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Abstract

Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory
approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological set-
ting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of
translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from
B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both
tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses
with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal
vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the
paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges
to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical
strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.

Key Points

Chimeric antigen receptor-T cell (CAR-T) therapy for the
treatment of solid tumors is currently being evaluated in
approximately one-third of all CAR-T clinical trials.
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[1]. The CAR itself has developed through several genera-
tions, albeit generally based on the same configuration: an
extracellular antigen-binding domain, usually employing
an antibody-derived single-chain variable Fragment (scFv),
linked through an extracellular spacer to a transmembrane
domain and an intracellular T cell activation tail comprising
different functional units. The core component of the CAR
endodomain typically consists of the intracellular domain
of the T cell co-receptor CD3( containing three immunore-
ceptor tyrosine-based activation motifs (ITAMs) in tandem
with, depending on the generation, none, one, or two co-
stimulatory domains. Upon expression in a T cell, the CAR
can engage its target antigen and thereby enable the lympho-
cyte to activate a plethora of effector responses resulting in
targeted cell killing [2].

Whilst T cells use their endogenous T cell receptor (TCR)
to bind specific proteins on target cells called the major his-
tocompatibility complex (MHC), the expression of the CAR
avoids this restriction and provides the real power to the
approach in which the T cell can be directed to virtually
any tumor target without MHC restriction. Consequently,
while tumors evolve to avoid immune elimination through
utilizing mechanisms that subvert the activity of the TCR,
the CAR employs a targeting approach that in turn ‘avoids
the avoidance mechanism’, making tumors again susceptible
to T cell-mediated attack. Together, the breadth of targeting
combined with the generic nature of the approach for any
patient, given the lack of reliance on MHC, makes the CAR
approach a potentially highly attractive therapy.
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Fig. 1 Estimated proportion of new cancer cases in the USA in 2019
(left) and CAR-T clinical trials per organ class (right). Based on Can-
cer Facts and Figures, 2019 (American Cancer Society) [129] and
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The reason why the approach is ‘potentially’ attractive
relates to the target and the barriers that the CAR-T cell
(CAR-T) has to overcome to engage and eliminate tumor
cells. An ideal target is one that is highly expressed on trans-
formed cells as compared to low or undetectable levels of
expression on non-malignant healthy tissues. Yet, for the
most part, such perfect targets do not exist due to the lack
of truly tumor-specific targets. The targets most commonly
available are typically over-expressed on transformed cells
but also expressed at low levels on non-malignant tissues
meaning that ‘on-target, off-tissue’ toxicity becomes a lim-
iting factor. In the B cell situation, the CD19 target anti-
gen is expressed solely on B cells meaning that the CAR-Ts
will eliminate malignant and non-malignant B cells. Whilst
clearly not ideal, the lack of B cells is not considered to be
life-threatening, with patients receiving immunoglobulin
infusions to counter the lack of B cells in the treated patient.

To date, the most clinically investigated indications
for CAR-T therapy are hematological malignancies [3, 4]
(Fig. 1). CD19-directed CAR-T therapy has demonstrated
impressive clinical responses in patients with advanced,
chemotherapy-resistant leukemia and lymphoma, reaching
up to 70-90% of minimum residual disease-negative com-
plete remissions in some studies [5—-8]. Two CD19-specific
CAR-T treatments were recently approved by the US Food
and Drug Administration (FDA) and the European Medi-
cines Agency (EMA), namely Yescarta™ (axicabtagene
ciloleucel) [9, 10] for patients with relapsed or refractory
aggressive non-Hodgkin lymphoma and Kymriah™ (tisa-
genlecleucel) [11, 12] for patients with acute lymphoblastic
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the U.S. National Library of Medicine (ClinicalTrials.gov; excluding
long-term follow-up and retrospective studies). CAR-T chimeric anti-
gen receptor T cell
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leukemia and diffuse large B cell lymphoma [13, 14]. The
success story of CAR-T therapies in hematological malig-
nancies has nurtured the hope of extending the use of these
‘living drugs’ to further cancer indications, including solid
tumors, especially considering the proportion of new cases
of patients with solid tumors per year as compared with
hematological tumors (Fig. 1).

When considering the majority of solid tumors, much
effort is ongoing worldwide to determine patient-spe-
cific antigens (neo-antigens) that can be targeted, but this
approach is not well-suited to the generic CAR-T approach
where a single CAR can be used in the majority of patients
with a specific tumor indication. Consequently, many of the
targets in current use for solid tumor CAR-T therapy have
been identified through antibody-directed therapies and are
usually expressed to some degree on non-malignant tissue.
As discussed later, this means either titrating the CAR-T
therapy to achieve a window of therapy without toxicity or
the development of methods that can more directly control
the CAR itself to negate the possibility of on-target, off-
tissue toxicity.

