    Article  CAS  PubMed  Google Scholar 

  137. Gluck S, Nelson R. The role of the V-ATPase in renal epithelial H+ transport. J Exp Biol. 1992;172(1):205–18.

    CAS  PubMed  Google Scholar 

  138. Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84(3):987–1049.

    Article  CAS  PubMed  Google Scholar 

  139. Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol. 2010;298(4):F997–1005.

    Article  CAS  PubMed  Google Scholar 

  140. Ohta KY, Imamura Y, Okudaira N, Atsumi R, Inoue K, Yuasa H. Functional characterization of multidrug and toxin extrusion protein 1 as a facilitative transporter for fluoroquinolones. J Pharmacol Exp Ther. 2009;328(2):628–34.

    Article  CAS  PubMed  Google Scholar 

  141. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127–35.

    Article  CAS  PubMed  Google Scholar 

  142. Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006;34(11):1868–74.

    Article  CAS  PubMed  Google Scholar 

  143. Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui KI. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006;319(2):879–86.

    Article  CAS  PubMed  Google Scholar 

  144. Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui KI. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75(6):1280–6.

    Article  CAS  PubMed  Google Scholar 

  145. Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.

    Article  CAS  PubMed  Google Scholar 

  146. Yonezawa A, Inui K-I. Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol. 2011;81(5):563–8.

    Article  CAS  PubMed  Google Scholar 

  147. Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K-I. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7.

    Article  CAS  PubMed  Google Scholar 

  149. Li Q, Guo D, Dong Z, Zhang W, Zhang L, Huang S-M, et al. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs). Toxicol Appl Pharmacol. 2013;273(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  150. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  151. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101–19.

    Article  CAS  PubMed  Google Scholar 

  152. Abel S, Nichols D, Brearley C, Eve M. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2001;49(1):64–71.

    Article  Google Scholar 

  153. Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23(5):545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  155. Martin DE, Shen J, Griener J, Raasch R, Patterson JH, Cascio W. Effects of ofloxacin on the pharmacokinetics and pharmacodynamics of procainamide. J Clin Pharmacol. 1996;36(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  156. Takubo T, Kato T, Kinami J, Hanada K, Ogata H. Effect of trimethoprim on the renal clearance of lamivudine in rats. J Pharm Pharmacol. 2000;52(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  157. Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine II. Effect of trimethoprim on emtricitabine excretion: In vitro and in vivo studies. J Pharm Sci. 2008;97(12):5411–20.

    Article  CAS  PubMed  Google Scholar 

  158. van Acker BAC, Koopman MG, Arisz L, Koomen GCM, de Waart DR. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet. 1992;340(8831):1326–9.

    Article  PubMed  Google Scholar 

  159. Opravil M, Keusch G, Lüthy R. Pyrimethamine inhibits renal secretion of creatinine. Antimicrob Agents Chemother. 1993;37(5):1056–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, et al. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J Hum Genet. 2009;54(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  162. Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, et al. A common 5[prime]-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chung J-Y, Cho SK, Kim TH, Kim KH, Jang GH, Kim CO, et al. Functional characterization of MATE2-K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet Genomics. 2013;23(7):365–73.

    Article  CAS  PubMed  Google Scholar 

  164. Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  165. Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol. 2012;166(3):1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7–8):802–32.

    Article  CAS  PubMed  Google Scholar 

  167. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37.

    Article  PubMed  CAS  Google Scholar 

  168. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport : a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation. 1999;99(4):552–7.

    Article  CAS  PubMed  Google Scholar 

  169. Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21(9):1686–91.

    Article  CAS  PubMed  Google Scholar 

  170. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005;33(4):537–46.

    Article  CAS  PubMed  Google Scholar 

  171. Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res. 2003;20(11):1794–803.

    Article  CAS  PubMed  Google Scholar 

  172. Katoh M, Suzuyama N, Takeuchi T, Yoshitomi S, Asahi S, Yokoi T. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J Pharm Sci. 2006;95(12):2673–83.

    Article  CAS  PubMed  Google Scholar 

  173. Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Investig. 1996;97(11):2517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sikri V, Pal D, Jain R, Kalyani D, Mitra AK. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux. Am J Ther. 2004;11(6):433–42.

    Article  PubMed  Google Scholar 

  175. Kim W, Benet L. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004;21(7):1284–93.

    Article  CAS  PubMed  Google Scholar 

  176. Lee CGL, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang KT, Ambudkar SV, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry. 1998;37(11):3594–601.

    Article  CAS  PubMed  Google Scholar 

  177. Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55(8):1364–75.

    Article  PubMed  CAS  Google Scholar 

  178. Matsson P, Pedersen J, Norinder U, Bergström C, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26(8):1816–31.

    Article  CAS  PubMed  Google Scholar 

  179. Cornwell MM, Pastan I, Gottesman MM. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem. 1987;262(5):2166–70.

    CAS  PubMed  Google Scholar 

  180. Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol. 1999;56(2):383–9.

    CAS  PubMed  Google Scholar 

  181. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16(3):408–14.

    Article  CAS  PubMed  Google Scholar 

  182. Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999;22(12):1355–9.

    Article  CAS  PubMed  Google Scholar 

  183. Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61(5):538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shiraki N, Hamada A, Yasuda K, Fujii J, Arimori K, Nakano M. Inhibitory effect of human immunodeficiency virus protease inhibitors on multidrug resistance transporter P-glycoproteins. Biol Pharm Bull. 2000;23(12):1528–31.

    Article  CAS  PubMed  Google Scholar 

  185. Pawarode A, Shukla S, Minderman H, Fricke S, Pinder E, O’Loughlin K, et al. Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother Pharmacol. 2007;60(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  186. Srinivas RV, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother. 1998;42(12):3157–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73(10):1573–81.

    Article  CAS  PubMed  Google Scholar 

  188. Wang EJ, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001;14(12):1596–603.

    Article  CAS  PubMed  Google Scholar 

  189. Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG. Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002;303(1):323–32.

    Article  CAS  PubMed  Google Scholar 

  190. Frost CE, Byon W, Song Y, Wang J, Schuster AE, Boyd RA, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br J Clin Pharmacol. 2015;79(5):838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gurley BJ, Swain A, Williams DK, Barone G, Battu SK. Gauging the clinical significance of P-glycoprotein-mediated herb–drug interactions: comparative effects of St. John’s wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics. Mol Nutr Food Res. 2008;52(7):772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Haslam IS, Jones K, Coleman T, Simmons NL. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol. 2008;76(7):850–61.

    Article  CAS  PubMed  Google Scholar 

  193. Haslam IS, Jones K, Coleman T, Simmons NL. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br J Pharmacol. 2008;154(1):246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Robieux I, Dorian P, Klein J, Chung D, Zborowska-Sluis D, Ogilvie R, et al. The effects of cardiac transplantation and cyclosporine therapy on digoxin pharmacokinetics. J Clin Pharmacol. 1992;32(4):338–43.

    Article  CAS  PubMed  Google Scholar 

  195. Rengelshausen J, Göggelmann C, Burhenne J, Riedel KD, Ludwig J, Weiss J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol. 2003;56(1):32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  197. Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  198. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94(8):4028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet. 2004;43(9):553–76.

    Article  CAS  PubMed  Google Scholar 

  200. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  201. Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, et al. ABCB1 Genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol. 2005;16(5):1501–11.

    Article  CAS  PubMed  Google Scholar 

  202. Tamai I, Yabuuchi H, Ji Nezu, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  203. Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2007;83(3):416–21.

    Article  PubMed  CAS  Google Scholar 

  204. Yabuuchi H, Tamai I, Ji Nezu, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289(2):768–73.

    CAS  PubMed  Google Scholar 

  205. Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA. 2005;102(14):5256–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Noble CL, Nimmo ER, Drummond H, Ho GT, Tenesa A, Smith L, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in crohn’s disease. Gastroenterology. 2005;129(6):1854–64.

    Article  CAS  PubMed  Google Scholar 

  207. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003;35(4):341–8.

    Article  CAS  PubMed  Google Scholar 

  208. Tamai I, Ohashi R, Ji Nezu, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273(32):20378–82.

    Article  CAS  PubMed  Google Scholar 

  209. Tamai I, China K, Sai Y, Kobayashi D, Ji Nezu, Kawahara E, et al. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001;1512(2):273–84.

    Article  CAS  PubMed  Google Scholar 

  210. Grube M, Meyer zu Schwabedissen HEU, Prager D, Haney J, Moritz KU, Meissner K, et al. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation. 2006;113(8):1114–22.

    Article  PubMed  Google Scholar 

  211. Ohashi R, Tamai I, Nezu JI, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001;59(2):358–66.

    CAS  PubMed  Google Scholar 

  212. Ohnishi S, Okamura N, Sakamoto S, Hasegawa H, Norikura R, Kanaoka E, et al. Role of Na+/l-carnitine transporter (OCTN2) in renal handling of pivaloylcarnitine and valproylcarnitine formed during pivalic acid-containing prodrugs and valproic acid treatment. Drug Metab Pharmacokinet. 2008;23(4):293–303.

    Article  CAS  PubMed  Google Scholar 

  213. Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, et al. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem. 2000;275(3):1699–707.

    Article  CAS  PubMed  Google Scholar 

  214. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291(2):778–84.

    CAS  PubMed  Google Scholar 

  215. Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont J-P, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol. 1991;30(5):709–16.

    Article  CAS  PubMed  Google Scholar 

  216. Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, et al. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency [published erratum appears in Hum Mol Genet 1999 May; 8(5):943]. Hum Mol Genet. 1999;8(4):655–60.

    Article  CAS  PubMed  Google Scholar 

  217. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299–306.

    Article  CAS  PubMed  Google Scholar 

  218. Damaraju VL, Elwi AN, Hunter C, Carpenter P, Santos C, Barron GM, et al. Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney. AJP Renal Physiol. 2007;293(1):F200–11.

    Article  CAS  Google Scholar 

  219. Young JD, Yao SY, Sun L, Cass CE, Baldwin SA. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica. 2008;38(7–8):995–1021.

    Article  CAS  PubMed  Google Scholar 

  220. Engel K, Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol. 2005;68(5):1397–407.

    Article  CAS  PubMed  Google Scholar 

  221. Itagaki S, Ganapathy V, Ho HTB, Zhou M, Babu E, Wang J. Electrophysiological characterization of the polyspecific organic cation transporter plasma membrane monoamine transporter. Drug Metab Dispos. 2012;6:2012.

    Google Scholar 

  222. Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010;335(3):743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem. 2004;279(48):50042–9.

    Article  CAS  PubMed  Google Scholar 

  224. Bainbridge FA, Beddard AP. Secretion by the renal tubules in the frog. Biochem J. 1906;1(6–7):255–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rammelkamp CH, Bradley SE. Excretion of penicillin in man. Proc Soc Exper Biol Med. 1943;53:30–2.

    Article  CAS  Google Scholar 

  226. Burnell JM, Kirby WMM. Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Investig. 1951;30(7):697–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Robbins N, Koch SE, Tranter M, Rubinstein J. The history and future of probenecid. Cardiovasc Toxicol. 2012;12(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  228. Lepist E-I, Ray AS. Renal drug–drug interactions: what we have learned and where we are going. Expert Opin Drug Metab Toxicol. 2012;8(4):433–48.

    Article  CAS  PubMed  Google Scholar 

  229. Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opinion Drug Metab Toxicol. 2013;9(3):237–52.

    Article  CAS  Google Scholar 

  230. Guest EJ, Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT, Houston JB, Galetin A. Assessment of algorithms for predicting drug–drug interactions via inhibition mechanisms: comparison of dynamic and static models. Br J Clin Pharmacol. 2011;71(1):72–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nomura M, Motohashi H, Sekine H, Katsura T, Inui K-I. Developmental expression of renal organic anion transporters in rat kidney and its effect on renal secretion of phenolsulfonphthalein. Am J Physiol Renal Physiol. 2012;302(12):F1640–9.

    Article  CAS  PubMed  Google Scholar 

  232. Chen N, Aleksa K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol. 2006;21(2):160–8.

    Article  PubMed  Google Scholar 

  233. Gaudry SE, Sitar DS, Smyth DD, McKenzie JK, Aoki FY. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther. 1993;54(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  234. Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab Dispos. 2008;36(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  235. Komazawa H, Yamaguchi H, Hidaka K, Ogura J, Kobayashi M, Iseki K. Renal uptake of substrates for organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2 is altered in rats with adenine-induced chronic renal failure. J Pharm Sci. 2013;102(3):1086–94.

    Article  CAS  PubMed  Google Scholar 

  236. Gaowa A, Motohashi H, Katsura T, Inui K-I. Effects of metabolic acidosis on expression levels of renal drug transporters. Pharm Res. 2011;28(5):1023–30.

    Article  CAS  PubMed  Google Scholar 

  237. Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol. 2012;26(10):407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Brandoni A, Villar SR, Picena JC, Anzai N, Endou H, Torres AM. Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology. 2006;43(5):1092–100.

    Article  CAS  PubMed  Google Scholar 

  239. Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KDR, et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology. 2001;121(6):1473–84.

    Article  CAS  PubMed  Google Scholar 

  240. Tanaka Y, Kobayashi Y, Gabazza EC, Higuchi K, Kamisako T, Kuroda M, et al. Increased renal expression of bilirubin glucuronide transporters in a rat model of obstructive jaundice. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G656–62.

    Article  CAS  PubMed  Google Scholar 

  241. Kurata T, Muraki Y, Mizutani H, Iwamoto T, Okuda M. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet. 2010;25(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  242. Grover B, Auberger C, Sarangarajan R, Cacini W. Functional impairment of renal organic cation transport in experimental diabetes. Pharmacol Toxicol. 2002;90(4):181–6.

    Article  CAS  PubMed  Google Scholar 

  243. Grover B, Buckley D, Buckley AR, Cacini W. Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther. 2004;308(3):949–56.

    Article  CAS  PubMed  Google Scholar 

  244. Titier K, Lagrange F, Pehourcq F, Moore N, Molimard M. Pharmacokinetic interaction between high-dose methotrexate and oxacillin. Ther Drug Monit. 2002;24(4):570–2.

    Article  PubMed  Google Scholar 

  245. Stage TB, Brøsen K, Christensen MMH. A comprehensive review of drug–drug interactions with metformin. Clin Pharmacokinet. 2015;54(8):811–24.

    Article  CAS  PubMed  Google Scholar 

  246. Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc. 2014;17(4 Suppl 3):19584.

    PubMed  PubMed Central  Google Scholar 

  247. Arun KP, Meda VS, Kucherlapati VSPR, Dubala A, Deepalakshmi M, Anand VijayaKumar PR, et al. Pharmacokinetic drug interaction between gemfibrozil and sitagliptin in healthy Indian male volunteers. Eur J Clin Pharmacol. 2012;68(5):709–14.

    Article  CAS  Google Scholar 

  248. Tanihara Y, Masuda S, Katsura T, Inui K-I. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol. 2009;78(9):1263–71.

    Article  CAS  PubMed  Google Scholar 

  249. Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R, et al. Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest. 2009;89(5):513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Morelle JL, Labriola L, Lambert M, Cosyns JP, Jouret F, Jadoul M. Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: a case of drug–drug interaction. Clin Nephrol. 2009;71(5):567–70.

    Article  CAS  PubMed  Google Scholar 

  251. Kohler JJ, Hosseini SH, Green E, Abuin A, Ludaway T, Russ R, et al. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters. Lab Invest. 2011;91(6):852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Rodríguez-Nóvoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009;48(11):e108–16.

    Article  PubMed  CAS  Google Scholar 

  253. Izzedine H, Hulot J-S, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194(11):1481–91.

    Article  CAS  PubMed  Google Scholar 

  254. Pushpakom SP, Liptrott NJ, Rodríguez-Nóvoa S, Labarga P, Soriano V, Albalater M, et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, Hayashida T, et al. Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin Infect Dis. 2012;55(11):1558–67.

    Article  CAS  PubMed  Google Scholar 

  256. Tschuppert Y, Buclin T, Rothuizen LE, Decosterd LA, Galleyrand J, Gaud C, et al. Effect of dronedarone on renal function in healthy subjects. Br J Clin Pharmacol. 2007;64(6):785–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Huang SM, Zhang L, Giacomini KM. The International Transporter Consortium: a collaborative group of scientists from academia, industry, and the FDA. Clin Pharmacol Ther. 2009;87(1):32–6.

    Article  Google Scholar 

  258. Consortium IT. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  Google Scholar 

  259. Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, et al. Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):52–63.

    Article  CAS  PubMed  Google Scholar 

  260. European Medicines Agency (EMA). Guideline on the investigation of drug interactions (CPMP/EWP/560/95/Rev. 1 Corr. 2, 2012). EMA, 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf.

  261. US Department of Health and Human Services, FDA. Guidance for Industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. US FDA; February 2012.

  262. Feng B, LaPerle JL, Chang G, Varma MV. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Expert Opin Drug Metabol Toxicol. 2010;6(8):939–52.

    Article  CAS  Google Scholar 

  263. Ye J, Liu Q, Wang C, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12.

    Article  CAS  PubMed  Google Scholar 

  264. Laskin OL, de Miranda P, King DH, Page DA, Longstreth JA, Rocco L, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother. 1982;21(5):804–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Griffith RS, Black HR, Brier GL, Wolny JD. Effect of probenecid on the blood levels and urinary excretion of cefamandole. Antimicrob Agents Chemother. 1977;11(5):809–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ko H, Cathcart KS, Griffith DL, Peters GR, Adams WJ. Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob Agents Chemother. 1989;33(3):356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Vlasses PH, Holbrook AM, Schrogie JJ, Rogers JD, Ferguson RK, Abrams WB. Effect of orally administered probenecid on the pharmacokinetics of cefoxitin. Antimicrob Agents Chemother. 1980;17(5):847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Stoeckel K, Trueb V, Dubach UC, McNamara PJ. Effect of probenecid on the elimination and protein binding of ceftriaxone. Eur J Clin Pharmacol. 1988;34(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  269. Kagedal M, Nilsson D, Huledal G, Reinholdsson I, Cheng YF, Asenblad N, et al. A study of organic acid transporter mediated pharmacokinetic interaction between NXY-059 and cefuroxime. J Clin Pharmacol. 2007;47(8):1043–8.

    Article  PubMed  CAS  Google Scholar 

  270. Foord RD. Cefuroxime: human pharmacokinetics. Antimicrob Agents Chemother. 1976;9(5):741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Cundy KC, Petty BG, Flaherty J, Fisher PE, Polis MA, Wachsman M, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995;39(6):1247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Barriere SL, Catlin DH, Orlando PL, Noe A, Frost RW. Alteration in the pharmacokinetic disposition of ciprofloxacin by simultaneous administration of azlocillin. Antimicrob Agents Chemother. 1990;34(5):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Jaehde U, Sorgel F, Reiter A, Sigl G, Naber KG, Schunack W. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58(5):532–41.

    Article  CAS  PubMed  Google Scholar 

  274. Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Jaehde U, et al. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol. 2010;69(2):167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kearney BP, Sayre JR, Flaherty JF, Chen SS, Kaul S, Cheng AK. Drug–drug and drug–food interactions between tenofovir disoproxil fumarate and didanosine. J Clin Pharmacol. 2005;45(12):1360–7.

    Article  CAS  PubMed  Google Scholar 

  276. Verbeeck RK, Macdonald JI, Wallace SM, Herman RJ. Effect of probenecid on the formation and elimination kinetics of the sulphate and glucuronide conjugates of diflunisal. Eur J Clin Pharmacol. 1995;47(6):519–23.

    Article  PubMed  Google Scholar 

  277. Inotsume N, Nishimura M, Nakano M, Fujiyama S, Sato T. The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J Clin Pharmacol. 1990;30(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  278. Yasui-Furukori N, Uno T, Sugawara K, Tateishi T. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  279. Liu S, Beringer PM, Hidayat L, Rao AP, Louie S, Burckart GJ, et al. Probenecid, but not cystic fibrosis, alters the total and renal clearance of fexofenadine. J Clin Pharmacol. 2008;48(8):957–65.

    Article  CAS  PubMed  Google Scholar 

  280. Shiba K, Saito A, Shimada J, Hori S, Kaji M, Miyahara T, et al. Renal handling of fleroxacin in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1990;34(1):58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sörgel F. Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol. 2008;66(5):648–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Chennavasin P, Seiwell R, Brater DC, Liang WMM. Pharmacodynamic analysis of the furosemide-probenecid interaction in man. Kidney Int. 1979;16(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  283. Cimoch PJ, Lavelle J, Pollard R, Griffy KG, Wong R, Tarnowski TL, Casserella S, Jung D. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  284. Cutler MJ, Urquhart BL, Velenosi TJ, Meyer zu Schwabedissen HE, Dresser GK, Leake BF, et al. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol. 2012;52(4):530–42.

    Article  CAS  PubMed  Google Scholar 

  285. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(2):121–5.

    Article  CAS  PubMed  Google Scholar 

  286. Kremer JM, Hamilton RA. The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J Rheumatol. 1995;22(11):2072–7.

    CAS  PubMed  Google Scholar 

  287. Aherne GW, Piall E, Marks V, Mould G, White WF. Prolongation and enhancement of serum methotrexate concentrations by probenecid. BMJ. 1978;1(6120):1097–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Gimenez F, Foeillet E, Bourdon O, Weller S, Garret C, Bidault R, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or aciclovir to healthy subjects. Clin Pharmacokinet. 2004;43(10):685–92.

    Article  CAS  PubMed  Google Scholar 

  289. Waller E, Sharanevych M, Yakatan G. The effect of probenecid on nafcillin disposition. J Clin Pharmacol. 1982;22(10):482–9.

    Article  CAS  PubMed  Google Scholar 

  290. van Hecken AM, Tjandramaga TB, Verbesselt R, de Schepper PJ. The influence of diflunisal on the pharmacokinetics of oxazepam. Br J Clin Pharmacol. 1985;20(3):225–34.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Jacob SS, Franklin ME, Dickinson RG, Hooper WD. The effect of diflunisal on the elimination of triamterene in human volunteers. Drug Metab Drug Interact. 2000;16(3):159–71.

    Article  CAS  Google Scholar 

  292. Tjandramaga TB, Mullie A, Verbesselt R, De Schepper PJ, Verbist L. Piperacillin: human pharmacokinetics after intravenous and intramuscular administration. Antimicrob Agents Chemother. 1978;14(6):829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, et al. Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther. 2010.

  294. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance[ast]. Clin Pharmacol Ther. 2003;73(6):538–44.

    Article  CAS  PubMed  Google Scholar 

  295. Itoh T, Ishida M, Onuki Y, Tsuda Y, Shimada H, Yamada H. Stereoselective renal tubular secretion of carbenicillin. Antimicrob Agents Chemother. 1993;37(11):2327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Hill G, Cihlar T, Oo C, Ho ES, Prior K, Wiltshire H, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion—correlation of in vivo and in vitro studies. Drug Metab Dispos. 2002;30(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  297. He G, Massarella J, Ward P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin Pharmacokinet. 1999;37(6):471–84.

    Article  CAS  PubMed  Google Scholar 

  298. Itoh T, Watanabe N, Ishida M, Tsuda Y, Koyano S, Tsunoi T, et al. Stereoselective disposition of sulbenicillin in humans. Antimicrob Agents Chemother. 1998;42(2):325–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Takahara N, Saga T, Inubushi M, Kusuhara H, Seki C, Ito S, et al. Drugs interacting with organic anion transporter-1 affect uptake of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the human kidney: therapeutic drug interaction in Tc-99m-MAG3 diagnosis of renal function and possible application of Tc-99m-MAG3 for drug development. Nucl Med Biol. 2013;40(5):643–50.

    Article  CAS  PubMed  Google Scholar 

  300. Overbosch D, Van Gulpen C, Hermans J, Mattie H. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol. 1988;25(1):51–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, et al. The effect of lopinavir//ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2007;83(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  302. Massarella JW, Nazareno LA, Passe S, Min B. The Effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res. 1996;13(3):449–52.

    Article  CAS  PubMed  Google Scholar 

  303. Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res. 1990;7(4):411–7.

    Article  CAS  PubMed  Google Scholar 

  304. de Miranda P, Good SS, Yarchoan R, Thomas RV, Blum MR, Myers CE, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharm Ther. 1989;46(5):494–9.

    Article  Google Scholar 

  305. Somogyi AA, Hovens CM, Muirhead MR, Bochner F. Renal tubular secretion of amiloride and its inhibition by cimetidine in humans and in an animal model. Drug Metab Dispos. 1989;17(2):190–6.

    CAS  PubMed  Google Scholar 

  306. van Crugten J, Bochner F, Keal J, Somogyi A. Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans Studies with anionic, cationic and zwitterionic drugs. J Pharmacol Exp Ther. 1986;236(2):481–7.

    PubMed  Google Scholar 

  307. Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW. Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Res. 1984;44(8):3632–5.

    CAS  PubMed  Google Scholar 

  308. Srinivas NR, Knupp CA, Batteiger B, Smith RA, Barbhaiya RH. A pharmacokinetic interaction study of didanosine coadministered with trimethoprim and/or sulphamethoxazole in HIV seropositive asymptomatic male patients. Br J Clin Pharmacol. 1996;41(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  309. Pfizer Inc. Product information: Tikosyn (TM), dofetilide capsules. New York: Pfizer Inc; 1999.

    Google Scholar 

  310. Misiak PM, Eldon MA, Toothaker RD, Sedman AJ. Effects of oral cimetidine or ranitidine on the pharmacokinetics of intravenous enoxacin. J Clin Pharmacol. 1993;33(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  311. Jung D, AbdelHameed MH, Hunter J, Teitelbaum P, Dorr A, Griffy K. The pharmacokinetics and safety profile of oral ganciclovir in combination with trimethoprim in HIV- and CMV-seropositive patients. Br J Clin Pharmacol. 1999;47(3):255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Allen A, Bird N, Dixon R, Hickmott F, Pay V, Smith A, et al. Effect of cimetidine on the pharmacokinetics of oral gemifloxacin in healthy volunteers. Clin Drug Investig. 2001;21(7):519–26.

    Article  CAS  Google Scholar 

  313. Moore KHP, Yuen GJ, Raasch RH, Eron JJ, Martin D, Mydlow PK, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole[ast]. Clin Pharmacol Ther. 1996;59(5):550–8.

    Article  CAS  PubMed  Google Scholar 

  314. Sabo JP, Lamson MJ, Leitz G, Yong CL, MacGregor TR. Pharmacokinetics of nevirapine and lamivudine in patients with HIV-1 infection. AAPS Pharm Sci. 2000;2(1):E1.

    Article  CAS  Google Scholar 

  315. Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metab Drug Interact. 2011;19(1):41–8.

    Google Scholar 

  316. Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89(6):837–44.

    Article  CAS  PubMed  Google Scholar 

  317. Cheng Y-F, Strid S, Borgå O, Nilsson D, Wemer J. Active renal secretion of NXY-059, a novel neuroprotectant, is mediated via an organic acid transporter. J Clin Pharmacol. 2007;47(7):909–14.

    Article  CAS  PubMed  Google Scholar 

  318. Somogyi AA, Bochner F, Sallustio BC. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin Pharm Ther. 1992;51(4):379–87.

    Article  CAS  Google Scholar 

  319. Somogyi A, Bochner F. Dose and concentration dependent effect of ranitidine on procainamide disposition and renal clearance in man. Br J Clin Pharmacol. 1984;18(2):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Kosoglou T, Rocci ML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharm Ther. 1988;44(4):467–77.

    Article  CAS  Google Scholar 

  321. Vlasses PK, Kosoglou T, Chase SL, et al. Trimethoprim inhibition of the renal clearance of procainamide and n-acetylprocainamide. Arch Intern Med. 1989;149(6):1350–3.

    Article  CAS  PubMed  Google Scholar 

  322. Hardy BG, Zador IT, Golden L, Lalka D, Schentag JJ. Effect of cimetidine on the pharmacokinetics and pharmacodynamics of quinidine. Am J Cardiol. 1983;52(1):172–5.

    Article  CAS  PubMed  Google Scholar 

  323. Kolb KW, Garnett WR, Small RE, Vetrovec GW, Kline BJ, Fox T. Effect of cimetidine on quinidine clearance. Ther Drug Monit. 1984;6(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  324. Hardy BG, Schentag JJ. Lack of effect of cimetidine on the metabolism of quinidine: effect on renal clearance. Int J Clin Pharmacol Ther Toxicol. 1988;26(8):388–91.

    CAS  PubMed  Google Scholar 

  325. Muirhead M, Bochner F, Somogyi A. Pharmacokinetic drug interactions between triamterene and ranitidine in humans: alterations in renal and hepatic clearances and gastrointestinal absorption. J Pharmacol Exp Ther. 1988;244(2):734–9.

    CAS  PubMed  Google Scholar 

  326. Muirhead MR, Somogyi AA, Rolan PE, Bochner F. Effect of cimetidine on renal and hepatic drug elimination: studies with triamterene. Clin Pharm Ther. 1986;40(4):400–7.

    Article  CAS  Google Scholar 

  327. Faessel HM, Obach RS, Rollema H, Ravva P, Williams KE, Burstein AH. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet. 2010;49(12):799–816. doi:10.2165/11537850-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  328. Fletcher CV, Henry WK, Noormohamed SE, Rhame FS, Balfour HH. The effect of cimetidine and ranitidine administration with zidovudine. Pharmacother J Hum Pharmacol Drug Therapy. 1995;15(6):701–8.

    CAS  Google Scholar 

  329. Chatton JY, Munafo A, Chave JP, Steinhäuslin F, Roch-Ramel F, Glauser MP, Biollaz J. Trimethoprim, alone or in combination with sulphamethoxazole, decreases the renal excretion of zidovudine and its glucuronide. Br J Clin Pharmacol. 1992;34(6):551–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Peytavin G, Gautran C, Otoul C, Cremieux AC, Moulaert B, Delatour F, et al. Evaluation of pharmacokinetic interaction between cetirizine and ritonavir, an HIV-1 protease inhibitor, in healthy male volunteers. Eur J Clin Pharmacol. 2005;61(4):267–73.

    Article  CAS  PubMed  Google Scholar 

  331. Karyekar CS, Eddington ND, Briglia A, Gubbins PO, Dowling TC. Renal interaction between itraconazole and cimetidine. J Clin Pharmacol. 2004;44(8):919–27.

    Article  CAS  PubMed  Google Scholar 

  332. Fenster PE, Powell JR, Graves PE, Conrad KA, Hager WD, Goldman S, et al. Digitoxin-quinidine interaction: pharmacokinetic evaluation. Ann Int Med. 1980;93(5):698.

    Article  CAS  PubMed  Google Scholar 

  333. Garthy M, Sood P, Rollins DE. Digitoxin elimination reduced during quinidine therapy. Ann Int Med. 1981;94(1):35–7.

    Article  Google Scholar 

  334. Zapater P, Reus S, Tello A, Torrús D, Pérez-Mateo M, Horga JF. A prospective study of the clarithromycin–digoxin interaction in elderly patients. J Antimicrob Chemother. 2002;50(4):601–6.

    Article  CAS  PubMed  Google Scholar 

  335. Dorian P, Strauss M, Cardella C, David T, East S, Ogilvie R. Digoxin–cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med. 1988;11(2):108–12.

    CAS  PubMed  Google Scholar 

  336. US Food and Drug Administration. NDA 21–913 dronedarone HCl clinical pharmacology and biopharmaceutics review. FDA; 2009. Retrieved from http://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022425s000_ClinPharm_P1.pdf.

  337. Jalava K-M, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit. 1997;19(6):609–13.

    Article  CAS  PubMed  Google Scholar 

  338. Belz GG, Doering W, Munkes R, Matthews J. Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharm Ther. 1983;33(4):410–7.

    Article  CAS  Google Scholar 

  339. Dahlqvist R, Ejvinsson G, Schenck-Gustafsson K. Effect of quinidine on plasma concentration and renal clearance of digoxin. A clinically important drug interaction. Br J Clin Pharmacol. 1980;9(4):413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Fenster PE, Hager WD, Goodman MM. Digoxin–quinidine–spironolactone interaction. Clin Pharm Ther. 1984;36(1):70–3.

    Article  CAS  Google Scholar 

  341. Schmitt C, Kaeser B, Riek M, Bech N, Kreuzer C. Effect of saquinavir/ritonavir on P-glycoprotein activity in healthy volunteers using digoxin as a probe. Int J Clin Pharmacol Ther. 2010;48(3):192–9.

    Article  CAS  PubMed  Google Scholar 

  342. Waldorff S, Hansen PB, Egeblad H, Berning J, Buch J, Kjasrgard H, et al. Interactions between digoxin and potassium-sparing diuretics. Clin Pharm Ther. 1983;33(4):418–23.

    Article  CAS  Google Scholar 

  343. Stangier J, Su CA, Hendriks MG, van Lier JJ, Sollie FA, Oosterhuis B, et al. The effect of telmisartan on the steady-state pharmacokinetics of digoxin in healthy male volunteers. J Clin Pharmacol. 2000;40(12):1373–9.

    CAS  PubMed  Google Scholar 

  344. Kovarik JM, Rigaudy L, Guerret M, Gerbeau C, Rost K-L. Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther. 1999;66(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  345. Erik Pedersen K, Dorph-Pedersen A, Hvidt S, Anders Klitgaard N, Nielsen-Kudsk F. Digoxin-verapamil interaction. Clin Pharm Ther. 1981;30(3):311–6.

    Article  Google Scholar 

  346. Pedersen KE, Christiansen BD, Kjaer K, Klitgaard NA, Nielsen-Kudsk F. Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clin Pharm Ther. 1983;34(1):8–13.

    Article  CAS  Google Scholar 

  347. Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol. 1992;10(10):1635–42.

    Article  CAS  PubMed  Google Scholar 

  348. Kaukonen K-M, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine[ast]. Clin Pharmacol Ther. 1997;62(5):510–7.

    Article  CAS  PubMed  Google Scholar 

  349. Glube N, Langguth P. Caki-1 cells as a model system for the interaction of renally secreted drugs with OCT3. Nephron Physiol. 2008;108(2):p18–28.

    Article  CAS  PubMed  Google Scholar 

  350. Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E. Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol. 1999;56(1):1–10.

    PubMed  Google Scholar 

  351. Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, et al. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J Pharmacol Sci. 2004;94(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  352. Motohashi H, Uwai Y, Hiramoto K, Okuda M, Inui KI. Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur J Pharmacol. 2004;503(1–3):25–30.

    Article  CAS  PubMed  Google Scholar 

  353. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299(2):620–8.

    CAS  PubMed  Google Scholar 

  354. Umehara K-I, Iwatsubo T, Noguchi K, Kamimura H. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates. Xenobiotica. 2007;37(6):618–34.

    Article  CAS  PubMed  Google Scholar 

  355. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482–92.

    CAS  PubMed  Google Scholar 

  356. Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000;17(12):1456–60.

    Article  CAS  PubMed  Google Scholar 

  357. Ohta KY, Inoue K, Yasujima T, Ishimaru M, Yuasa H. Functional characteristics of two human MATE transporters: kinetics of cimetidine transport and profiles of inhibition by various compounds. J Pharm Pharm Sci Publ Can Soc Pharm Sci Societe canadienne des sciences pharmaceutiques. 2009;12(3):388–96.

    CAS  Google Scholar 

  358. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  360. Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, et al. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem. 2013;56(3):781–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K. J Pharmacol Exp Ther. 2012;341(3):743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, et al. The effect of famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016;55(6):711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, et al. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014;42(4):665–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm M. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  365. Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One. 2011;6(7):e22163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. R. C, Noel-Hudson M-S, Ribes S, Fournier M, Becquemont L, Verstuyft C. Evaluation of the interaction between methotrexate and proton pump inhibitors using human hOAT1 and hOAT3 HEK transfected cells. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva, Switzerland, 2013.

  367. Chioukh R, Noel-Hudson MS, Ribes S, Fournier N, Becquemont L, Verstuyft C. Proton pump inhibitors inhibit methotrexate transport by renal basolateral organic anion transporter hOAT3. Drug Metab Dispos. 2014;42(12):2041–8.

    Article  PubMed  CAS  Google Scholar 

  368. Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, et al. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009;67(1):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Hacker K, Maas R, Kornhuber J, Fromm MF, Zolk O. Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One. 2015;10(9):e0136451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  370. Zheng X, Diao L, Ekins S, Polli JE. Why we should be vigilant: drug cytotoxicity observed with in vitro transporter inhibition studies. Biochem Pharmacol. 2010;80(7):1087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Dahan A, Sabit H, Amidon G. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009;11(2):205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Morrissey KM, Stocker SL, Chen EC, Castro RA, Brett CM, Giacomini KM. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet. 2015;55(4):495–506.

    Article  CAS  Google Scholar 

  373. Sugawara M, Mochizuki T, Takekuma Y, Miyazaki K. Structure–affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim Biophys Acta. 2005;1714(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  374. Breedveld P, Zelcer N, Pluim D, Sönmezer Ö, Tibben MM, Beijnen JH, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles. Cancer Res. 2004;64(16):5804–11.

    Article  CAS  PubMed  Google Scholar 

  375. Poirier A, Cascais AC, Bader U, Portmann R, Brun ME, Walter I, et al. Calibration of in vitro multidrug resistance protein 1 substrate and inhibition assays as a basis to support the prediction of clinically relevant interactions in vivo. Drug Metab Dispos. 2014;42(9):1411–22.

    Article  PubMed  CAS  Google Scholar 

  376. Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos. 2015;43(5):725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Kido Y, Matsson PR, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Liu G, Wen J, Guo D, Wang Z, Hu X, Tang J, et al. The effects of rabeprazole on metformin pharmacokinetics and pharmacodynamics in Chinese healthy volunteers. J Pharmcol Sci. 2016;132(4):244–8. doi:10.1016/j.jphs.2016.04.016.

    Article  CAS  Google Scholar 

  379. Morgan RE, van Staden CJ, Chen Y, Kalyanaraman N, Kalanzi J, Dunn RT, et al. A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci. 2013;136(1):216–41.

    Article  CAS  PubMed  Google Scholar 

  380. Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Transport of lamivudine [(-)-{beta}-L-2’,3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329(1):252–61.

    Article  CAS  PubMed  Google Scholar 

  381. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46(9):1716–25.

    Article  CAS  PubMed  Google Scholar 

  382. Troutman MD, Thakker DR. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003;20(8):1210–24.

    Article  CAS  PubMed  Google Scholar 

  383. Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003;263(1–2):113–22.

    Article  CAS  PubMed  Google Scholar 

  384. Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70(12):1851–60.

    Article  PubMed  CAS  Google Scholar 

  385. Somogyi A, Muirhead M. Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet. 1987;12(5):321–66.

    Article  CAS  PubMed  Google Scholar 

  386. Diao L, Ekins S, Polli JE. Novel inhibitors of human organic cation/carnitine transporter (hOCTN2) via computational modeling and in vitro testing. Pharm Res. 2009;26(8):1890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54(13):4548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Pan Y, Chothe PP, Swaan PW. Identification of novel breast cancer resistance protein (BCRP) inhibitors by virtual screening. Mol Pharm. 2013;10(4):1236–48.

    Article  CAS  PubMed  Google Scholar 

  389. Cheng Z, Liu H, Yu N, Wang F, An G, Xu Y, et al. Hydrophilic anti-migraine triptans are substrates for OATP1A2, a transporter expressed at human blood–brain barrier. Xenobiotica. 2012;42(9):880–90.

    Article  CAS  PubMed  Google Scholar 

  390. Zoto T, Kilickap S, Yasar U, Celik I, Bozkurt A, Babaoglu MO. Improved anti-emetic efficacy of 5-HT3 receptor antagonists in cancer patients with genetic polymorphisms of ABCB1 (MDR1) drug transporter. Basic Clin Pharmacol Toxicol. 2015;116(4):354–60.

    Article  CAS  PubMed  Google Scholar 

  391. Ibrahim S, Peggins J, Knapton A, Licht T, Aszalos A. Influence of antipsychotic, antiemetic, and Ca2+ channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000;295(3):1276–83.

    CAS  PubMed  Google Scholar 

  392. Ullrich KJ, Rumrich G, David C, Fritzsch G. Bisubstrates: substances that interact with renal contraluminal organic anion and organic cation transport systems. Pflügers Arch. 1993;425(3):280–99.

    Article  CAS  PubMed  Google Scholar 

  393. Pottier G, Marie S, Goutal S, Auvity S, Peyronneau M-A, Stute S, et al. Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med. 2016;57(2):309–14.

    Article  CAS  PubMed  Google Scholar 

  394. Choi EM, Lee MG, Lee SH, Choi KW, Choi SH. Association of ABCB1 polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Anaesthesia. 2010;65(10):996–1000.

    Article  CAS  PubMed  Google Scholar 

  395. Saitoh H, Aungst BJ. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm Res. 1995;12(9):1304–10.

    Article  CAS  PubMed  Google Scholar 

  396. Davenport JM, Covington P, Bonifacio L, McIntyre G, Venitz J. Effect of uptake transporters OAT3 and OATP1B1 and efflux transporter MRP2 on the pharmacokinetics of eluxadoline. J Clin Pharmacol. 2015;55(5):534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–20.