Beyond the question of target, there is increasing clarity
concerning the specific challenges raised by solid tumors to
CAR-T therapy. This review discusses these major obstacles
and explores preclinical and clinical efforts aiming to over-
come these hurdles and drive the success of CAR-T therapy
in the solid cancer area where, to date, substantive levels of
clinical response are still lacking (see Sect. 3).

2 Overcoming the Barriers Raised by Solid
Tumors Against T Cells

The impressive clinical response of CD19-specific CAR-T
likely relies on the high-level expression of the targeted
antigen on the tumor cells as well as the peripheral distribu-
tion of the lymphoid cancer cells enabling accessibility and
susceptibility to T cell-mediated elimination. Unlike B cell
malignancies, solid cancers sculpt a tumor microenviron-
ment (TME) that not only restricts lymphocyte trafficking
and access to the entire mass of the solid tumor [15] but
also downregulates their activity, expansion, and persistence
at the tumor site [16, 17]. The TME represents an intricate
cellular and molecular immunosuppressive network formed
by aberrant vasculature, stromal cells, immune cells (includ-
ing regulatory T cells [Tregs]/myeloid-derived suppressor
cells [MDSCs]/tumor-associated macrophages [TAMs]),
and extracellular matrix-containing inhibitory factors, and
is characterized by oxidative stress, nutritional depletion,
acidic pH, and hypoxia [18]. Beyond the immunosuppres-
sive TME and the paucity of uniquely and homogeneously
expressed tumor antigens, the inherent plasticity of can-
cer cell populations and the selective outgrowth of target

antigen-loss variants add an additional layer of complexity,
providing further challenges to the effectiveness of CAR-T
therapies.

To face those challenges, additional engineering of CAR-
Ts and the use of combination therapies hold the potential to
endow therapeutic cell products with novel attributes neces-
sary to overcome immunosuppressive aspects of the TME.
However, since solid tumors are protected from immune
attack by cumulative defenses, the abrogation of only one
factor may not produce a significant change in the effective-
ness of the overall cellular immunotherapy. Moreover, it is
crucial that efforts to enhance the functionality of CAR-Ts
do not compromise safety and should ideally be coupled
with stringent tools that allow for spatial and temporal con-
trol of their activity and persistence after deployment into
the patient [19].

The following sections describe some of the approaches
that are being considered to surmount challenges faced when
treating solid tumors with CAR-T therapies, with a focus on
strategies that concurrently resolve more than one evasion
mechanism and that are widely applicable to different solid
tumor indications.

2.1 Increasing the Homing of CAR-Ts at the Tumor
Site

Following infusion into the systemic circulation, CAR-Ts
are faced with the immediate obstacle of localizing to and
infiltrating into the tumor parenchyma. Homing and tissue
infiltrating is a multistep process governed by the expres-
sion and pairing of adhesion molecules present on both
the T cells and the inflamed vasculature that act sequen-
tially to mediate attachment, rolling, and extravasation of
circulating lymphocytes towards a chemokine gradient
produced by tumor cells. However, aberrant expression of
adhesion molecules on the tumor endothelium as well as
T cell chemokine receptor/tumor-associated chemokine
incompatibility and hydrostatic pressure result in inef-
ficient intratumoral T cell infiltration potentially causing
treatment-related toxicities due to the accumulation of
transferred cells in inflamed normal tissues, such as in the
case of injury or autoimmune disease [20].

Several preclinical models demonstrated that the forced
expression of a chemokine receptor complementary to
tumor-associated chemokines enhanced the ability of CAR-
Ts to traffic to and expand at the tumor site, consequently
improving their antitumor efficacy [21, 22]. However, appli-
cability of this approach is restricted by the fact that the
chemokine landscape can be extremely heterogeneous both
across disease entities and patients, underscoring the need
to identify specific receptor candidates to enhance T cell
infiltration into different cancer types [23]. Furthermore,
chemokines are not restricted to the tumors, suggesting there
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could be diversion of the cells to other anatomical locations
where the specific chemokine is present.

Although not always technically achievable, loco-regional
delivery of CAR-Ts reduces trafficking restrictions without
additional engineering while circumventing the transient
pulmonary sequestration of intravenously administered
T cells [24, 25]. In mouse models, intraperitoneal or intra-
pleural administration of CAR-Ts outperformed systemic
infusion and, surprisingly, also impacted disseminated
tumor sites attributed to a benefit of T cell activation shortly
after delivery [26, 27]. Accordingly, several clinical trials
are examining the safety of administration of loco-regional
CAR-T therapies (discussed in Sect. 3), even though infil-
tration within solid tumor masses is not always improved
by loco-regional delivery. Finally, nanoparticles expressing
CARs, which bind to and re-program peripherally circulat-
ing T cells in vivo, were also recently developed to increase
selectivity and distribution to distant organs [28].