    Article  CAS  PubMed  Google Scholar 

  398. Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine-learning approach. J Pharmacol Exp Ther. 2016;359(1):215–29.

    Article  CAS  PubMed  Google Scholar 

  399. Kusuhara H, Han YH, Shimoda M, Kokue E, Suzuki H, Sugiyama Y. Reduced folate derivatives are endogenous substrates for cMOAT in rats. AJP Gastrointest Liver Physiol. 1998;275(4):G789–96.

    CAS  Google Scholar 

  400. Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, et al. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res. 2013;2013(08/02):1–12.

    Google Scholar 

  401. Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004;32(5):479–83.

    Article  CAS  PubMed  Google Scholar 

  402. Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, et al. Cisplatin-induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res. 2010;16(19):4789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui KI. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. FEBS Lett. 1998;438(3):321–4.

    Article  CAS  PubMed  Google Scholar 

  404. Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther. 2006;318(2):521–9.

    Article  CAS  PubMed  Google Scholar 

  405. Ifergan I, Shafran A, Jansen G, Hooijberg JH, Scheffer GL, Assaraf YG. Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression: a role for BCRP in cellular folate homeostasis. J Biol Chem. 2004;279(24):25527–34.

    Article  CAS  PubMed  Google Scholar 

  406. Furuta S, Smart C, Hackett A, Benning R, Warrington S. Pharmacokinetics and metabolism of [14C]anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica. 2013;43(5):432–42.

    Article  CAS  PubMed  Google Scholar 

  407. Devineni D, Polidori D. Clinical pharmacokinetic, pharmacodynamic, and drug–drug interaction profile of canagliflozin, a sodium-glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2015;54(10):1027–41.

    Article  CAS  PubMed  Google Scholar 

  408. Janssen Inc. INVOKANA (canagliflozin) product monograph. 2016 [cited 10/09/2016]. Retrieved from http://www.janssen.com/canada/sites/www_janssen_com_canada/files/product/pdf/invo06022016_cpm_nc_193242.pdf.

  409. Uwai Y, Saito H, Hashimoto Y, Inui KI. Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1. Eur J Pharmacol. 2000;398(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  410. Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos. 2010;38(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  411. Macha S, Koenen R, Sennewald R, Schone K, Hummel N, Riedmaier S, et al. Effect of gemfibrozil, rifampicin, or probenecid on the pharmacokinetics of the SGLT2 inhibitor empagliflozin in healthy volunteers. Clin Ther. 2014;36(2):280–90.e1.

  412. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Koenen A, Kock K, Keiser M, Siegmund W, Kroemer HK, Grube M. Steroid hormones specifically modify the activity of organic anion transporting polypeptides. Eur J Pharm Sci. 2012;47(4):774–80.

    Article  CAS  PubMed  Google Scholar 

  414. Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells. Br J Pharmacol. 2001;132(3):778–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, et al. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J. 2013;15(4):1082–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Varma MVS, Scialis RJ, Lin J, Bi Y-A, Rotter CJ, Goosen TC, et al. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS J. 2014;16(4):736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Mathialagan SF, B, Tess D, Scialis R, Varma M. Identification of selective substrates of human renal organic transporters for predicting transporter-mediated renal clearance. In: 2016 AAPS Workshop on Drug Transporters in ADME: From the Bench to the Bedside, TSWS; 2016. http://abstracts.aaps.org/Published/Browse.aspx?colID=34. http://abstracts.aaps.org/SecureView/AAPSJournal/radu0rb1oar.pdf.

  418. Ishiguro N, Shimizu H, Kishimoto W, Ebner T, Schaefer O. Evaluation and prediction of potential drug–drug interactions of linagliptin using in vitro cell culture methods. Drug Metab Dispos. 2013;41(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  419. Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  420. Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res. 2002;19(8):1244–7.

    Article  CAS  PubMed  Google Scholar 

  421. Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y. L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol. 2016;68(9):1160–9.

    Article  CAS  PubMed  Google Scholar 

  422. Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J. 2013;15(2):571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Uchida Y, Kamiie J, Ohtsuki S, Terasaki T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007;24(12):2281–96.

    Article  CAS  PubMed  Google Scholar 

  424. Kalsi HH, Grewal RKR. Interaction of mouse intestinal P-glycoprotein with oral antidiabetic drugs and its inhibitors. Indian J Exp Biol. 2015;53(9):611–6.

    PubMed  Google Scholar 

  425. Suhre WM, Ekins S, Chang C, Swaan PW, Wright SH. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol Pharmacol. 2005;67(4):1067–77.

    Article  CAS  PubMed  Google Scholar 

  426. Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci. 2013;132(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  427. Min-Koo C, et al. Blockade of P-glycoprotein decreased the disposition of phenformin and increased plasma lactate level. Biomol Ther. 2016;24(2):199–205.

    Article  CAS  Google Scholar 

  428. Müller F, König J, Hoier E, Mandery K, Fromm MF. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol. 2013;86(6):808–15.

    Article  PubMed  CAS  Google Scholar 

  429. Horikawa M, Kato Y, Tyson CA, Sugiyama Y. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet. 2002;17(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  430. Wang EJ, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18(6):800–6.

    Article  CAS  PubMed  Google Scholar 

  431. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  432. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306.

    Article  CAS  PubMed  Google Scholar 

  433. Windass AS, Lowes S, Wang Y, Brown CD. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.

    Article  CAS  PubMed  Google Scholar 

  434. Grube M, Ameling S, Noutsias M, Köck K, Triebel I, Bonitz K, et al. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. Am J Pathol. 2011;178(6):2547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Feng Y, Wang C, Liu Q, Meng Q, Huo X, Liu Z, et al. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. Eur J Pharm Sci. 2016;1(81):119–28.

    Article  CAS  Google Scholar 

  436. Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S. Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalpha-independent pathways. Drug Metab Pharmacokinet. 2012;27(5):513–9.

    Article  CAS  PubMed  Google Scholar 

  437. Yamazaki M, Li B, Louie SW, Pudvah NT, Stocco R, Wong W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica. 2005;35(7):737–53.

    Article  CAS  PubMed  Google Scholar 

  438. Mukherjee M, Latif ML, Pritchard DI, Bosquillon C. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air–liquid interface on Transwell® inserts. J Pharmacol Toxicol Methods. 2013;68(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  439. Elsby R, Martin P, Surry D, Sharma P, Fenner K. Solitary inhibition of the breast cancer resistance protein efflux transporter results in a clinically significant drug–drug interaction with rosuvastatin by causing up to a 2-fold increase in statin exposure. Drug Metab Dispos. 2016;44(3):398–408.

    Article  CAS  PubMed  Google Scholar 

  440. Zhou Q. Ruan Zr, Yuan H, Zeng S. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers. Arzneimittelforschung. 2012;62(11):519–24.

    Article  CAS  PubMed  Google Scholar 

  441. Ellis LCJ, Hawksworth GM, Weaver RJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol. 2013;269(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  442. Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, et al. Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos. 2011;39(7):1196–202.

    Article  CAS  PubMed  Google Scholar 

  443. Takeda M, Noshiro R, Onozato ML, Tojo A, Hasannejad H, Huang X-L, et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Eur J Pharmacol. 2004;483(2–3):133–8.

    Article  CAS  PubMed  Google Scholar 

  444. Nakagomi-Hagihara R, Nakai D, Tokui T. Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica. 2007;37(4):416–26.

    Article  CAS  PubMed  Google Scholar 

  445. Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T, et al. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug–drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments. Drug Metab Dispos. 2011;39(6):1031–8.

    Article  CAS  PubMed  Google Scholar 

  446. Kimoto E, Li R, Scialis RJ, Lai Y, Varma MV. Hepatic disposition of gemfibrozil and its major metabolite gemfibrozil 1-O-beta-glucuronide. Mol Pharm. 2015;12(11):3943–52.

    Article  CAS  PubMed  Google Scholar 

  447. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.

    CAS  PubMed  Google Scholar 

  448. Fujino H, Saito T, Ogawa S-I, Kojima J. Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol. 2005;57(10):1305–11.

    Article  CAS  PubMed  Google Scholar 

  449. Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007;82(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  450. Zhou Q, Chen QX, Ruan ZR, Yuan H, Xu HM, Zeng S. CYP2C9*3(1075A>C), ABCB1 and SLCO1B1 genetic polymorphisms and gender are determinants of inter-subject variability in pitavastatin pharmacokinetics. Pharmazie. 2013;68(3):187–94.

    CAS  PubMed  Google Scholar 

  451. Oh ES, Kim COK, Cho SK, Park MS, Chung J-Y. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet. 2013;28(3):196–202.

    Article  CAS  PubMed  Google Scholar 

  452. Vildhede A, Mateus A, Khan EK, Lai Y, Karlgren M, Artursson P, et al. Mechanistic Modeling of pitavastatin disposition in sandwich-cultured human hepatocytes: a proteomics-informed bottom-up approach. Drug Metab Dispos. 2016;44(4):505–16.

    Article  CAS  PubMed  Google Scholar 

  453. Windass AS, Lowes S, Wang Y, Brown CDA. The contribution of organic anion transporters OAT1 and OAT3 to the renal uptake of rosuvastatin. J Pharmacol Exp Ther. 2007;322(3):1221–7.

    Article  CAS  PubMed  Google Scholar 

  454. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin–Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005;314(3):1059–67.

    Article  CAS  PubMed  Google Scholar 

  455. Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin–Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem. 2002;277(8):6497–503.

    Article  CAS  PubMed  Google Scholar 

  456. Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, et al. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J Pharmacol Exp Ther. 2002;300(3):746–53.

    Article  CAS  PubMed  Google Scholar 

  457. Shirasaka Y, Suzuki K, Nakanishi T, Tamai I. Intestinal absorption of HMG-CoA reductase inhibitor pravastatin mediated by organic anion transporting polypeptide. Pharm Res. 2010;27(10):2141–9.

    Article  CAS  PubMed  Google Scholar 

  458. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006;130(6):1793–806.

    Article  CAS  PubMed  Google Scholar 

  460. Zhang W, Yu B-N, He Y-J, Fan L, Li Q, Liu Z-Q, et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clinica Chimica Acta. 2006;373(1–2):99–103.

    Article  CAS  Google Scholar 

  461. Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie. 2013;68(2):129–34.

    CAS  PubMed  Google Scholar 

  462. Lee H-K, Hu M, Lui SSH, Ho C-S, Wong C-K, Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013;14(11):1283–94.

    Article  CAS  PubMed  Google Scholar 

  463. Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001;289(2):580–5.

    Article  CAS  PubMed  Google Scholar 

  464. Zhou Q, Ruan ZR, Jiang B, Yuan H, Zeng S. Simvastatin pharmacokinetics in healthy Chinese subjects and its relations with CYP2C9, CYP3A5, ABCB1, ABCG2 and SLCO1B1 polymorphisms. Pharmazie. 2013;68(2):124–8.

    CAS  PubMed  Google Scholar 

  465. Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs: potential remote sensing by OAT family members. J Biol Chem. 2007;282(33):23841–53.

    Article  CAS  PubMed  Google Scholar 

  466. Massimi I, Ciuffetta A, Temperilli F, Ferrandino F, Zicari A, Pulcinelli FM, et al. Multidrug resistance protein-4 influences aspirin toxicity in human cell line. Mediat Inflamm. 2015;2015:607957.

    Article  CAS  Google Scholar 

  467. Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, et al. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014;95(6):608–16.

    Article  CAS  PubMed  Google Scholar 

  468. Gschwind L, Rollason V, Daali Y, Bonnabry P, Dayer P, Desmeules JA. Role of P-glycoprotein in the uptake/efflux transport of oral vitamin K antagonists and rivaroxaban through the Caco-2 cell model. Basic Clin Pharmacol Toxicol. 2013;113(4):259–65.

    Article  CAS  PubMed  Google Scholar 

  469. Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41(4):827–35.

    Article  CAS  PubMed  Google Scholar 

  470. Wang C, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab Dispos. 2014;42(6):996–1007.

    Article  PubMed  CAS  Google Scholar 

  471. Takeuchi R, Shinozaki K, Nakanishi T, Tamai I. local drug–drug interaction of donepezil with cilostazol at breast cancer resistance protein (ABCG2) increases drug accumulation in heart. Drug Metab Dispos. 2016;44(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  472. Cheepala SB, Pitre A, Fukuda Y, Takenaka K, Zhang Y, Wang Y, et al. The ABCC4 membrane transporter modulates platelet aggregation. Blood. 2015;126(20):2307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.

    Article  CAS  PubMed  Google Scholar 

  474. Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465(1–2):5–10.

    Article  CAS  PubMed  Google Scholar 

  475. Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa®) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053–62.

    Article  PubMed  CAS  Google Scholar 

  476. Bendayan R. Interaction of dipyridamole, a nucleoside transport inhibitor, with the renal transport of organic cations by LLCPK1 cells. Can J Physiol Pharmacol. 1997;75(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  477. Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica. 2008;38(7–8):1140–64.

    Article  CAS  PubMed  Google Scholar 

  478. Janneh O, Jones E, Chandler B, Owen A, Khoo SH. Inhibition of P-glycoprotein and multidrug resistance-associated proteins modulates the intracellular concentration of lopinavir in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2007;60(5):987–93.

    Article  CAS  PubMed  Google Scholar 

  479. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. Leung S, Bendayan R. Role of P-glycoprotein in the renal transport of dideoxynucleoside analog drugs. Can J Physiol Pharmacol. 1999;77(8):625–30.

    Article  CAS  PubMed  Google Scholar 

  481. Curtin NJ, Turner DP. Dipyridamole-mediated reversal of multidrug resistance in MRP over-expressing human lung carcinoma cells in vitro. Eur J Cancer. 1999;35(6):1020–6.

    Article  CAS  PubMed  Google Scholar 

  482. Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug’s disposition. Drug Metab Dispos. 2014;42(4):520–8.

    Article  PubMed  CAS  Google Scholar 

  483. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.

    Article  CAS  PubMed  Google Scholar 

  484. Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70.

    Article  CAS  PubMed  Google Scholar 

  485. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. European Medicines Agency. Xarelto assessment report. 2013 [cited 09/09/2016]. Retrieved from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000944/WC500144718.pdf.

  487. Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2012;69(4):877–83.

    Article  PubMed  Google Scholar 

  488. Holmberg MT, Tornio A, Joutsi-Korhonen L, Neuvonen M, Neuvonen PJ, Lassila R, et al. Grapefruit juice markedly increases the plasma concentrations and antiplatelet effects of ticagrelor in healthy subjects. Br J Clin Pharmacol. 2013;75(6):1488–96.

    Article  CAS  PubMed  Google Scholar 

  489. Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69(10):1801–8.

    Article  CAS  PubMed  Google Scholar 

  490. European Medicines Agency. Assessment report for Brilique. 2011 [cited 09/09/2016]. Retrieved from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001241/WC500100492.pdf.

  491. Yang S-H, Cho Y-A, Choi J-S. Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta pharmacologica Sinica. 2011;32(7):967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PKE, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharm J. 2003;4(1):40–8.

    Google Scholar 

  493. De Oliveira Almeida VC, De Souza Ferreira AC, Ribeiro DD, Gomes Borges KB, Salles Moura Fernandes AP, Brunialti Godard AL. Association of the C3435T polymorphism of the MDR1 gene and therapeutic doses of warfarin in thrombophilic patients. J Thromb Haemost. 2011;9(10):2120–2.

    Article  PubMed  CAS  Google Scholar 

  494. Shaik AN, Bohnert T, Williams DA, Gan LL, LeDuc BW. Mechanism of drug–drug interactions between warfarin and statins. J Pharm Sci. 2016;105(6):1976–86.

    Article  CAS  PubMed  Google Scholar 

  495. Yang M-SY, C.-P., Lin S.-P. Warfarin is a substrate of breast cancer resistance protein, an efflux drug transporter. In: ISSX, editor. 11th International ISSX Meeting. Busan, Korea: ISSX; 2016.

  496. Pauli-Magnus C, Mürdter T, Godel A, Mettang T, Eichelbaum M, Klotz U, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  497. Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FG, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol Vitro Int J Publ Assoc BIBRA. 2016;32:138–45.

    Article  CAS  Google Scholar 

  498. Yamazaki M, Neway WE, Ohe T, Chen IW, Rowe JF, Hochman JH, et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001;296(3):723–35.

    CAS  PubMed  Google Scholar 

  499. Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin Pharmacokinet. 1987;13(5):334–43.

    Article  CAS  PubMed  Google Scholar 

  500. Matsson P, Englund G, Ahlin G, Bergström CAS, Norinder U, Artursson P. A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther. 2007;323(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  501. Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000;275(6):4507–12.

    Article  CAS  PubMed  Google Scholar 

  502. Gavrilova O. Nutzung transgener Tiermodelle mit Transportdefekten zur Analyse der hepatobiliären Elimination und Organverteilung von Arzneistoffen und Toxinen. Gießen: Justus-Liebig-Universität Gießen; 2008.

  503. Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999;274(19):13675–80.

    Article  CAS  PubMed  Google Scholar 

  504. Ott RJ, Giacomini KM. Stereoselective interactions of organic cations with the organic cation transporter in OK cells. Pharm Res. 1993;10(8):1169–73.

    Article  CAS  PubMed  Google Scholar 

  505. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui KI. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001;18(11):1528–34.

    Article  CAS  PubMed  Google Scholar 

  506. Ito T, Takahashi Y, Tomidokoro K, Nishino T, Fukuzawa Y. The mechanism of the renal excretion of disopyramide in rats [in Japanese]. Yakugaku Zasshi. 1992;112(5):336–42.

    Article  CAS  PubMed  Google Scholar 

  507. Kidron H, Wissel G, Manevski N, Hakli M, Ketola RA, Finel M, et al. Impact of probe compound in MRP2 vesicular transport assays. Eur J Pharm Sci. 2012;46(1–2):100–5.

    Article  CAS  PubMed  Google Scholar 

  508. Tjandra-Maga TB, Verbesselt R, Van Hecken A, Mullie A, De Schepper PJ. Flecainide: single and multiple oral dose kinetics, absolute bioavailability and effect of food and antacid in man. Br J Clin Pharmacol. 1986;22(3):309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Horie A, Ishida K, Shibata K, Taguchi M, Ozawa A, Hirono K, et al. Pharmacokinetic variability of flecainide in younger Japanese patients and mechanisms for renal excretion and intestinal absorption. Biopharm Drug Dispos. 2014;35(3):145–53.

    Article  CAS  PubMed  Google Scholar 

  510. Zolk O, Solbach T, König J, Fromm M. Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn Schmied Arch Pharmacol. 2009;379(4):337–48.

    Article  CAS  Google Scholar 

  511. Wang W, Zhao JJ, Wang T, Wang L, Jiang XH. Transplacental transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia of MDCKII/MDCKII-BCRP cell line. Yao xue xue bao Acta pharmaceutica Sinica. 2015;50(3):305–11.

    PubMed  Google Scholar 

  512. Chiba S, Ikawa T, Takeshita H, Kanno S, Nagai T, Takada M, et al. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells. Toxicology. 2013;310:98–103.

    Article  CAS  PubMed  Google Scholar 

  513. Kakumoto M, Takara K, Sakaeda T, Tanigawara Y, Kita T, Okumura K. MDR1-mediated interaction of digoxin with antiarrhythmic or antianginal drugs. Biol Pharm Bull. 2002;25(12):1604–7.

    Article  CAS  PubMed  Google Scholar 

  514. Shiga T, Hashiguchi M, Tanaka T, Morozumi N, Irie S, Mochizuki M, et al. Lack of contribution of P-glycoprotein-mediated transport to renal excretion of pilsicainide in humans. Rinsho yakuri Jpn J Clin Pharmacol Ther. 2012;43(3):157–64.

    Article  CAS  Google Scholar 

  515. Noguchi SN, T., Mukaida S, Tomi M. Levocetirizine transport by human organic anion transporter 4. In: ISSX, editor. 11th International ISSX Meeting. Busan: ISSX; 2016.

  516. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, et al. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. AJP Renal Physiol. 2001;281(3):F454–68.

    CAS  Google Scholar 

  517. Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, et al. The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002;303(3):959–68.

    Article  CAS  PubMed  Google Scholar 

  518. Gründemann D, Schechinger B, Rappold G, Schömig E. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998;1(5):349–51.

    Article  PubMed  Google Scholar 

  519. Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466(1–2):315–27.

    Article  CAS  PubMed  Google Scholar 

  520. Ahn S-Y, Eraly SA, Tsigelny I, Nigam SK. Interaction of organic cations with organic anion transporters. J Biol Chem. 2009;284(45):31422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Woodland C, Verjee Z, Giesbrecht E, Koren G, Ito S. The digoxin-propafenone interaction: characterization of a mechanism using renal tubular cell monolayers. J Pharmacol Exp Ther. 1997;283(1):39–45.

    CAS  PubMed  Google Scholar 

  522. Choo EF, Leake B, Wandel C, Imamura H, Wood AJJ, Wilkinson GR, et al. Pharmacological inhibition of p-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–60.

    CAS  PubMed  Google Scholar 

  523. Gao J, Murase O, Schowen RL, Aubé J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  524. Ito T, Yano I, Tanaka K, Inui KI. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997;282(2):955–60.

    CAS  PubMed  Google Scholar 

  525. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Investig. 1998;101(2):289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Nagy H, Goda K, Fenyvesi F, Bacsό Z, Szilasi M, Kappelmayer J, et al. Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004;315(4):942–9.

    Article  CAS  PubMed  Google Scholar 

  527. Neuhoff S, Ungell AL, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug–drug interactions. Pharm Res. 2003;20(8):1141–8.

    Article  CAS  PubMed  Google Scholar 

  528. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992;263(2):840–5.

    CAS  PubMed  Google Scholar 

  529. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287(2):800–5.

    CAS  PubMed  Google Scholar 

  530. van Montfoort JE, Muller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ. Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001;298(1):110–5.

    PubMed  Google Scholar 

  531. Dahan A, Amidon GL. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009;297(2):G371–7.

    Article  CAS  PubMed  Google Scholar 

  532. Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther. 2010;333(3):788–96.

    Article  CAS  PubMed  Google Scholar 

  533. Shen J, Cross ST, Tang-Liu DDS, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20(9):1357–63.

    Article  CAS  PubMed  Google Scholar 

  534. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998;273(49):32776–86.

    Article  CAS  PubMed  Google Scholar 

  535. Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. AJP Renal Physiol. 2000;279(3):F449–58.

    CAS  Google Scholar 

  536. Yasujima T, Ohta K-Y, Inoue K, Ishimaru M, Yuasa H. Evaluation of 4′,6-diamidino-2-phenylindole as a fluorescent probe substrate for rapid assays of the functionality of human multidrug and toxin extrusion proteins. Drug Metab Dispos. 2010;38(4):715–21.

    Article  CAS  PubMed  Google Scholar 

  537. Andre P, Debray M, Scherrmann JM, Cisternino S. Clonidine transport at the mouse blood–brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2009;29(7):1293–304.

    Article  CAS  Google Scholar 

  538. Zheng M, Zhou H, Wan H, Chen Y-L, He Y. Effects of herbal drugs in Mahuang decoction and their main components on intestinal transport characteristics of Ephedra alkaloids evaluated by a Caco-2 cell monolayer model. J Ethnopharmacol. 2015;164:22–9.

    Article  CAS  PubMed  Google Scholar 

  539. Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther. 2005;312(1):192–8.

    Article  CAS  PubMed  Google Scholar 

  540. Carchman SH, Crowe JT, Wright GJ. The bioavailability and pharmacokinetics of guanfacine after oral and intravenous administration to healthy volunteers. J Clin Pharmacol. 1987;27(10):762–7.

    Article  CAS  PubMed  Google Scholar 

  541. Li X, Sun X, Chen J, Lu Y, Zhang Y, Wang C, et al. Investigation of the role of organic cation transporter 2 (OCT2) in the renal transport of guanfacine, a selective alpha2A-adrenoreceptor agonist. Xenobiotica. 2015;45(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  542. Song IS, Shin HJ, Shin JG. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica. 2008;38(9):1252–62.

    Article  CAS  PubMed  Google Scholar 

  543. Ho C-H, Hsu J-L, Liu S-P, Hsu L-C, Chang W-L, Chao CCK, et al. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: a central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate. 2015;75(13):1454–66.

    Article  CAS  PubMed  Google Scholar 

  544. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood–brain barrier. Drug Metab Dispos. 2009;37(6):1251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. DiDiodato G, Sharom FJ. Interaction of combinations of drugs, chemosensitizers, and peptides with the P-glycoprotein multidrug transporter. Biochem Pharmacol. 1997;53(12):1789–97.

    Article  CAS  PubMed  Google Scholar 

  546. Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):773–9.

    Article  CAS  PubMed  Google Scholar 

  547. Ullrich KJ, Rumrich G, Kloss S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with [beta]-lactam antibiotics. Kidney Int. 1989;36(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  548. Uwai Y, Saito H, Hashimoto Y, Inui KI. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther. 2000;295(1):261–5.

    CAS  PubMed  Google Scholar 

  549. Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007;18(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  550. Ruokoniemi P, Tertti R, Paalosmaa-Puusa P, Kareranta H, Laine K. Acetazolamide may provoke cyclosporine toxicity—a case report. NDT Plus. 2009;2(4):298–9.

    PubMed  PubMed Central  Google Scholar 

  551. Crowe A, Teoh Y-K. Limited P-glycoprotein mediated efflux for anti-epileptic drugs. J Drug Target. 2006;14(5):291–300.

    Article  CAS  PubMed  Google Scholar 

  552. Biermann J, Lang D, Gorboulev V, Koepsell H, Sindic A, Schroter R, et al. Characterization of regulatory mechanisms and states of human organic cation transporter 2. AJP Cell Physiol. 2006;290(6):C1521–31.

    Article  CAS  Google Scholar 

  553. Pietruck F, Ullrich KJ. Transport interactions of different organic cations during their excretion by the intact rat kidney. Kidney Int. 1995;47(6):1647–57.

    Article  CAS  PubMed  Google Scholar 

  554. Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun. 1999;255(2):508–14.

    Article  CAS  PubMed  Google Scholar 

  555. Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008;294(4):F867–73.

    Article  CAS  PubMed  Google Scholar 

  556. Donovan MD, Schellekens H, Boylan GB, Cryan JF, Griffin BT. In vitro bidirectional permeability studies identify pharmacokinetic limitations of NKCC1 inhibitor bumetanide. Eur J Pharmacol. 2016;770:117–25.

    Article  CAS  PubMed  Google Scholar 

  557. Donovan MD, O’Brien FE, Boylan GB, Cryan JF, Griffin BT. The effect of organic anion transporter 3 inhibitor probenecid on bumetanide levels in the brain: an integrated in vivo microdialysis study in the rat. J Pharm Pharmacol. 2015;67(4):501–10.

    Article  CAS  PubMed  Google Scholar 

  558. Brismar T, Gruber A, Peterson C. Increased cation transport inmdr1-gene-expressing K562 cells. Cancer Chemother Pharmacol. 1995;36(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  559. Wei L, Tominaga H, Ohgaki R, Wiriyasermkul P, Hagiwara K, Okuda S, et al. Transport of 3-fluoro-l-alpha-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [F]FAMT positron emission tomography. J Pharmacol Sci. 2016.

  560. Zaman GJR, Cnubben NHP, van Bladeren PJ, Evers R, Borst P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Lett. 1996;391(1–2):126–30.

    Article  CAS  PubMed  Google Scholar 

  561. El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, Russel FGM. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J Pharmacol. 2008;155(7):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  562. Homeida M, Roberts C, Branch RA. Influence of probenecid and spironolactone on furosemide kinetics and dynamics in man. Clin Pharmacol Ther. 1977;22(4):402–9.

    Article  CAS  PubMed  Google Scholar 

  563. Al-Mohizea AM. Influence of intestinal efflux pumps on the absorption and transport of furosemide. Saudi Pharm J SPJ. 2010;18(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  564. Juhasz V, Beery E, Nagy Z, Bui A, Molnar E, Zolnerciks JK, et al. Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J Pharm Sci. 2013;102(5):1683–7.

    Article  CAS  PubMed  Google Scholar 

  565. Waldorff S, Andersen JD, Heebøll-Nielsen N, Nielsen OG, Moltke E, Sørensen U, et al. Spironolactone-induced changes in digoxin kinetics. Clin Pharmacol Ther. 1987;24(2):162–7.

    Article  Google Scholar 

  566. Ruiz ML, Villanueva SSM, Luquita MG, Pellegrino JM, Rigalli JP, Arias A, et al. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur J Pharmacol. 2009;623(1–3):103–6.

    Article  CAS  PubMed  Google Scholar 

  567. Hagos Y, Bahn A, Vormfelde SV, Brockmoller J, Burckhardt G. Torasemide transport by organic anion transporters contributes to hyperuricemia. J Am Soc Nephrol. 2007;18(12):3101–9.

    Article  CAS  PubMed  Google Scholar 

  568. Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos. 2008;36(6):995–1002.

    Article  CAS  PubMed  Google Scholar 

  569. Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004;308(3):1021–9.

    Article  CAS  PubMed  Google Scholar 

  570. Schulze S, Reinhardt S, Freese C, Schmitt U, Endres K. Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay. Pharmacol Res Perspect. 2015;3(1):e00109.

  571. Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98(7):2529–39.

    Article  CAS  PubMed  Google Scholar 

  572. Lu J, Michaud V, Moya LG, Gaudette F, Leung YH, Turgeon J. Effects of beta-blockers and tricyclic antidepressants on the activity of human organic anion transporting polypeptide 1A2 (OATP1A2). J Pharmacol Exp Ther. 2015;352(3):552–8.

    Article  PubMed  CAS  Google Scholar 

  573. Ma YR, Huang J, Shao YY, Ma K, Zhang GQ, Zhou Y, et al. Inhibitory effect of atenolol on urinary excretion of metformin via down-regulating multidrug and toxin extrusion protein 1 (rMate1) expression in the kidney of rats. Eur J Pharm Sci. 2015;20(68):18–26.

    Article  CAS  Google Scholar 

  574. Yin J, Duan H, Shirasaka Y, Prasad B, Wang J. Atenolol renal secretion is mediated by human organic cation transporter 2 and multidrug and toxin extrusion proteins. Drug Metab Dispos. 2015;43(12):1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  575. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci. 2008;35(5):383–96.

    Article  CAS  PubMed  Google Scholar 

  576. Tahara K, Kagawa Y, Takaai M, Taguchi M, Hashimoto Y. Directional transcellular transport of bisoprolol in P-glycoprotein-expressed LLC-GA5-COL150 cells, but not in renal epithelial LLC-PK1 cells. Drug Metab Pharmacokinet. 2008;23(5):340–6.

    Article  CAS  PubMed  Google Scholar 

  577. Takaai M, Suzuki H, Ishida K, Tahara K, Hashimoto Y. Pharmacokinetic analysis of transcellular transport of levofloxacin across LLC-PK1 and Caco-2 cell monolayers. Biol Pharm Bull. 2007;30(11):2167–72.

    Article  CAS  PubMed  Google Scholar 

  578. Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009:1080-3.

  579. Solbach TF, Paulus B, Weyand M, Eschenhagen T, Zolk O, Fromm MF. ATP-binding cassette transporters in human heart failure. Naunyn Schmied Arch Pharmacol. 2008;377(3):231–43.

    Article  CAS  Google Scholar 

  580. Doze P, Van Waarde A, Elsinga PH, Hendrikse NH, Vaalburg W. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood–brain barrier. Synapse (New York, NY). 2000;36(1):66–74.

  581. Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  582. Plise EGS, G.; Cheong, J.; Chang, J.C. Investigating the Role of UGT1A1, MRP2 and OATP1B1 in drug induced liver toxicity. In: ISSX, editor. 17th North American Regional ISSX Meeting Atlanta, Georgia, USA: ISSX; 2011.

  583. Misaka S, Knop J, Singer K, Hoier E, Keiser M, Muller F, et al. The nonmetabolized beta-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and P-glycoprotein, but not of OATP1B1 and OATP1B3. Mol Pharm. 2016:19.

  584. Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, et al. [beta]-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108(12):2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  585. D’Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004;95(3):447–53.

    Article  PubMed  CAS  Google Scholar 

  586. Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of β-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein1. Fundam Clin Pharmacol. 2006;20(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  587. Liu W, Okochi H, Benet LZ, Zhai SD. Sotalol permeability in cultured-cell, rat intestine, and PAMPA system. Pharm Res. 2012;29(7):1768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  588. Carr RA, Pasutto FM, Foster RT. Influence of cimetidine coadministration on the pharmacokinetics of sotalol enantiomers in an anaesthetized rat model: evidence supporting active renal excretion of sotalol. Biopharm Drug Dispos. 1996;17(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  589. Collett A, Tanianis-Hughes J, Hallifax D, Warhurst G. Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm Res. 2004;21(5):819–26.

    Article  CAS  PubMed  Google Scholar 

  590. Döppenschmitt S, Langguth P, Regardh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999;288(1):348–57.

    PubMed  Google Scholar 

  591. Shirasaka Y, Kuraoka E, Spahn-Langguth H, Nakanishi T, Langguth P, Tamai I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J Pharmacol Exp Ther. 2010;332(1):181–9.

    Article  CAS  PubMed  Google Scholar 

  592. Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76(3):192–200.

    Article  CAS  PubMed  Google Scholar 

  593. Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–97.

    Article  CAS  PubMed  Google Scholar 

  594. Takara K, Matsubara M, Yamamoto K, Minegaki T, Takegami S, Takahashi M, Okumura K. Differential effects of calcium antagonists on ABCG2/BCRP-mediated drug resistance and transport in SN-38-resistant HeLa cells. Mol Med Rep. 2012;5:603–9.

    CAS  PubMed  Google Scholar 

  595. Zhang Y, Gupta A, Wang H, Zhou L, Vethanayagam RR, Unadkat JD, et al. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res. 2005;22(12):2023–34.

    Article  CAS  PubMed  Google Scholar 

  596. Yano K, Takimoto S, Motegi T, Tomono T, Hagiwara M, Idota Y, et al. Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain. Drug Metab Pharmacokinet. 2014;29(3):254–8.

    Article  CAS  PubMed  Google Scholar 

  597. Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, et al. Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002;16(3):159–65.

    Article  CAS  PubMed  Google Scholar 

  598. Piao Y-J, Choi J-S. Effects of morin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine in rats. J Pharm Pharmacol. 2008;60(5):625–9.

    Article  CAS  PubMed  Google Scholar 

  599. Miller DS. Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. J Pharmacol Exp Ther. 2001;299(2):567–74.

    CAS  PubMed  Google Scholar 

  600. Dudley AJ, Brown CD. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br J Pharmacol. 1996;117(6):1139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  601. Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 p-glycoprotein. Pharm Res. 2001;18(12):1660–8.

    Article  CAS  PubMed  Google Scholar 

  602. Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52(2):333–46.

    Article  CAS  PubMed  Google Scholar 

  603. Bebawy M, Morris MB, Roufogalis BD. A continuous fluorescence assay for the study of p-glycoprotein-mediated drug efflux using inside-out membrane vesicles. Anal Biochem. 1999;268(2):270–7.

    Article  CAS  PubMed  Google Scholar 

  604. Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common p-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271(6):3163–71.

    Article  CAS  PubMed  Google Scholar 

  605. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflügers Arch. 1999;437(5):652–60.

    Article  CAS  PubMed  Google Scholar 

  606. Horie K, Tang F, Borchardt RT. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003;20(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  607. Lash LH, Putt DA, Cai H. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology. 2006;228(2–3):200–18.

    Article  CAS  PubMed  Google Scholar 

  608. Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther. 2000;293(2):376–82.

    CAS  PubMed  Google Scholar 

  609. Perloff MD, Moltke LL, Fahey JM, Daily JP, Greenblatt DJ. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS. 2000;14(9):1287–9.

    Article  CAS  PubMed  Google Scholar 

  610. Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.

    Article  CAS  PubMed  Google Scholar 

  611. Pouliot JF, L’Heureux F, Liu Z, Prichard RK, Georges E. Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997;53(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  612. Shu Y, Bello CL, Mangravite LM, Feng B, Giacomini KM. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin–Darby canine kidney cells. J Pharmacol Exp Ther. 2001;299(1):392–8.

    CAS  PubMed  Google Scholar 

  613. Weiss J, Dormann SMG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305(1):197–204.

    Article  CAS  PubMed  Google Scholar 

  614. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994;48(7):1528–30.

    Article  CAS  PubMed  Google Scholar 

  615. Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, et al. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol. 2004;143(7):856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  616. Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989;49(18):5002–6.

    CAS  PubMed  Google Scholar 

  617. Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304(3):1258–67.

    Article  CAS  PubMed  Google Scholar 

  618. Vaidyanathan S, Camenisch G, Schuetz H, Reynolds C, Yeh CM, Bizot MN, et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J Clin Pharmacol. 2008;48(11):1323–38.

    Article  CAS  PubMed  Google Scholar 

  619. Rebello S, Zhao S, Hariry S, Dahlke M, Alexander N, Vapurcuyan A, et al. Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2012;68(5):697–708.

    Article  CAS  PubMed  Google Scholar 

  620. Yamashita F, Ohtani H, Koyabu N, Ushigome F, Satoh H, Murakami H, et al. Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol. 2006;58(11):1499–505.

    Article  CAS  PubMed  Google Scholar 

  621. Kamiyama E, Nakai D, Mikkaichi T, Okudaira N, Okazaki O. Interaction of angiotensin II type 1 receptor blockers with P-gp substrates in Caco-2 cells and hMDR1-expressing membranes. Life Sci. 2010;86(1–2):52–8.

    Article  CAS  PubMed  Google Scholar 

  622. Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Böger RH, et al. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010;31(2–3):150–61.

    Article  CAS  PubMed  Google Scholar 

  623. Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol. 2010;159(2):419–27.

    Article  PubMed  CAS  Google Scholar 

  624. Takara K, Kakumoto M, Tanigawara Y, Funakoshi J, Sakaeda T, Okumura K. Interaction of digoxin with antihypertensive drugs via MDR1. Life Sci. 2002;70(13):1491–500.

    Article  CAS  PubMed  Google Scholar 

  625. Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  626. Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, et al. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther. 2006;318(1):395–402.

    Article  CAS  PubMed  Google Scholar 

  627. BV P. Inspra, public assessment report of the medicines evaluation board in the Netherlands. 2012 [cited 09/09/2016]. http://db.cbg-meb.nl/Pars/h29963.pdf.

  628. Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, et al. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep. 2014;66(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  629. Huo X, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Inhibitory effect of valsartan on the intestinal absorption and renal excretion of bestatin in rats. J Pharm Sci. 2014;103(2):719–29.

    Article  CAS  PubMed  Google Scholar 

  630. Kim JW, Yi S, Kim TE, Lim KS, Yoon SH, Cho JY, et al. Increased systemic exposure of fimasartan, an angiotensin II receptor antagonist, by ketoconazole and rifampicin. J Clin Pharmacol. 2013;53(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  631. Jeong E-S, Kim Y-W, Kim H-J, Shin H-J, Shin J-G, Kim KH, et al. Glucuronidation of fimasartan, a new angiotensin receptor antagonist, is mainly mediated by UGT1A3. Xenobiotica. 2015;45(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  632. Ghim J-L, Paik SH, Hasanuzzaman M, Chi YH, Choi H-K, Kim D-H, et al. Absolute bioavailability and pharmacokinetics of the angiotensin II receptor antagonist fimasartan in healthy subjects. J Clin Pharmacol. 2016;56(5):576–80.

    Article  CAS  PubMed  Google Scholar 

  633. Green BR, Bain LJ. Mrp2 is involved in the efflux and disposition of fosinopril. J Appl Toxicol JAT. 2013;6:458–65.

    Article  CAS  Google Scholar 

  634. Edwards RM, Stack EJ, Trizna W. Transport of [3H]losartan across isolated perfused rabbit proximal tubule. J Pharmacol Exp Ther. 1999;290(1):38–42.

    CAS  PubMed  Google Scholar 

  635. Werner D, Werner U, Meybaum A, Schmidt B, Umbreen S, Grosch A, et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47(5):323–32.

    Article  CAS  PubMed  Google Scholar 

  636. Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E. Organic anion transporter 4-mediated transport of olmesartan at basal plasma membrane of human placental barrier. J Pharm Sci. 2015;104(9):3128–35.

    Article  CAS  PubMed  Google Scholar 

  637. Soldner A, Benet LZ, Mutschler E, Christians U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers. Br J Pharmacol. 2000;129(6):1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  638. Ullrich KJ, Rumrich G. Luminal transport step of para -aminohippurate (PAH): transport from PAH-loaded proximal tubular cells into the tubular lumen of the rat kidney in vivo. Pflügers Arch. 1997;433(6):735–43.

    Article  CAS  PubMed  Google Scholar 

  639. Flynn CA, Hagenbuch B, Reed G. Fexofenadine transport and drug–drug interactions. FASEB J. 2009;2009(748):5.

    Google Scholar 

  640. Yamada A, Maeda K, Kamiyama E, Sugiyama D, Kondo T, Shiroyanagi Y, et al. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor. Drug Metab Dispos. 2007;35(12):2166–76.

    Article  CAS  PubMed  Google Scholar 

  641. Nakagomi-Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, et al. OATP1B1, OATP1B3, and MRP2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos. 2006;34(5):862–9.

    Article  CAS  PubMed  Google Scholar 

  642. Kim CO, Cho SK, Oh ES, Park MS, Chung JY. Influence of ABCC2, SLCO1B1, and ABCG2 polymorphisms on the pharmacokinetics of olmesartan. J Cardiovasc Pharmacol. 2012;60(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  643. Yuan H, Feng B, Yu Y, Chupka J, Zheng JY, Heath TG, et al. Renal organic anion transporter-mediated drug–drug interaction between gemcabene and quinapril. J Pharmacol Exp Ther. 2009;330(1):191–7.

    Article  CAS  PubMed  Google Scholar 

  644. EMA. Entresto® assessment report. UK: European Medicines Agency; 2015.

  645. Yamada A, Maeda K, Ishiguro N, Tsuda Y, Igarashi T, Ebner T, et al. The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics. 2011;21(9):523–30.

    Article  CAS  PubMed  Google Scholar 

  646. Chen W-Q, Shu Y, Li Q, Xu L-Y, Roederer MW, Fan L, et al. Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan. PLoS One. 2013;8(8):e70341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  647. Hotchkiss AG, Gao T, Khan U, Berrigan L, Li M, Ingraham L, et al. Organic anion transporter 1 is inhibited by multiple mechanisms and shows a transport mode independent of exchange. Drug Metab Dispos. 2015;43(12):1847–54.

    Article  CAS  PubMed  Google Scholar 

  648. Bentz J, O’Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, et al. Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug–drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013;41(7):1347–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  649. Hasegawa M, Kusuhara H, Endou H, Sugiyama Y. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J Pharmacol Exp Ther. 2003;305(3):1087–97.

    Article  CAS  PubMed  Google Scholar 

  650. Ishizuka H, Konno K, Naganuma H, Sasahara K, Kawahara Y, Niinuma K, et al. Temocaprilat, a novel angiotensin-converting enzyme inhibitor, is excreted in bile via an ATP-dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J Pharmacol Exp Ther. 1997;280(3):1304–11.

    CAS  PubMed  Google Scholar 

  651. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II at 1-receptor, in humans. Drug Metab Dispos. 2006;34(7):1247–54.

    Article  CAS  PubMed  Google Scholar 

  652. Challa VR, Ravindra Babu P, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Indus Pharmacy. 2013;39(6):865–72.

    Article  CAS  Google Scholar 

  653. Wise SD, Chan C, Schaefer HG, He MM, Pouliquen IJ, Mitchell MI. Quinidine does not affect the renal clearance of moxonidine. Br J Clin Pharmacol. 2002;54(3):251–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  654. Gilead Sciences I. Ranexa® full prescribing information. Foster City: Gilead Sciences, Inc.; 2016.

    Google Scholar 

  655. Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, et al. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J Pharmacol Exp Ther. 2004;309(3):1273–81.

    Article  CAS  PubMed  Google Scholar 

  656. Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, et al. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology. 2001;142(5):2005–12.

    Article  CAS  PubMed  Google Scholar 

  657. Siegmund W, Altmannsberger S, Paneitz A, Hecker U, Zschiesche M, Franke G, et al. Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin Pharmacol Ther. 2002;72(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  658. Lecureux L, Dieter MZ, Nelson DM, Watson L, Wong H, Gemzik B, et al. Hepatobiliary disposition of thyroid hormone in Mrp2-deficient TR-rats: reduced biliary excretion of thyroxine glucuronide does not prevent xenobiotic-induced hypothyroidism. Toxicol Sci. 2009;108(2):482–91.

    Article  CAS  PubMed  Google Scholar 

  659. Imamura Y, Tsuruya Y, Damme K, Heer D, Kumagai Y, Maeda K, et al. 6beta-Hydroxycortisol is an endogenous probe for evaluation of drug–drug interactions involving a multispecific renal organic anion transporter, OAT3/SLC22A8, in healthy subjects. Drug Metab Dispos. 2014;42(4):685–94.

    Article  PubMed  CAS  Google Scholar 

  660. Imamura Y, Murayama N, Okudaira N, Kurihara A, Inoue K, Yuasa H, et al. Effect of the fluoroquinolone antibacterial agent DX-619 on the apparent formation and renal clearances of 6beta-hydroxycortisol, an endogenous probe for CYP3A4 inhibition, in healthy subjects. Pharm Res. 2013;30(2):447–57.

    Article  CAS  PubMed  Google Scholar 

  661. Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther. 2005;312(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  662. Dilger K, Schwab M, Fromm MF. Identification of budesonide and prednisone as substrates of the intestinal drug efflux pump P-glycoprotein. Inflamm Bowel Dis. 2004;10(5):578–83.

    Article  PubMed  Google Scholar 

  663. Hayer-Zillgen M, Brüss M, Bönisch H. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002;136(6):829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  664. Mason BL, Pariante CM, Thomas SA. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology. 2008;149(10):5244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  665. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992;267(34):24248–52.

    CAS  PubMed  Google Scholar 

  666. Asif AR, Steffgen J, Metten M, Grunewald RW, Müller GA, Bahn A, et al. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Arch. 2005;450(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  667. Yam K-Y, van den Akker ELT, van Rossum EFC, van Mullem AAA, Visser TJ. Is transport of cortisol in liver cells carrier-mediated? Erasmus J Med. 2012;3(1):8–12.

    Google Scholar 

  668. Micuda S, Fuksa L, Mundlova L, Osterreicher J, Mokry J, Cermanova J, et al. Morphological and functional changes in P-glycoprotein during dexamethasone-induced hepatomegaly. Clin Exp Pharmacol Physiol. 2007;34(4):296–303.

    Article  CAS  PubMed  Google Scholar 

  669. El-Sheikh AAK, Greupink R, Wortelboer HM, van den Heuvel JJMW, Schreurs M, Koenderink JB, et al. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Res J Lab Clin Med. 2013;162(6):398–409.

    Article  CAS  Google Scholar 

  670. Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U, et al. Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain. FEBS Lett. 1998;424(3):173–6.

    Article  CAS  PubMed  Google Scholar 

  671. Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ. Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells. Biol Pharm Bull. 2002;25(3):393–6.

    Article  CAS  PubMed  Google Scholar 

  672. Nozaki Y, Kusuhara H, Kondo T, Hasegawa M, Shiroyanagi Y, Nakazawa H, et al. Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices. J Pharmacol Exp Ther. 2007;321(1):362–9.

    Article  CAS  PubMed  Google Scholar 

  673. Sugimoto Y, Tsukahara S, Imai Y, Sugimoto Y, Ueda K, Tsuruo T. Reversal of breast cancer resistance protein-mediated drug resistance by estrogen antagonists and agonists. Mol Cancer Ther. 2003;2(1):105–12.

    CAS  PubMed  Google Scholar 

  674. Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem. 2001;276(36):33747–54.

    Article  CAS  PubMed  Google Scholar 

  675. Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008;19(9):1732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  676. Briz O, Serrano MA, MacIas RIR, Gonzalez-Gallego J, Marin JJG. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J. 2003;371(3):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  677. Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002;88(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  678. Bossuyt X, Müller M, Meier PJ. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 1996;25(5):733–8.

    Article  CAS  PubMed  Google Scholar 

  679. Han Y-H, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD. transporter studies with the 3-O-sulfate conjugate of 17α-ethinylestradiol: assessment of human kidney drug transporters. Drug Metab Dispos. 2010;38(7):1064–71.

    Article  CAS  PubMed  Google Scholar 

  680. Miyajima M, Kusuhara H, Takahashi K, Takashima T, Hosoya T, Watanabe Y, et al. Investigation of the effect of active efflux at the blood–brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system. J Pharm Sci. 2013;102(9):3309–19.

    Article  CAS  PubMed  Google Scholar 

  681. Payen L, Delugin L, Courtois A, Trinquart Y, Guillouzo A, Fardel O. Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. Biochem Biophys Res Commun. 1999;258(3):513–8.

    Article  CAS  PubMed  Google Scholar 

  682. Lecureur V, Fardel O, Guillouzo A. The antiprogestatin drug RU 486 potentiates doxorubicin cytotoxicity in multidrug resistant cells through inhibition of P-glycoprotein function. FEBS Lett. 1994;355(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  683. Barnes KM, Dickstein B, Cutler GBJ, Fojo T, Bates SE. Steroid transport, accumulation, and antagonism of p-glycoprotein in multidrug-resistant cells. Biochemistry. 1996;35(15):4820–7.

    Article  CAS  PubMed  Google Scholar 

  684. Leonessa F, Kim JH, Ghiorghis A, Kulawiec RJ, Hammer C, Talebian A, et al. C-7 analogues of progesterone as potent inhibitors of the P-glycoprotein efflux pump. J Med Chem. 2001;45(2):390–8.

    Article  CAS  Google Scholar 

  685. Rytting E, Audus KL. Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol. 2008;75(3):745–51.

    Article  CAS  PubMed  Google Scholar 

  686. Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J Biol Chem. 2003;278(20):17664–71.

    Article  CAS  PubMed  Google Scholar 

  687. Bekaii-Saab TS, Perloff MD, Weemhoff JL, Greenblatt DJ, von Moltke LL. Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A. Biopharm Drug Dispos. 2004;25(7):283–9.

    Article  CAS  PubMed  Google Scholar 

  688. Hiasa M, Matsumoto T, Komatsu T, Moriyama Y. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. AJP Cell Physiol. 2006;291(4):C678–86.

    Article  CAS  Google Scholar 

  689. Alebouyeh M, Takeda M, Onozato ML, Tojo A, Noshiro R, Hasannejad H, et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci. 2003;93(4):430–6.

    Article  CAS  PubMed  Google Scholar 

  690. Martin V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108(10):2005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  691. Ronchera CL, Hernández T, Peris JE, Torres F, Granero L, Jiménez NV, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375–9.

    Article  CAS  PubMed  Google Scholar 

  692. Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7.

    CAS  PubMed  Google Scholar 

  693. Wolman AT, Gionfriddo MR, Heindel GA, Mukhija P, Witkowski S, Bommareddy A, et al. Organic anion transporter 3 interacts selectively with lipophilic beta-lactam antibiotics. Drug Metab Dispos. 2013;41(4):791–800.

    Article  CAS  PubMed  Google Scholar 

  694. Chanteux H, Van Bambeke F, Mingeot-Leclercq M-P, Tulkens PM. Accumulation and oriented transport of ampicillin in Caco-2 cells from its pivaloyloxymethylester prodrug, pivampicillin. Antimicrob Agents Chemother. 2005;49(4):1279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  695. Vishwanathan K, Mair S, Gupta A, Atherton J, Clarkson-Jones J, Edeki T, et al. Assessment of the mass balance recovery and metabolite profile of avibactam in humans and in vitro drug–drug interaction potential. Drug Metab Dispos. 2014;42(5):932–42.

    Article  PubMed  CAS  Google Scholar 

  696. Allergan. Avycaz full prescribing information. 2016 [cited 09/09/2016]. http://www.allergan.com/assets/pdf/avycaz_pi.

  697. Shitara Y, Sato H, Sugiyama Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 2005;45(1):689–723.

    Article  CAS  PubMed  Google Scholar 

  698. Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharmacol. 2003;465(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  699. Mariño EL, Dominguez-Gil A. The pharmacokinetics of cefadroxil associated with probenecid. Int J Clin Pharmacol Ther Toxicol. 1981;19(11):506–8.

    PubMed  Google Scholar 

  700. Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: In comparison with rOAT1. Life Sci. 2002;70(16):1861–74.

    Article  CAS  PubMed  Google Scholar 

  701. Granero L, Gimeno MJ, Torres-Molina F, Chesa-Jiménez J, Peris JE. Studies on the renal excretion mechanisms of cefadroxil. Drug Metabol Dispos. 1994;22(3):447–50.

    Google Scholar 

  702. Mellin HE, Welling PG, Madsen PO. Pharmacokinetics of cefamandole in patients with normal and impaired renal function. Antimicrob Agents Chemother. 1977;11(2):262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  703. Spina SP, Dillon ECJ. Effect of chronic probenecid therapy on cefazolin serum concentrations. Ann Pharmacother. 2003;37(5):621–4.

    Article  CAS  PubMed  Google Scholar 

  704. Wang L, Wang C, Liu Q, Meng Q, Huo X, Sun P, et al. PEPT1- and OAT1/3-mediated drug–drug interactions between bestatin and cefixime in vivo and in vitro in rats, and in vitro in human. Eur J Pharm Sci. 2014;63:77–86.

    Article  CAS  PubMed  Google Scholar 

  705. Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, et al. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci. 2013;102(9):3451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  706. MHRA. Zevtera® public assessment report. UK: Medicines and Healthcare Products Regulatory Agency; 2013.

  707. Gower PE, Dash CH. The pharmacokinetics of cefuroxime after intravenous injection. Eur J Clin Pharmacol. 1977;12(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  708. Watanabe S, Tsuda M, Terada T, Katsura T, Inui K-I. Reduced renal clearance of a zwitterionic substrate cephalexin in Mate1-deficient mice. J Pharmacol Exp Ther. 2010;334(2):651–6.

    Article  CAS  PubMed  Google Scholar 

  709. Cihlar T, Ho ES. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal Biochem. 2000;283(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  710. Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22.

    Article  CAS  PubMed  Google Scholar 

  711. Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T. IKEDA T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  712. Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T, et al. Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci. 2014;59:94–103.

    Article  CAS  PubMed  Google Scholar 

  713. Komuro M, Maeda T, Kakuo H, Matsushita H, Shimada J. Inhibition of the renal excretion of tazobactam by piperacillin. J Antimicrob Chemother. 1994;34(4):555–64.

    Article  CAS  PubMed  Google Scholar 

  714. Kato K, Shirasaka Y, Kuraoka E, Kikuchi A, Iguchi M, Suzuki H, et al. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport. Mol Pharm. 2010;7(5):1747–56.

    Article  CAS  PubMed  Google Scholar 

  715. Wang JP, Unadkat JD, Al-Habet SMH, O’Sullivan TA, Williams-Warren J, Smith AL, et al. Disposition of drugs in cystic fibrosis. IV. Mechanisms for enhanced renal clearance of ticarcillin. Clin Pharm Ther. 1993;54(3):293–302.

    Article  CAS  Google Scholar 

  716. Milane A, Fernandez C, Vautier S, Bensimon G, Meininger V, Farinotti R. Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood–brain barrier. J Neurochem. 2007;103(1):164–73.

    CAS  PubMed  Google Scholar 

  717. Oh YH, Han HK. Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharm Res. 2006;53(1):75–9.

    Article  CAS  Google Scholar 

  718. Sugie M, Asakura E, Zhao YL, Torita S, Nadai M, Baba K, et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother. 2004;48(3):809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  719. He XJ, Zhao LM, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep. 2009;61(5):843–50.

    Article  CAS  PubMed  Google Scholar 

  720. Lan T, Rao A, Haywood J, Davis CB, Han C, Garver E, et al. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides. Drug Metab Dispos. 2009;37(12):2375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  721. Vermeer LM, Isringhausen CD, Ogilvie BW, Buckley DB. Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: the in vitro effects of ketoconazole, ritonavir, clarithromycin, and itraconazole on 13 clinically-relevant drug transporters. Drug Metab Dispos. 2016;44(3):453–9.

    Article  PubMed  Google Scholar 

  722. Parvez MM, Kaisar N, Shin HJ, Jung JA, Shin J-G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporter of SLC22A family. Antimicrob Agents Chemother. 2016;60(11):6558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  723. Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther. 2008;84(6):704–9.

    Article  CAS  PubMed  Google Scholar 

  724. Li C, Kim CS, Yang JY, Park YJ, Choi JS. Effects of roxithromycin on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats. Eur J Drug Metab Pharmacokinet. 2008;33(4):231–6.

    Article  CAS  PubMed  Google Scholar 

  725. Dalle JH, Auvrignon A, Vassal G, Leverger G. Interaction between methotrexate and ciprofloxacin. J Pediatr Hematol Oncol. 2002;24(4):321–2.

    Article  PubMed  Google Scholar 

  726. VanWert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol. 2008;74(1):122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm. 2007;4(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  728. Rodríguez-Ibáñez M, Nalda-Molina R, Montalar-Montero M, Bermejo MV, Merino V, Garrigues TM. Transintestinal secretion of ciprofloxacin, grepafloxacin and sparfloxacin: in vitro and in situ inhibition studies. Eur J Pharm Biopharm. 2003;55(2):241–6.

    Article  PubMed  CAS  Google Scholar 

  729. Haslam IS, Wright JA, O’Reilly DA, Sherlock DJ, Coleman T, Simmons NL. Intestinal ciprofloxacin efflux: the role of breast cancer resistance protein (ABCG2). Drug Metab Dispos. 2011;39(12):2321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  730. Mulgaonkar A, Venitz J, Gründemann D, Sweet DH. Human organic cation transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as disposition pathways for fluoroquinolone antimicrobials. Antimicrob Agents Chemother. 2013;57(6):2705–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  731. Matsuo Y, Yano I, Habu Y, Katsura T, Hashimoto Y, Inui K. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport. Pharm Res. 2001;18(5):573–8.

    Article  CAS  PubMed  Google Scholar 

  732. Jin HE, Song B, Kim SB, Shim WS, Kim DD, Chong S, et al. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug. Xenobiotica. 2013;43(4):355–67.

    Article  CAS  PubMed  Google Scholar 

  733. Ito T, Yano I, Masuda S, Hashimoto Y, Inui KI. Distribution characteristics of levofloxacin and grepafloxacin in rat kidney. Pharm Res. 1999;16(4):534–9.

    Article  CAS  PubMed  Google Scholar 

  734. Matsuo Y, Yano I, Ito T, Hashimoto Y, Inui KI. Transport of quinolone antibacterial drugs in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1998;287(2):672–8.

    CAS  PubMed  Google Scholar 

  735. Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother. 2002;46(2):344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  736. Sasabe H, Tsuji A, Sugiyama Y. Carrier-mediated mechanism for the biliary excretion of the quinolone antibiotic grepafloxacin and its glucuronide in rats. J Pharmacol Exp Ther. 1998;284(3):1033–9.

    CAS  PubMed  Google Scholar 

  737. Lowes S, Simmons NL. Multiple pathways for fluoroquinolone secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol. 2002;135(5):1263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  738. Hirano T, Yasuda S, Osaka Y, Kobayashi M, Itagaki S, Iseki K. Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells. Biochimica et Biophysica Acta (BBA) Biomembr. 2006;1758(11):1743–50.

    Article  CAS  Google Scholar 

  739. Ohtomo T, Saito H, Inotsume N, Yasuhara M, Inui KI. Transport of levofloxacin in a kidney epithelial cell line, LLC-PK1: interaction with organic cation transporters in apical and basolateral membranes. J Pharmacol Exp Ther. 1996;276(3):1143–8.

    CAS  PubMed  Google Scholar 

  740. Yano I, Ito T, Takano M, Inui KI. Evaluation of renal tubular secretion and reabsorption of levofloxacin in rats. Pharm Res. 1997;14(4):508–11.

    Article  CAS  PubMed  Google Scholar 

  741. Okuda M, Kimura N, Inui KI. Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet. 2006;21(5):432–6.

    Article  CAS  PubMed  Google Scholar 

  742. Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier JC, Couet W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother. 2009;53(4):1457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  743. te Brake LHM, van den Heuvel JJMW, Buaben AO, van Crevel R, Bilos A, Russel FG, et al. Moxifloxacin is a potent in vitro inhibitor of OCT- and MATE-mediated transport of metformin and ethambutol. Antimicrob Agents Chemother. 2016;60(12):7105–14.

    Google Scholar 

  744. Shimada J, Yamaji T, Ueda Y, Uchida H, Kusajima H, Irikura T. Mechanism of renal excretion of AM-715, a new quinolonecarboxylic acid derivative, in rabbits, dogs, and humans. Antimicrob Agents Chemother. 1983;23(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  745. Foote EF, Halstenson CE. Effects of probenecid and cimetidine on renal disposition of ofloxacin in rats. Antimicrob Agents Chemother. 1998;42(2):456–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  746. Wang D, Wei YH, Zhou Y, Zhang GQ, Zhang F, Li YQ, et al. Pharmacokinetic variation of ofloxacin based on gender-related difference in the expression of multidrug resistance-associated protein (Abcc2/Mrp2) in rat kidney. Yao xue xue bao Acta pharmaceutica Sinica. 2012;47(5):624–9.

    CAS  PubMed  Google Scholar 

  747. Cormet-Boyaka E, Huneau JF, Mordrelle A, Boyaka PN, Carbon C, Rubinstein E, et al. Secretion of sparfloxacin from the human intestinal Caco-2 cell line is altered by P-glycoprotein inhibitors. Antimicrob Agents Chemother. 1998;42(10):2607–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  748. Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, et al. Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J Pharm Pharmacol. 2001;53:699–709.

    Article  CAS  PubMed  Google Scholar 

  749. Adamis G, Papaioannou MG, Giamarellos-Bourboulis EJ, Gargalianos P, Kosmidis J, Giamarellou H. Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers. Int J Antimicrob Agents. 2004;23(2):144–9.

    Article  CAS  PubMed  Google Scholar 

  750. Jagannath C, Wells A, Mshvildadze M, Olsen M, Sepulveda E, Emanuele M, et al. Significantly improved oral uptake of amikacin in FVB mice in the presence of CRL-1605 copolymer. Life Sci. 1999;64(19):1733–8.

    Article  CAS  PubMed  Google Scholar 

  751. Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301(3):797–802.

    Article  CAS  PubMed  Google Scholar 

  752. Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–5.

    CAS  PubMed  Google Scholar 

  753. Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20.

    Article  CAS  PubMed  Google Scholar 

  754. Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, Back DJ, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis. 2007;87(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  755. Takeda M, Hosoyamada M, Cha SH, Sekine T, Endou H. Hydrogen peroxide downregulates human organic anion transporters in the basolateral membrane of the proximal tubule. Life Sci. 2000;68(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  756. Zhong K, Li X, Xie C, Zhang Y, Zhong D, Chen X. Effects of renal impairment on the pharmacokinetics of morinidazole: uptake transporter-mediated renal clearance of the conjugated metabolites. Antimicrob Agents Chemother. 2014;58(7):4153–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  757. Wang X, Morris ME. Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos. 2007;35(2):268–74.

    Article  CAS  PubMed  Google Scholar 

  758. Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol. 2008;66(2):233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  759. Hong L, Xu C, O’Neal S, Bi HC, Huang M, Zheng W, et al. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain. Acta Pharmacologica Sinica. 2014;35(12):1577–85.

    Article  PubMed  PubMed Central  Google Scholar 

  760. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM. Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001;120(1–3):51–7.

    Article  CAS  PubMed  Google Scholar 

  761. Vavricka SR, van Montfoort J, Ha HR, Meier PJ, Fattinger K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 2002;36(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  762. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996;49(2):311–8.

    CAS  PubMed  Google Scholar 

  763. Fardel O, Lecureur V, Loyer P, Guillouzo A. Rifampicin enhances anti-cancer drug accumulation and activity in multidrug-resistant cells. Biochem Pharmacol. 1995;49(9):1255–60.

    Article  CAS  PubMed  Google Scholar 

  764. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276(18):14581–7.

    Article  CAS  PubMed  Google Scholar 

  765. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  766. Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 2000;157(5):1575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  767. Kauffmann HM, Pfannschmidt S, Zöller H, Benz A, Vorderstemann B, Webster JI, et al. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology. 2002;171(2–3):137–46.

    Article  CAS  PubMed  Google Scholar 

  768. Elsby R, Fox L, Stresser D, Layton M, Butters C, Sharma P, et al. In vitro risk assessment of AZD9056 perpetrating a transporter-mediated drug–drug interaction with methotrexate. Eur J Pharm Sci. 2011;43(1–2):41–9.

    Article  CAS  PubMed  Google Scholar 

  769. Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther. 2008;84(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  770. Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, et al. Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci. 2010;99(2):1046–62.

    Article  CAS  PubMed  Google Scholar 

  771. Bendayan R, Georgis W, Rafi-Tari S. Interaction of 3’-azido-3’-deoxythymidine with the organic base transporter in a cultured renal epithelium. Pharmacotherapy. 1995;15(3):338–44.

    CAS  PubMed  Google Scholar 

  772. Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine I: effects of organic anion, organic cation, and nucleoside transport inhibitors on emtricitabine excretion. J Pharm Sci. 2008;97(12):5401–10.

    Article  CAS  PubMed  Google Scholar 

  773. Urakami Y, Kimura N, Okuda M, Masuda S, Katsura T, Inui KI. Transcellular transport of creatinine in renal tubular epithelial cell line LLC-PK1. Drug Metab Pharmacokinet. 2005;20(3):200–5.

    Article  CAS  PubMed  Google Scholar 

  774. Trejtnar F, Mandikova J, Kocincova J, Volkova M. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug–drug interactions with selected antivirals. Antimicrob Agents Chemother. 2014;58(10):5650–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  775. Lempers VJC, van den Heuvel JJMW, Russel FGM, Aarnoutse RE, Burger DM, Brüggemann RJ, et al. Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-gp, MRP1-5, BCRP and BSEP. Antimicrob Agents Chemother. 2016;60(6):3372–9.

  776. Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005;33(5):676–82.

    Article  CAS  PubMed  Google Scholar 

  777. Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, et al. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, metformin, and methotrexate in healthy subjects. Digoxin: Clin Pharmacol Drug Dev; 2016.

    Google Scholar 

  778. Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, et al. P-glycoprotein-mediated transport of itraconazole across the blood–brain barrier. Antimicrob Agents Chemother. 1998;42(7):1738–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  779. Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS. 1999;13(13):1623–7.

    Article  CAS  PubMed  Google Scholar 

  780. Takano M, Hasegawa R, Fukuda T, Yumoto R, Nagai J, Murakami T. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol. 1998;358(3):289–94.

    Article  CAS  PubMed  Google Scholar 

  781. Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lb Lan, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol. 2002;61(5):964–73.

    Article  CAS  PubMed  Google Scholar 

  782. Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos. 2009;37(2):424–30.

    Article  CAS  PubMed  Google Scholar 

  783. Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35(11):2076–85.

    Article  CAS  PubMed  Google Scholar 

  784. Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, et al. Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther. 2000;294(3):844–9.

    CAS  PubMed  Google Scholar 

  785. Gunness P, Aleksa K, Koren G. Acyclovir is a substrate for the human breast cancer resistance protein (BCRP/ABCG2): implications for renal tubular transport and acyclovir-induced nephrotoxicity. Can J Physiol Pharmacol. 2011;89(9):675–80.

    Article  CAS  PubMed  Google Scholar 

  786. Ye J, Liu Q, Wang C, Meng Q, Peng J, Sun H, et al. Inhibitory effect of JBP485 on renal excretion of acyclovir by the inhibition of OAT1 and OAT3. Eur J Pharm Sci. 2012;47(2):341–6.

    Article  CAS  PubMed  Google Scholar 

  787. Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J Pharmacol Exp Ther. 2005;314(2):923–31.

    Article  CAS  PubMed  Google Scholar 

  788. Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56(3):570–80.

    CAS  PubMed  Google Scholar 

  789. Servais A, Lechat P, Zahr N, Urien S, Aymard G, Jaudon MC, et al. Tubular transporters and clearance of adefovir. Eur J Pharmacol. 2006;540(1–3):168–74.

    Article  CAS  PubMed  Google Scholar 

  790. Mandikova J, Volkova M, Pavek P, Cesnek M, Janeba Z, Kubicek V, et al. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology. 2013;311(3):135–46.

    Article  CAS  PubMed  Google Scholar 

  791. Ming X, Thakker DR. Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil. Biochem Pharmacol. 2010;79(3):455–62.

    Article  CAS  PubMed  Google Scholar 

  792. Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S, et al. Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother. 2007;51(10):3498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  793. Cihlar T, Ray AS, Laflamme G, Vela JE, Tong L, Fuller MD, et al. Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther. 2007;12(2):267–72.

    CAS  PubMed  Google Scholar 

  794. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310(1):334–41.

    Article  CAS  PubMed  Google Scholar 

  795. Reese MJ, Bowers GD, Humphreys JE, Gould EP, Ford SL, Webster LO, et al. Drug interaction profile of the HIV integrase inhibitor cabotegravir: assessment from in vitro studies and a clinical investigation with midazolam. Xenobiotica. 2016;46(5):445–56.

    Article  CAS  PubMed  Google Scholar 

  796. German P, Liu HC, Szwarcberg J, Hepner M, Andrews J, Kearney BP, et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. JAIDS J Acquir Immune Defic Syndr. 2012;61(1):32–40. doi:10.1097/QAI.0b013e3182645648.

    Article  CAS  PubMed  Google Scholar 

  797. Lepist E-I, Murray BP, Tong L, Roy A, Bannister R, AS. R. Effect of cobicistat and ritonavir on proximal renal tubular cell uptake and efflux transporters. Abstr 51st Intersci Conf Antimicrob Agents Chemother. Chicago: American Society for Microbiology, Washington, DC.; 2011.

  798. Stray KM, Bam RA, Birkus G, Hao J, Lepist E-I, Yant SR, et al. Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother. 2013;57(10):4982–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  799. European Medicines Agency. Daklinza® product information. EMA; 2016.

  800. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics. 2010;20(2):112–20. doi:10.1097/FPC.0b013e328335b02d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  801. Fujimoto H, Higuchi M, Watanabe H, Koh Y, Ghosh AK, Mitsuya H, et al. P-glycoprotein mediates efflux transport of darunavir in human intestinal Caco-2 and ABCB1 gene-transfected renal LLC-PK1 cell lines. Biol Pharm Bull. 2009;32(9):1588–93.

    Article  CAS  PubMed  Google Scholar 

  802. Grammen C, Baes M, Haenen S, Verguts J, Augustyns K, Zydowsky T, et al. Vaginal expression of efflux transporters and the potential impact on the disposition of microbicides in vitro and in rabbits. Mol Pharm. 2014;11(12):4405–14.

    Article  CAS  PubMed  Google Scholar 

  803. Bow D, Liu J, Kavetskaia O, Menon R, de Morais S, Nijsen M, et al. A mechanistic non-clinical assessment of drug–drug interactions (metabolism and transporters) with the hepatitis C virus (HCV) regimen: ABT-450/r, ombitasvir and dasabuvir. AASLD/EASL Special Conference on Hepatitis C. New York, NY; 2014.

  804. Agency EM. Exviera, INN—dasabuvir, summary of product characteristics. 2016 [cited 11/09/2016]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003837/WC500182233.pdf.

  805. Weiss J, Weis N, Ketabi-Kiyanvash N, Storch CH, Haefeli WE. Comparison of the induction of P-glycoprotein activity by nucleotide, nucleoside, and non-nucleoside reverse transcriptase inhibitors. Eur J Pharmacol. 2008;579(1–3):104–9.

    Article  CAS  PubMed  Google Scholar 

  806. Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013;41(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  807. Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, et al. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem Pharmacol. 2011;82(9):1227–33.

    Article  CAS  PubMed  Google Scholar 

  808. Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  809. Xu Q, Wang C, Meng Q, Liu Q, Sun H, Peng J, et al. OAT1 and OAT3: targets of drug–drug interaction between entecavir and JBP485. Eur J Pharm Sci. 2013;48(4–5):650–7.

    Article  CAS  PubMed  Google Scholar 

  810. Mandíková J, Volková M, Pávek P, Navrátilová L, Hyršová L, Janeba Z, et al. Entecavir interacts with influx transporters hOAT1, hCNT2, hCNT3, but not with hOCT2: the potential for renal transporter-mediated cytotoxicity and drug–drug interactions. Front Pharmacol. 2015;6:304.

    PubMed  Google Scholar 

  811. Kakuda TN, Van Solingen-Ristea RM, Onkelinx J, Stevens T, Aharchi F, De Smedt G, et al. The effect of single- and multiple-dose etravirine on a drug cocktail of representative cytochrome P450 probes and digoxin in healthy subjects. J Clin Pharmacol. 2014;54(4):422–31.

    Article  PubMed  CAS  Google Scholar 

  812. Zembruski NCL, Haefeli WE, Weiss J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob Agents Chemother. 2011;55(3):1282–4.

    Article  CAS  PubMed  Google Scholar 

  813. Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS. 2002;16(17):2295–301.

    Article  CAS  PubMed  Google Scholar 

  814. Jones K, Bray PG, Khoo SH, Davey RA, Meaden ER, Ward SA, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS. 2001;15(11):1353–8.

    Article  CAS  PubMed  Google Scholar 

  815. de Souza J, Benet LZ, Huang Y, Storpirtis S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK–MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009;98(11):4413–9.

    Article  PubMed  CAS  Google Scholar 

  816. Vishnuvardhan D, Moltke LL, Richert C, Greenblatt DJ. Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003;17(7):1092–4.

    Article  PubMed  Google Scholar 

  817. van Waterschoot RA, ter Heine R, Wagenaar E, van der Kruijssen CM, Rooswinkel RW, Huitema AD, et al. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir. Br J Pharmacol. 2010;160(5):1224–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  818. Zembruski NCL, Büchel G, Jödicke L, Herzog M, Haefeli WE, Weiss J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother. 2011;66(4):802–12.

    Article  CAS  PubMed  Google Scholar 

  819. Fukuda Y, Takenaka K, Sparreboom A, Cheepala SB, Wu CP, Ekins S, et al. Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity. Mol Pharmacol. 2013;84(3):361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  820. European Medicines Agency. Viekirax, INN—ombitasvir, paritaprevir, ritonavir, summary of product characteristics. EMA; 2016 [cited 11/09/2016]. http://ec.europa.eu/health/documents/community-register/2016/20160428134551/anx_134551_en.pdf.

  821. Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood–brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009;37(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  822. Hashiguchi Y, Hamada A, Shinohara T, Tsuchiya K, Jono H, Saito H. Role of P-glycoprotein in the efflux of raltegravir from human intestinal cells and CD4+ T-cells as an interaction target for anti-HIV agents. Biochem Biophys Res Commun. 2013;439(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  823. Rizk ML, Houle R, Chan GH, Hafey M, Rhee EG, Chu X. Raltegravir has a low propensity to cause clinical drug interactions through inhibition of major drug transporters: an in vitro evaluation. Antimicrob Agents Chemother. 2014;58(3):1294–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  824. Gutierrez F, Fulladosa X, Barril G, Domingo P. Renal tubular transporter-mediated interactions of HIV drugs: implications for patient management. AIDS Rev. 2014;16(4):199–212.

    PubMed  Google Scholar 

  825. Moss DM, Liptrott NJ, Curley P, Siccardi M, Back DJ, Owen A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 In vitro. Antimicrob Agents Chemother. 2013;57(11):5612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  826. Perloff MD, von Moltke LL, Marchand JE, Greenblatt DJ. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci. 2001;90(11):1829–37.

    Article  CAS  PubMed  Google Scholar 

  827. Kim AE, Dintaman JM, Waddell DS, Silverman JA. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J Pharmacol Exp Ther. 1998;286(3):1439–45.

    CAS  PubMed  Google Scholar 

  828. Williams GC, Liu A, Knipp G, Sinko PJ. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother. 2002;46(11):3456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  829. Eagling VA, Profit L, Back DJ. Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol. 1999;48(4):543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  830. Su Y, Zhang X, Sinko PJ. Human organic anion-transporting polypeptide OATP-A (SLC21A3) acts in concert with P-glycoprotein and multidrug resistance protein 2 in the vectorial transport of saquinavir in Hep G2 Cells. Mol Pharm. 2003;1(1):49–56.

    Article  CAS  Google Scholar 

  831. Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem. 2011;286(1):243–51.

    Article  CAS  PubMed  Google Scholar 

  832. Siccardi D, Kandalaft LE, Gumbleton M, McGuigan C. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin–Darby canine kidney cell monolayers. J Pharmacol Exp Ther. 2003;307(3):1112–9.

    Article  CAS  PubMed  Google Scholar 

  833. Kunze A, Huwyler J, Camenisch G, Gutmann H. Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem Pharmacol. 2012;84(8):1096–102.

    Article  CAS  PubMed  Google Scholar 

  834. Nakada T, Kito T, Inoue K, Masuda S, Inui K, Matsubara K, et al. Evaluation of the potency of telaprevir and its metabolites as inhibitors of renal organic cation transporters, a potential mechanism for the elevation of serum creatinine. Drug Metab Pharmacokinet. 2014;29(3):266–71.

    Article  CAS  PubMed  Google Scholar 

  835. Cusato J, Allegra S, De Nicolò A, Boglione L, Fatiguso G, Cariti G, et al. ABCB11 and ABCB1 gene polymorphisms impact on telaprevir pharmacokinetic at one month of therapy. Biomed Pharmacother. 2015;69:63–9.

    Article  CAS  PubMed  Google Scholar 

  836. Weiss J, Becker JP, Haefeli WE. Telaprevir is a substrate and moderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int J Antimicrob Agents. 2014;43(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  837. Fujita Y, Noguchi K, Suzuki T, Katayama K, Sugimoto Y. Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein. BMC Res Notes. 2013;6(1):1–6.

    Article  CAS  Google Scholar 

  838. Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P. Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica. 2005;35(10–11):1055–66.

    Article  CAS  PubMed  Google Scholar 

  839. Bam RA, Yant SR, Cihlar T. Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther. 2014;19(7):687–92.

    Article  CAS  PubMed  Google Scholar 

  840. Dahlin A, Wittwer M, de la Cruz M, Woo JM, Bam R, Scharen-Guivel V, et al. A pharmacogenetic candidate gene study of tenofovir-associated Fanconi syndrome. Pharmacogenet Genomics. 2015;25(2):82–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  841. European Medicines Agency. Lonsurf, INN-trifluridine, tipiracil, Summary of Product Characteristics. EMA; 2016 [cited 11/09/2016]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003897/WC500206246.pdf.

  842. Jin MJ, Han HK. Interaction of zalcitabine with human organic anion transporter 1. Pharmazie. 2006;61(5):491–2.

    CAS  PubMed  Google Scholar 

  843. Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999;5(9):1048–51.

    Article  CAS  PubMed  Google Scholar 

  844. Müller F, König J, Glaeser H, Schmidt I, Zolk O, Fromm MF, et al. Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011;55(7):3091–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  845. Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, et al. Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J Pharm Sci. 2016;105(2):884–90.

    Article  CAS  PubMed  Google Scholar 

  846. Jin X, Luong TL, Reese N, Gaona H, Collazo-Velez V, Vuong C, et al. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods. 2014;70(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  847. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Investig. 1995;96(4):1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  848. Lespine A, Dupuy J, Orlowski S, Tn Nagy, Glavinas H, Krajcsi P, et al. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006;159(3):169–79.

    Article  CAS  PubMed  Google Scholar 

  849. Dunn ST, Hedges L, Sampson KE, Lai Y, Mahabir S, Balogh L, et al. Pharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs. Drug Metab Dispos. 2011;39(5):789–95.

    Article  CAS  PubMed  Google Scholar 

  850. Fujita R, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Enhancement of doxorubicin activity in multidrug-resistant cells by mefloquine. Methods Find Exp Clin Pharmacol. 2000;22(5):281–4.

    Article  CAS  PubMed  Google Scholar 

  851. Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther. 2010;333(1):341–50.

    Article  CAS  PubMed  Google Scholar 

  852. Sweet DH, Pritchard JB. rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. AJP Renal Physiol. 1999;277(6):F890–8.

    CAS  Google Scholar 

  853. Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport. A role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem. 2001;276(45):41611–9.

    Article  CAS  PubMed  Google Scholar 

  854. Ohtsuki S, Asaba H, Takanaga H, Deguchi T, K-i Hosoya, Otagiri M, et al. Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  855. Mori S, Ohtsuki S, Takanaga H, Kikkawa T, Kang Y-S, Terasaki T. Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem. 2004;90(4):931–41.

    Article  CAS  PubMed  Google Scholar 

  856. Hill CR, Jamieson D, Thomas HD, Brown CD, Boddy AV, Veal GJ. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem Pharmacol. 2013;85(1):29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  857. Wind S, Giessmann T, Jungnik A, Brand T, Marzin K, Bertulis J, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin Drug Investig. 2014;34(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  858. Peters S, Zimmermann S, Adjei AA. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug–drug interactions. Cancer Treatm Rev. 2014;40(8):917–26.

    Article  CAS  Google Scholar 

  859. Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective inhibition of human solute carrier transporters by multikinase inhibitors. Drug Metab Dispos. 2014;42(11):1851–7.

    Article  PubMed  CAS  Google Scholar 

  860. European Medicines Agency. Giotrif, INN—afatinib, CHMP assessment report. EMA; 2016 [cited 11/09/2016]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002280/WC500152394.pdf.

  861. Uwai Y, Iwamoto K. Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  862. Reyner EL, Sevidal S, West MA, Clouser-Roche A, Freiwald S, Fenner K, et al. In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: implications for disposition and drug interactions. Drug Metab Dispos. 2013;41(8):1575–83.

    Article  CAS  PubMed  Google Scholar 

  863. Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos. 2011;39(5):729–35.

    Article  CAS  PubMed  Google Scholar 

  864. Marchetti S, Pluim D, van Eijndhoven M, van Tellingen O, Mazzanti R, Beijnen JH, et al. Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs. 2013;31(5):1125–35.

    Article  CAS  PubMed  Google Scholar 

  865. Hagos Y, Hundertmark P, Shnitsar V, Marada VV, Wulf G, Burckhardt G. Renal human organic anion transporter 3 increases the susceptibility of lymphoma cells to bendamustine uptake. Am J Physiol Renal Physiol. 2015;308(4):F330–8.

    Article  CAS  PubMed  Google Scholar 

  866. Lacy S, Hsu B, Miles D, Aftab D, Wang R, Nguyen L. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab Dispos. 2015;43(8):1190–207.

    Article  CAS  PubMed  Google Scholar 

  867. Zhou Y, Yuan J, Li Z, Wang Z, Cheng D, Du Y, et al. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition. Pharmacology. 2015;95(3–4):201–8.

    Article  CAS  PubMed  Google Scholar 

  868. Chen ZS, Kawabe T, Ono M, Aoki S, Sumizawa T, Furukawa T, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol. 1999;56(6):1219–28.

    CAS  PubMed  Google Scholar 

  869. Zhang Y-H, Wu Q, Xiao X-Y, Li D-W, Wang X-P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett. 2010;291(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  870. Hu S, Pabla N, Janke LJ, Li L, Vasilyeva A, Sprowl JA, et al. Abstract 5471: identification of OAT1/OAT3 as contributors to cisplatin nephrotoxicity. Cancer Res. 2015;75(15 Supplement):5471.

    Article  Google Scholar 

  871. Li D, Jang SH, Kim J, Wientjes MG, Au JL-S. Enhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents. Pharm Res. 2003;20(1):45–50.

    Article  PubMed  Google Scholar 

  872. EMA. Xalkori® assessment report. UK: European Medicines Agency; 2016.

  873. Zhang J, Ng KY, Ho PC. Interaction of oxazaphosphorines with multidrug resistance-associated protein 4 (MRP4). AAPS J. 2010;12(3):300–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  874. Joy MS, La M, Wang J, Bridges AS, Hu Y, Hogan SL, et al. Cyclophosphamide and 4-hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. Br J Clin Pharmacol. 2012;74(3):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  875. Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013;344(3):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  876. European Medicines Agency. Tafinlar Product Information. EMA; 2015 [cited 09/09/2016]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002604/WC500149671.pdf.

  877. Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10(3):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  878. Shirakawa K, Takara K, Tanigawara Y, Aoyama N, Kasuga M, Komada F, et al. Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Cancer Sci. 1999;90(12):1380–6.

    CAS  Google Scholar 

  879. Cihalova D, Ceckova M, Kucera R, Klimes J, Staud F. Dinaciclib, a cyclin-dependent kinase inhibitor, is a substrate of human ABCB1 and ABCG2 and an inhibitor of human ABCC1 in vitro. Biochem Pharmacol. 2015;98(3):465–72.

    Article  CAS  PubMed  Google Scholar 

  880. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer. 2005;116(5):824–9.

    Article  CAS  PubMed  Google Scholar 

  881. Chew S-C, Singh O, Chen X, Ramasamy RD, Kulkarni T, Lee EJD, et al. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol. 2011;67(6):1471–8.

    Article  CAS  PubMed  Google Scholar 

  882. Lee HH, Leake BF, Teft W, Tirona RG, Kim RB, Ho RH. Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance. Mol Cancer Ther. 2015;14(4):994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  883. Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, et al. Human OATP1B1, OATP1B3 and OATP1A2 can mediate the in vivo uptake and clearance of docetaxel. Int J Cancer. 2015;136(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  884. Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S, Orwick SJ, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther. 2009;85(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  885. Okabe M, Szakács G, Reimers MA, Suzuki T, Hall MD, Abe T, et al. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther. 2008;7(9):3081–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  886. Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer. 2014;135(7):1700–10.

    Article  CAS  PubMed  Google Scholar 

  887. Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Therapy. 2007;6(3):432–8.

    Article  CAS  Google Scholar 

  888. Yang Z, Wu D, Bui T, Ho RJY. A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport. J Pharmacol Exp Ther. 2008;327(2):474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  889. Long BH, Wang L, Lorico A, Wang RCC, Brattain MG, Casazza AM. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines. Cancer Res. 1991;51(19):5275–83.

    CAS  PubMed  Google Scholar 

  890. Allen JD, van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res. 2003;63(6):1339–44.

    CAS  PubMed  Google Scholar 

  891. Nakano K, Ando H, Kurokawa S, Hosohata K, Ushijima K, Takada M, et al. Association of decreased mRNA expression of multidrug and toxin extrusion protein 1 in peripheral blood cells with the development of flutamide-induced liver injury. Cancer Chemother Pharmacol. 2015;75(6):1191–7.

    Article  CAS  PubMed  Google Scholar 

  892. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334(1):147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  893. Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJP, van der Wilt CL, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88(12):1963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  894. Walker AL, Franke RM, Sparreboom A, Ware RE. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters. Exp Hematol. 2011;39(4):446–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  895. Pharmacyclics LLC. Imbruvica® full prescribing information. Pharmacyclics LLC; 2016.

  896. Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.

    Article  PubMed  Google Scholar 

  897. Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307(2):824–8.

    Article  CAS  PubMed  Google Scholar 

  898. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.

    Article  CAS  PubMed  Google Scholar 

  899. Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–8.

    Article  CAS  PubMed  Google Scholar 

  900. Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet. 2010;55(11):731–7.

    Article  CAS  PubMed  Google Scholar 

  901. Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64(7):2333–7.

    Article  CAS  PubMed  Google Scholar 

  902. Han J-Y, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007;110(1):138–47.

    Article  PubMed  Google Scholar 

  903. Zheng J, Chan T, Zhu L, Yan X, Cao Z, Wang Y, et al. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). Xenobiotica. 2016;8:1–10.

    Google Scholar 

  904. Shen H, Lee FY, Gan J. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2011;337(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  905. Polli JW, Humphreys JE, Harmon KA, Castellino S, O’Mara MJ, Olson KL, et al. The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008;36(4):695–701.

    Article  CAS  PubMed  Google Scholar 

  906. Cl Dai, Tiwari AK, Wu CP, Su Xd, Wang SR, Dg Liu, et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008;68(19):7905–14.

    Article  CAS  Google Scholar 

  907. Tong Z, Yerramilli U, Surapaneni S, Kumar G. The interactions of lenalidomide with human uptake and efflux transporters and UDP-glucuronosyltransferase 1A1: lack of potential for drug–drug interactions. Cancer Chemother Pharmacol. 2014;73(4):869–74.

    Article  CAS  PubMed  Google Scholar 

  908. Takahashi N, Miura M, Kameoka Y, Abumiya M, Sawada K. Drug interaction between lenalidomide and itraconazole. Am J Hematol. 2012;87(3):338–9.

    Article  PubMed  Google Scholar 

  909. Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999;59(11):2532–5.

    CAS  PubMed  Google Scholar 

  910. Masuda M, I’izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni’inuma K, et al. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res. 1997;57(16):3506–10.

    CAS  PubMed  Google Scholar 

  911. Bohanec Grabar P, Logar D, Lestan B, Dolžan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–68.

    Article  CAS  PubMed  Google Scholar 

  912. Liu Q, Wang C, Meng Q, Huo X, Sun H, Peng J, et al. MDR1 and OAT1/OAT3 mediate the drug–drug interaction between puerarin and methotrexate. Pharm Res. 2014;31(5):1120–32.

    Article  CAS  PubMed  Google Scholar 

  913. Zhu Y, Meng Q, Wang C, Liu Q, Huo X, Zhang A, et al. Methotrexate-bestatin interaction: involvement of P-glycoprotein and organic anion transporters in rats. Int J Pharm. 2014;465(1–2):368–77.

    Article  CAS  PubMed  Google Scholar 

  914. Maitra R, Halpin PA, Karlson KH, Page RL, Paik DY, Leavitt MO, et al. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem J. 2001;355(3):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  915. Shen F, Bailey BJ, Chu S, Bence AK, Xue X, Erickson P, et al. Dynamic assessment of mitoxantrone resistance and modulation of multidrug resistance by valspodar (PSC833) in multidrug resistance human cancer cells. J Pharmacol Exp Ther. 2009;330(2):423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  916. Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P. Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004;21(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  917. Zhang S, Yang X, Morris ME. Flavonoids Are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol Pharmacol. 2004;65(5):1208–16.

    Article  CAS  PubMed  Google Scholar 

  918. Yamakawa Y, Hamada A, Uchida T, Sato D, Yuki M, Hayashi M, et al. Distinct interaction of nilotinib and imatinib with P-glycoprotein in intracellular accumulation and cytotoxicity in CML Cell Line K562 cells. Biol Pharm Bull. 2014;37(8):1330–5.

    Article  CAS  PubMed  Google Scholar 

  919. Lawlor D, Martin P, Busschots S, Thery J, O’leary JJ, Hennessy BT, et al. PARP inhibitors as P-glyoprotein substrates. J Pharm Sci. 2014;103(6):1913–20.

    Article  CAS  PubMed  Google Scholar 

  920. Dufour R, Daumar P, Mounetou E, Aubel C, Kwiatkowski F, Abrial C, et al. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib. Sci Rep. 2015;5:12670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  921. McCormick A, Swaisland H. In vitro assessment of the roles of drug transporters in the disposition and drug–drug interaction potential of olaparib. Xenobiotica. 2016;29:1–47. doi:10.1080/00498254.2016.1241449.

    Article  CAS  Google Scholar 

  922. Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ. Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther. 2011;338(2):537–47.

    Article  CAS  PubMed  Google Scholar 

  923. Jang SH, Wientjes MG, Au JL-S. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther. 2001;298(3):1236–42.

    CAS  PubMed  Google Scholar 

  924. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K, et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther. 2007;81(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  925. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood–brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  926. FDA. IBRANCE® full prescribing information. 2015 [cited 10/09/2016]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207103s000lbl.pdf.

  927. Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug–drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34.

    Article  PubMed  CAS  Google Scholar 

  928. Kurata T, Iwamoto T, Kawahara Y, Okuda M. Characteristics of pemetrexed transport by renal basolateral organic anion transporter hOAT3. Drug Metab Pharmacokinet. 2014;29(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  929. More SS, Li S, Yee SW, Chen L, Xu Z, Jablons DM, et al. Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010;9(4):1058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  930. Kasserra C, Assaf M, Hoffmann M, Li Y, Liu L, Wang X, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug–drug interaction potential in vitro and in healthy subjects. J Clin Pharmacol. 2015;55(2):168–78.

    Article  CAS  PubMed  Google Scholar 

  931. Allos Therapeutics I. Folotyn® full prescribing information. Westminster: Allos Therapeutics, Inc.; 2011.

  932. Durmus S, Sparidans RW, van Esch A, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res. 2015;32(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  933. Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, Sugawara M, et al. Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433–5.

    Article  CAS  PubMed  Google Scholar 

  934. Tsuchiya N, Narita S, Inoue T, Hasunuma N, Numakura K, Horikawa Y, et al. Risk factors for sorafenib-induced high-grade skin rash in Japanese patients with advanced renal cell carcinoma. Anticancer Drugs. 2013;24(3):310–4.

    Article  CAS  PubMed  Google Scholar 

  935. Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, et al. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27(6):631–9.

    Article  CAS  PubMed  Google Scholar 

  936. Sato H, Siddig S, Uzu M, Suzuki S, Nomura Y, Kashiba T, et al. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur J Pharmacol. 2015;746:258–66.

    Article  CAS  PubMed  Google Scholar 

  937. Bai J, Lai L, Yeo HC, Goh BC, Tan TMC. Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol. 2004;36(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  938. Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. Mol Cell Ther. 2014;2(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  939. Matsumoto SI, Yoshida K, Ishiguro N, Maeda T, Tamai I. Involvement of rat and human organic anion transporter 3 in the renal tubular secretion of topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]. J Pharmacol Exp Ther. 2007;322(3):1246–52.

    Article  CAS  PubMed  Google Scholar 

  940. Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, et al. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res. 2008;25(11):2601–12.

    Article  CAS  PubMed  Google Scholar 

  941. Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41(12):2095–103.

    Article  CAS  PubMed  Google Scholar 

  942. Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53(9):837–47.

    Article  CAS  PubMed  Google Scholar 

  943. Azzariti A, Porcelli L, Simone GM, Quatrale AE, Colabufo NA, Berardi F, et al. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2009;65(2):335–46.

    Article  CAS  Google Scholar 

  944. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434(1–2):306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  945. Kikuchi R, Lao Y, Bow DA, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug–drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102(12):4426–32.

    Article  CAS  PubMed  Google Scholar 

  946. Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug–drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20(15):3931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  947. Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9(11):3236–45.

    Article  CAS  PubMed  Google Scholar 

  948. Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  949. Smit JW, Weert B, Schinkel AH, Meijer DK. Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998;286(1):321–7.

    CAS  PubMed  Google Scholar 

  950. Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):765–72.

    Article  CAS  PubMed  Google Scholar 

  951. Hunter J, Hirst BH, Simmons NL. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993;10(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  952. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lb Lan, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000;57(1):24–35.

    CAS  PubMed  Google Scholar 

  953. Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, et al. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 2004;64(13):4621–8.

    Article  CAS  PubMed  Google Scholar 

  954. Lagas JS, Damen CW, van Waterschoot RA, Iusuf D, Beijnen JH, Schinkel AH. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol Pharmacol. 2012;82(4):636–44.

    Article  CAS  PubMed  Google Scholar 

  955. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–80.

    CAS  PubMed  Google Scholar 

  956. Chu C, Abbara C, Noël-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, et al. Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol. 2009;77(10):1629–34.

    Article  CAS  PubMed  Google Scholar 

  957. Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL. Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol. 2005;60(4):434–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  958. Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui KI. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  959. Wolff NA, Burckhardt BC, Burckhardt G, Oellerich M, Armstrong VW. Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transpl. 2007;22(9):2497–503.

    Article  CAS  Google Scholar 

  960. El-Sheikh AA, Koenderink JB, Wouterse AC, van den Broek PH, Verweij VG, Masereeuw R, et al. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res. 2014;164(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  961. Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  962. Patel CG, Ogasawara K, Akhlaghi F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica. 2013;43(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  963. Lloberas N, Torras J, Cruzado JM, Andreu F, Oppenheimer F, Sanchez-Plumed J, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the Pharmacogenomic Substudy within the Symphony Study. Nephrol Dial Transpl. 2011;26(11):3784–93.

    Article  CAS  Google Scholar 

  964. Miller DS, Fricker G, Drewe J. p-glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther. 1997;282(1):440–4.

    CAS  PubMed  Google Scholar 

  965. Capone D, Palmiero G, Gentile A, Basile V, Federico S, Sabbatini M, et al. A pharmacokinetic interaction between clarithromycin and sirolimus in kidney transplant recipient. Curr Drug Metab. 2007;8(4):379–81.

    Article  CAS  PubMed  Google Scholar 

  966. Wacher VJ, Silverman JA, Wong S, Tran-Tau P, Chan AO, Chai A, et al. Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by d-alpha-tocopheryl poly(ethylene glycol 1000) succinate. J Pharmacol Exp Ther. 2002;303(1):308–13.

    Article  CAS  PubMed  Google Scholar 

  967. Sam WJ, Chamberlain CE, Lee SJ, Goldstein JA, Hale DA, Mannon RB, et al. Associations of ABCB1 3435C>T and IL-10-1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation. 2011;92(12):1342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  968. Jeong H, Chiou WL. Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica. 2006;36(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  969. Quezada CA, Garrido WX, González-Oyarzún MA, Rauch MC, Salas MR, San Martín RE, et al. Effect of tacrolimus on activity and expression of P-glycoprotein and ATP-binding cassette transporter A5 (ABCA5) proteins in hematoencephalic barrier cells. Biol Pharm Bull. 2008;31(10):1911–6.

    Article  CAS  PubMed  Google Scholar 

  970. Hashida T, Masuda S, Uemoto S, Saito H, Tanaka K, Inui KI. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther. 2001;69(5):308–16.

    Article  CAS  PubMed  Google Scholar 

  971. Wandel C, Kim B, Kajiji S, Guengerich FP, Wilkinson GR, Wood AJJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999;59(16):3944–8.

    CAS  PubMed  Google Scholar 

  972. Wang L, Kitaichi K, Hui CS, Takagi K, Takagi K, Sakai M, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2009;27(8):587–93.

    Article  Google Scholar 

  973. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52(9):751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  974. Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui K. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  975. Maeda A, Tsuruoka S, Ushijima K, Kanai Y, Endou H, Saito K, et al. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur J Pharmacol. 2010;640(1–3):168–71.

    Article  CAS  PubMed  Google Scholar 

  976. Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S, et al. Diclofenac and its acyl glucuronide: determination of in vivo exposure in human subjects and characterization as human drug transporter substrates in vitro. Drug Metab Dispos. 2016;44(3):320–8.

    Article  CAS  PubMed  Google Scholar 

  977. Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal Anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016;356(2):366–74.

    Article  CAS  PubMed  Google Scholar 

  978. Dickinson RG, King AR, McKinnon GE, Hooper WD, Eadie MJ, Herkes GK. Studies on the renal excretion of the acyl glucuronide, phenolic glucuronide and sulphate conjugates of diflunisal. Br J Clin Pharmacol. 1993;35(6):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  979. Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E, et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol. 2008;596(1–3):166–72.

    Article  CAS  PubMed  Google Scholar 

  980. Honjo H, Uwai Y, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3). Drug Metab Lett. 2011;5(2):137–40.

    Article  CAS  Google Scholar 

  981. Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui KI. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19(5):369–74.

    Article  CAS  PubMed  Google Scholar 

  982. Statkevich P, Fournier DJ, Sweeney KR. Characterization of methotrexate elimination and interaction with indomethacin and flurbiprofen in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1993;265(3):1118–24.

    CAS  PubMed  Google Scholar 

  983. Honjo H, Uwai Y, Aoki Y, Iwamoto K. Stereoselective inhibitory effect of flurbiprofen, ibuprofen and naproxen on human organic anion transporters hOAT1 and hOAT3. Biopharm Drug Dispos. 2011;32(9):518–24.

    Article  CAS  PubMed  Google Scholar 

  984. Uwai Y, Honjo H, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2010;25(5):450–5.

    Article  CAS  PubMed  Google Scholar 

  985. Honjo H, Uwai Y, Nabekura T. Effect of selective cyclooxygenase-2 inhibitor lumiracoxib on phenolsulfonphthalein disposition in rats. Drug Metab Drug Interact. 2014;29(3):203–6.

    Article  CAS  Google Scholar 

  986. Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31(6):798–804.

    Article  CAS  PubMed  Google Scholar 

  987. van Montfoort JE, Hagenbuch B, Fattinger KE, Müller M, Groothuis GMM, Meijer DKF, et al. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther. 1999;291(1):147–52.

    PubMed  Google Scholar 

  988. Oude Elferink RPJ, Meijer DKF, Kuipers F, Jansen PLM, Groen AK, Groothuis GMM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochimica et Biophysica Acta (BBA) Rev Biomembr. 1995;1241(2):215–68.

    Article  Google Scholar 

  989. Shen Z, Yeh LT, Wallach K, Zhu N, Kerr B, Gillen M. In vitro and in vivo interaction studies between lesinurad, a selective urate reabsorption inhibitor, and major liver or kidney transporters. Clin Drug Investig. 2016;36(6):443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  990. Fellner C. Pharmaceutical approval update. Pharm Ther. 2016;41(2):95–6.

    Google Scholar 

  991. Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer. 2000;83(3):375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  992. Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ. Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126–34.

    Article  CAS  PubMed  Google Scholar 

  993. Campbell SD, Gadel S, Friedel C, Crafford A, Regina KJ, Kharasch ED. Influence of HIV antiretrovirals on methadone N-demethylation and transport. Biochem Pharmacol. 2015;95(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  994. Stormer E, Perloff MD, von Moltke LL, Greenblatt DJ. Methadone inhibits rhodamine123 transport in Caco-2 cells. Drug Metab Dispos. 2001;29(7):954–6.

    CAS  PubMed  Google Scholar 

  995. Dzierlenga AL, Clarke JD, Hargraves TL, Ainslie GR, Vanderah TW, Paine MF, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  996. Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci. 2001;90(10):1608–19.

    Article  CAS  PubMed  Google Scholar 

  997. Liu H, Yu N, Lu S, Ito S, Zhang X, Prasad B, et al. Solute carrier family of the organic anion-transporting polypeptides 1A2-madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood–brain barrier drug penetration. Drug Metab Dispos. 2015;43(7):1008–18.

    Article  CAS  PubMed  Google Scholar 

  998. Yu LS, Zhao NP, Yao TW, Zeng S. Zolmitriptan uptake by human intestinal epithelial Caco-2 cells. Pharmazie. 2006;61(10):862–5.

    CAS  PubMed  Google Scholar 

  999. Owen A, Goldring C, Morgan P, Park BK, Pirmohamed M. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol. 2006;62(2):237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1000. Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005;49(5):610–7.

    Article  CAS  PubMed  Google Scholar 

  1001. Jones H. Antiepileptic drug transport at the blood–brain barrier, the role of SLC transporters. Liverpool: University of Liverpool; 2014.

    Google Scholar 

  1002. Tompson DJ, Crean CS, Buraglio M, Arumugham T. Lack of effect of ezogabine/retigabine on the pharmacokinetics of digoxin in healthy individuals: results from a drug–drug interaction study. Clin Pharmacol Adv Appl. 2014;6:149–59.

    CAS  Google Scholar 

  1003. GlaxoSmithKline. POTIGA Prescribing information. 2016 [cited 10/09/2016]. https://www.gsksource.com/pharma/content/dam/GlaxoSmithKline/US/en/Prescribing_Information/Potiga/pdf/POTIGA-PI-MG.PDF.

  1004. Zhang C, Chanteux H, Zuo Z, Kwan P, Baum L. Potential role for human P-glycoprotein in the transport of lacosamide. Epilepsia. 2013;54(7):1154–60.

    Article  CAS  PubMed  Google Scholar 

  1005. Courtois A, Payen L, Le Ferrec E, Scheffer GL, Trinquart Y, Guillouzo A, et al. Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytes. Biochem Pharmacol. 2002;63(2):333–41.

    Article  CAS  PubMed  Google Scholar 

  1006. Zhang C, Kwan P, Zuo Z, Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86(23–24):899–905.

    Article  CAS  PubMed  Google Scholar 

  1007. von Moltke LL, Weemhoff JL, Perloff MD, Hesse LM, Harmatz JS, Roth-Schechter BF, et al. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein. Biopharm Drug Dispos. 2002;23(9):361–7.

    Article  CAS  Google Scholar 

  1008. Münch K, Schwöbel J, Monti J, Zolk O, Maas R, Terfloth L, et al. Inhibitory interaction of 125 drugs with the renally expressed organic cation transporter OCT2: development of a chemoinformatics-based model to predict transporter inhibition in silico. 11th Conference of the European Association for Clinical Pharmacology and Therapeutics (EACPT). Geneva; 2013.

  1009. Kamizono A, Inotsume N, Fukushima S, Nakano M, Okamoto Y. Inhibitory effects of procainamide and probenecid on renal excretion of sultopride enantiomers in rats. J Pharm Sci. 1993;82(12):1259–61.

    Article  CAS  PubMed  Google Scholar 

  1010. Dos Santos Pereira JN, Tadjerpisheh S, Abed MA, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1011. Schmitt U, Kirschbaum KM, Poller B, Kusch-Poddar M, Drewe J, Hiemke C, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012;102(2):312–20.

    Article  CAS  PubMed  Google Scholar 

  1012. Nagasaka Y, Oda K, Iwatsubo T, Kawamura A, Usui T. Effects of aripiprazole and its active metabolite dehydroaripiprazole on the activities of drug efflux transporters expressed both in the intestine and at the blood–brain barrier. Biopharm Drug Dispos. 2012;33(6):304–15.

    Article  CAS  PubMed  Google Scholar 

  1013. Wang JS, Zhu HJ, Markowitz J, Donovan J, DeVane C. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187(4):415–23.

    Article  CAS  PubMed  Google Scholar 

  1014. Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmied Arch Pharmacol. 2012;385(10):1017–23.

    Article  CAS  Google Scholar 

  1015. Schmidt M, Teitge M, Castillo ME, Brandt T, Dobner B, Langner A. Synthesis and biochemical characterization of new phenothiazines and related drugs as MDR reversal agents. Arch Pharm (Weinheim). 2008;341(10):624–38.

    Article  CAS  PubMed  Google Scholar 

  1016. El Ela AA, Härtter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967–75.

    Article  PubMed  CAS  Google Scholar 

  1017. Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  1018. Burgio DE, Gosland MP, McNamara PJ. Effects of p-glycoprotein modulators on etoposide elimination and central nervous system distribution. J Pharmacol Exp Ther. 1998;287(3):911–7.

    CAS  PubMed  Google Scholar 

  1019. Uhr M, Grauer MT, Yassouridis A, Ebinger M. Blood–brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res. 2007;41(1–2):179–88.

    Article  PubMed  Google Scholar 

  1020. Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry. 2014;4(53):90–8.

    Article  CAS  Google Scholar 

  1021. O’Brien FE, Clarke G, Dinan TG, Cryan JF, Griffin BT. Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood–brain barrier permeability. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol (CINP). 2013;16(10):2259–72.

    Google Scholar 

  1022. He J, Yu Y, Prasad B, Chen X, Unadkat JD. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm Drug Dispos. 2014;35(5):253–63.

    Article  CAS  PubMed  Google Scholar 

  1023. O’Brien FE, O’Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2013;38(11):2209–19.

    Article  CAS  Google Scholar 

  1024. Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54(8):840–6.

    Article  CAS  PubMed  Google Scholar 

  1025. Winter TN, Elmquist WF, Fairbanks CA. OCT2 and MATE1 provide bidirectional agmatine transport. Mol Pharm. 2010;8(1):133–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1026. Rengelshausen J, Weiss J, Lindenmaier H, Cihlar T, Walter-Sack I, Haefeli WE. Inhibition of the human organic anion transporter 1 by the caffeine metabolite 1-methylxanthine. Biochem Biophys Res Commun. 2004;320(1):90–4.

    Article  CAS  PubMed  Google Scholar 

  1027. Uwai Y, Kawasaki T, Nabekura T. Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney. Drug Metab Drug Interact. 2013;28(4):247–50.

    Article  CAS  Google Scholar 

  1028. Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005;33(4):495–9.

    Article  CAS  PubMed  Google Scholar 

  1029. Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood–brain barrier in a rat brain endothelial cell model. Neurosci Lett. 2008;442(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  1030. Knop J, Hoier E, Ebner T, Fromm MF, Muller F. Renal tubular secretion of pramipexole. Eur J Pharm Sci. 2015;15(79):73–8.

    Article  CAS  Google Scholar 

  1031. EMA. Xadago® assessment report. UK: European Medicines Agency; 2015.

  1032. Dumitras S, Sechaud R, Drollmann A, Pal P, Vaidyanathan S, Camenisch G, et al. Effect of cimetidine, a model drug for inhibition of the organic cation transport (OCT2/MATE1) in the kidney, on the pharmacokinetics of glycopyrronium. Int J Clin Pharmacol Ther. 2013;51(10):771–9.

    Article  CAS  PubMed  Google Scholar 

  1033. Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2009;7(1):187–95.

    Article  CAS  Google Scholar 

  1034. Okuda M, Urakami Y, Saito H, Inui KI. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta. 1999;1417(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  1035. Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246(3):589–95.

    Article  CAS  PubMed  Google Scholar 

  1036. Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmied Arch Pharmacol. 2011;383(2):203–8.

    Article  CAS  Google Scholar 

  1037. Bexten M, Oswald S, Grube M, Jia J, Graf T, Zimmermann U, et al. Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics. Mol Pharm. 2015;12(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  1038. Uwai Y, Tsuge M, Tokai Y, Kawasaki T, Nabekura T. Lithium interferes with the urinary excretion of phenolsulfonphthalein in rats: involvement of a reduced content of alpha-ketoglutarate, the driving force for organic anion transporters OAT1 and OAT3, in the kidney cortex. Pharmacology. 2015;96(5–6):278–83.

    Article  CAS  PubMed  Google Scholar 

  1039. Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, et al. Intestinal absorption mechanism of mirabegron, a potent and selective beta(3)-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013;10(5):1783–94.

    Article  CAS  PubMed  Google Scholar 

  1040. Lucero ML, Gonzalo A, Ganza A, Leal N, Soengas I, Ioja E, et al. Interactions of bilastine, a new oral H1 antihistamine, with human transporter systems. Drug Chem Toxicol. 2012;35(S1):8–17.

    Article  CAS  PubMed  Google Scholar 

  1041. Tahara H, Kusuhara H, Maeda K, Koepsell H, Fuse E, Sugiyama Y. Inhibition of OAT3-mediated renal uptake as a mechanism for drug–drug interaction between fexofenadine and probenecid. Drug Metab Dispos. 2006;34(5):743–7.

    Article  CAS  PubMed  Google Scholar 

  1042. Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002;71(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  1043. Matsushima S, Maeda K, Inoue K, K-y Ohta, Yuasa H, Kondo T, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug–drug interaction caused by cimetidine. Drug Metab Dispos. 2009;37(3):555–9.

    Article  CAS  PubMed  Google Scholar 

  1044. Chen YA, Juan CH, Hsu KY. Does ethnic variability exist in the systemic exposures of OATP1A2 substrates-fexofenadine in Taiwanese? Indian J Pharm Sci. 2015;77(5):573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1045. Ming X, Knight BM, Thakker DR. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm. 2011;8(5):1677–86.

    Article  CAS  PubMed  Google Scholar 

  1046. Dai P, Zhu L, Yang X, Zhao M, Shi J, Wang Y, et al. Multidrug resistance-associated protein 2 is involved in the efflux of Aconitum alkaloids determined by MRP2-MDCKII cells. Life Sci. 2015;15(127):66–72.

    Article  CAS  Google Scholar 

  1047. Nies A, Herrmann E, Brom M, Keppler D. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmied Arch Pharmacol. 2008;376(6):449–61.

    Article  CAS  Google Scholar 

  1048. Sun S, Wang K, Lei H, Li L, Tu M, Zeng S, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:1–6.

    Article  CAS  PubMed  Google Scholar 

  1049. Yokooji T, Kawabe Y, Mori N, Murakami T. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. J Pharm Pharmacol. 2013;65(2):280–91.

    Article  CAS  PubMed  Google Scholar 

  1050. Fleisher B, Unum J, Shao J, An G. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction. J Pharm Sci. 2015;104(1):266–75.

    Article  CAS  PubMed  Google Scholar 

  1051. Knop J, Misaka S, Singer K, Hoier E, Muller F, Glaeser H, et al. Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One. 2015;10(10):e0139370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1052. Peng YH, Sweet DH, Lin SP, Yu CP, Lee Chao PD, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1053. Misaka S, Yatabe J, Muller F, Takano K, Kawabe K, Glaeser H, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014;95(4):432–8.

    Article  CAS  PubMed  Google Scholar 

  1054. Sun H, Wang X, Zhou X, Lu D, Ma Z, Wu B. Multidrug resistance-associated protein 4 (MRP4/ABCC4) controls efflux transport of hesperetin sulfates in sulfotransferase 1A3-overexpressing human embryonic kidney 293 cells. Drug Metab Dispos. 2015;43(10):1430–40.

    Article  CAS  PubMed  Google Scholar 

  1055. Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther. 2007;81(4):495–502.

    Article  CAS  PubMed  Google Scholar 

  1056. Wong CC, Barron D, Orfila C, Dionisi F, Krajcsi P, Williamson G. Interaction of hydroxycinnamic acids and their conjugates with organic anion transporters and ATP-binding cassette transporters. Mol Nutr Food Res. 2011;55(7):979–88.

    Article  CAS  PubMed  Google Scholar 

  1057. Hong SS, Seo K, Lim SC, Han HK. Interaction characteristics of flavonoids with human organic anion transporter 1 (hOAT1) and 3 (hOAT3). Pharm Res. 2007;56(6):468–73.

    Article  CAS  Google Scholar 

  1058. Ikegawa T, Ohtani H, Koyabu N, Juichi M, Iwase Y, Ito C, et al. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett. 2002;177(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  1059. An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport. Drug Metab Dispos. 2014;42(9):1357–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  1060. Li Z, Wang K, Zheng J, Cheung FS, Chan T, Zhu L, et al. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol. 2014;52(12):1510–7.

    Article  CAS  PubMed  Google Scholar 

  1061. Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med. 2004;36(5):592–604.

    Article  CAS  PubMed  Google Scholar 

  1062. Shapiro AB, Ling V. Effect of quercetin on hoechst 33342 transport by purified and reconstituted p-glycoprotein. Biochem Pharmacol. 1997;53(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  1063. Wong CC, Akiyama Y, Abe T, Lippiat JD, Orfila C, Williamson G. Carrier-mediated transport of quercetin conjugates: Involvement of organic anion transporters and organic anion transporting polypeptides. Biochem Pharmacol. 2012;84(4):564–70.

    Article  CAS  PubMed  Google Scholar 

  1064. Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol. 2011;81(7):942–9.

    Article  CAS  PubMed  Google Scholar 

  1065. Lee JH, Lee JE, Kim Y, Lee H, Jun HJ, Lee SJ. Multidrug and toxic compound extrusion protein-1 (MATE1/SLC47A1) is a novel flavonoid transporter. J Agric Food Chem. 2014;62(40):9690–8.

    Article  CAS  PubMed  Google Scholar 

  1066. Wang L, Pan X, Sweet DH. The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochem Pharmacol. 2013;86(7):991–6.

    Article  CAS  PubMed  Google Scholar 

  1067. Ye L, Lu L, Li Y, Zeng S, Yang X, Chen W, et al. Potential role of ATP-binding cassette transporters in the intestinal transport of rhein. Food Chem Toxicol. 2013;58:301–5.

    Article  CAS  PubMed  Google Scholar 

  1068. Ma L, Zhao L, Hu H, Qin Y, Bian Y, Jiang H, et al. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug–drug interaction in rats. J Ethnopharmacol. 2014;153(3):864–71.

    Article  CAS  PubMed  Google Scholar 

  1069. Shibayama Y, Kawachi A, Onimaru S, Tokunaga J, Ikeda R, Nishida K, et al. Effect of pre-treatment with St John’s Wort on nephrotoxicity of cisplatin in rats. Life Sci. 2007;81(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  1070. Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000;68(6):598–604.

    Article  CAS  PubMed  Google Scholar 

  1071. Makino T, Okajima K, Uebayashi R, Ohtake N, Inoue K, Mizukami H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11β-hydroxysteroid dehydrogenase 2. J Pharmacol Exp Ther. 2012;342(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  1072. Ma L, Qin Y, Shen Z, Bi H, Hu H, Huang M, et al. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J Ethnopharmacol. 2015;22(172):430–5.

    Article  CAS  Google Scholar 

  1073. Carew MW, Leslie EM. Selenium-dependent and -independent transport of arsenic by the human multidrug resistance protein 2 (MRP2/ABCC2): implications for the mutual detoxification of arsenic and selenium. Carcinogenesis. 2010;31(8):1450–5.

    Article  CAS  PubMed  Google Scholar 

  1074. Fahrmayr C, Konig J, Auge D, Mieth M, Munch K, Segrestaa J, et al. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol. 2013;169(1):21–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1075. Uwai Y, Ozeki Y, Isaka T, Honjo H, Iwamoto K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food–drug interaction. Drug Metab Pharmacokinet. 2011;26(5):486–93.

    Article  CAS  PubMed  Google Scholar 

  1076. Sane R, Agarwal S, Mittapalli RK, Elmquist WF. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood–brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther. 2013;345(1):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1077. Sane R, Mittapalli RK, Elmquist WF. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. J Pharm Sci. 2013;102(4):1343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1078. Grigat S, Fork C, Bach M, Golz S, Geerts A, Schömig E, et al. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  1079. Bridges CC, Zalups RK, Joshee L. Toxicological significance of renal Bcrp: another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicol Appl Pharmacol. 2015;285(2):110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1080. Roy U, Chakravarty G, Honer Zu Bentrup K, Mondal D. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir. Biol Pharm Bull. 2009;32(12):2002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1081. Schwob E, Hagos Y, Burckhardt G, Burckhardt BC. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency. Am J Physiol Renal Physiol. 2014;307(12):F1373–9.

    Article  CAS  PubMed  Google Scholar 

  1082. Anzai N, Jutabha P, Endou H. Molecular mechanism of ochratoxin a transport in the kidney. Toxins (Basel). 2010;2(6):1381–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1083. Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, et al. Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999;289(3):1301–5.

    CAS  PubMed  Google Scholar 

  1084. Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75.

    Article  CAS  PubMed  Google Scholar 

  1085. Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, et al. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001;69(18):2123–35.

    Article  CAS  PubMed  Google Scholar 

  1086. Sokol PP, Ripich G, Holohan PD, Ross CR. Mechanism of ochratoxin A transport in kidney. J Pharmacol Exp Ther. 1988;246(2):460–5.

    CAS  PubMed  Google Scholar 

  1087. Srimaroeng C, Chatsudthipong V, Aslamkhan AG, Pritchard JB. Transport of the natural sweetener stevioside and its aglycone steviol by human organic anion transporter (hOAT1; SLC22A6) and hOAT3 (SLC22A8). J Pharmacol Exp Ther. 2005;313(2):621–8.

    Article  CAS  PubMed  Google Scholar 

  1088. Wang M, Qi H, Li J, Xu Y, Zhang H. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. Food Chem Toxicol. 2015;86:217–24.

    Article  CAS  PubMed  Google Scholar 

  1089. European Medicines Agency. Vyndaqel, INN—tafamidis, summary of product characteristics. EMA; 2016 [cited 11/09/2016].http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002294/WC500117862.pdf.

  1090. Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, et al. Inhibition of human hepatic bile acid transporters by tolvaptan and metabolites: contributing factors to drug-induced liver injury? Toxicol Sci Off J Soc Toxicol. 2016;149(1):237–50.

    Article  CAS  Google Scholar 

  1091. Feng B, Obach RS, Burstein AH, Clark DJ, de Morais SM, Faessel HM. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitro–in vivo study. Clin Pharmacol Ther. 2007;83(4):567–76.

    Article  PubMed  CAS  Google Scholar 

  1092. Kajiwara M, Masuda S, Watanabe S, Terada T, Katsura T, Inui K-I. Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters. Drug Metab Pharmacokinet. 2012;27(6):563–9.

    Article  CAS  PubMed  Google Scholar 

  1093. Hashimoto T, Narikawa S, Huang XL, Minematsu T, Usui T, Kamimura H, et al. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metab Dispos. 2004;32(10):1096–102.

    CAS  PubMed  Google Scholar 

  1094. Minematsu T, Hashimoto T, Usui T, Kamimura H. Characterization of renal tubular apical efflux of zonampanel, an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, in humans. Xenobiotica. 2008;38(9):1191–202.

    Article  CAS  PubMed  Google Scholar 

  1095. Uwai Y, Honjo H, Iwamoto K. Interaction and transport of kynurenic acid via human organic anion transporters hOAT1 and hOAT3. Pharmacol Res. 2012;65(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  1096. Song I-S, Lee DY, Shin M-H, Kim H, Ahn YG, Park I, et al. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One. 2012;7(5):e36637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1097. Bakhiya N, Bahn A, Burckhardt G, Wolff NA. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem. 2003;13(5):249–56.

    Article  CAS  PubMed  Google Scholar 

  1098. Zhang X, Groves CE, Bahn A, Barendt WM, Prado MD, Rodiger M, et al. Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. AJP Renal Physiol. 2004;287(5):F999–1010.

    Article  CAS  Google Scholar 

  1099. Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, et al. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003;63(1):143–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Ivanyuk.

Ethics declarations

The initiation of this work was made possible thanks to a Swiss Government Excellence Scholarship granted to Anton Ivanyuk.

Conflict of interest

Anton Ivanyuk, Thierry Buclin, Françoise Livio, and Jérôme Biollaz declare no conflicts of interest.

Ethical approval

No ethical approval was required for this literature review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanyuk, A., Livio, F., Biollaz, J. et al. Renal Drug Transporters and Drug Interactions. Clin Pharmacokinet 56, 825–892 (2017). https://doi.org/10.1007/s40262-017-0506-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0506-8

Navigation