2.2 Neutralization of Inmunosuppressive
Mediators within the Tumor Microenvironment

Once they have successfully invaded the tumor parenchyma,
CAR-Ts then have to contend with a highly hostile milieu for
T cell antitumor effector function, replete with suppressive
mediators (transforming growth factor [TGF]-p, interleukin
[IL]-10, IL-4) and inhibitory molecules (programmed death-
ligand 1 [PD-L1], cytotoxic T lymphocyte antigen 4 [CTLA-
4], Fas-ligand [FASL]). Apart from TME remodeling, which
should be induced by the combination with chemotherapy
agents, a more specific combination strategy with pro-
grammed death 1 (PD-1)/PD-L1 or CTLA-4-blocking anti-
bodies (the so-called checkpoint inhibitors commonly used
in clinical studies with excellent outcomes [29]) and CAR-Ts
can therefore potentially augment antitumor effects against
solid tumors [17, 30, 31]. CAR-Ts can also be shielded to
intrinsically resist immunosuppressive signaling by disrupt-
ing endogenous expression of inhibitory receptors through
gene editing or transgenic expression of a dominant-negative
form of those receptors or inhibitory antibodies [32-36].
However, the abrogation of immunosuppressive signaling
may be insufficient, prompting additional investigations into
alternative approaches that can turn TME limitations into
advantages for the transferred CAR-Ts. Co-expression of a
chimeric receptor that converts an immunosuppressive sig-
nal into an immunostimulatory one could also extend CAR-T
engineering beyond neutralization of inhibitory ligands to
the active reversal of their effects. Exchanging the endo-
domain of inhibitory receptors such as IL-4 receptor (IL-
4R) or PD-1 with signaling domains derived from stimu-
latory receptors (IL-7 receptor [IL-7R], CD28, or 4-1BB)
improved in vivo antitumor efficacy of tumor-directed
T cells [37-39]. Importantly, CAR-T activation could be
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confined to the tumor site since triggering would require
exposure to both the specific antigen and the tumor-derived
factor. In addition to promoting function and survival of the
modified T cells, the use of inhibitory-to-stimulatory switch
receptors might present the advantage of depriving the TME
of an immunosuppressive factor, potentially providing col-
lateral benefits to endogenous exhausted tumor-infiltrating
lymphocytes (TILs) [39, 40]. Although those additional
engineering strategies proved effective in murine models,
selective neutralization of a single immunosuppressive path-
way might render a functional, albeit transient, antitumor
state and fall short of preventing long-term relapse due to
the upregulation of multiple inhibitory receptors by activated
T cells, thus limiting the window of time that the CAR-Ts
exert their function. On the other hand, as those receptors
are important regulators of T cell homeostasis, the impact
of such modifications on T cell effector function in humans
remains to be determined, as well as any potential impact of
the leverage of immune brake that could lead to uncontrolled
lymphoproliferation or other immune-related adverse events.

Another methodology addresses the unfavorable TME
by using CAR-Ts as production vehicles that secrete pro-
inflammatory cytokines, such as IL-12 or IL-18, into the
targeted tumor tissue, tuning the T cell response into a more
acute one [41]. Beyond auto-stimulation of the transferred
cells [42], release of effector cytokines by those so-called
‘TRUCKS’ (T cells Redirected for Universal Cytokine Kill-
ing) was shown to reshape the TME through multiple parac-
rine mechanisms including recruitment of additional tumor-
reactive cells from the innate and adaptive immune systems
[43-45]. As tumor cell lysis by TRUCKS can generate new
antigen-specific lymphocytes via epitope spreading, the con-
comitant local release of effector cytokines will support the
effector function of these host immune cells and also recruit
and activate innate immune cells [46, 47]. Despite all the
expected benefits, the systematic delivery of proinflamma-
tory cytokines may lead to significant toxicities [48], under-
scoring the critical need to restrict cytokine production to
the lesion site by using a promoter that becomes active only
upon CAR engagement. In addition, inducible expression
systems are more likely to constrain cytokine levels within a
therapeutic range as overactivation of T cells by supra-thera-
peutic cytokine levels will foster counterproductive exhaus-
tion. However, in early-phase clinical trials, adoptive transfer
of TILs genetically engineered to secrete IL.-12 at the tumor
site resulted in severe toxicities [49]. Therefore, the use of
less stimulatory cytokines such as IL-18 might present a
safer option as this cytokine was given intravenously at high
biologically active doses to cancer patients with no occur-
rence of dose-limiting toxicities [50]. In addition, integra-
tion of suicide genes or safety switches is another option to
mitigate toxicity potentially induced by such strategies (see
Sect. 2.5).
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Since emerging nanoscale-targeted drug carriers are able
to remodel the TME without giving rise to the systemic tox-
icity, CAR-engineered T cells were also employed as active
chaperones to successfully deliver adenosine receptor antag-
onist-loaded cross-linked multilamellar liposomal vesicles
to TILs deep in the immunosuppressive TME, in order to
prevent or rescue the emergence of hypofunctional CAR-Ts
within the TME [51].

2.3 Boosting In Vivo CAR-T Expansion
and Persistence Capacities

While the in vivo cell expansion and effectiveness of CD19
CAR-Ts seem to correlate in certain studies using CAR-T
in hematological malignancies [52, 53], it is generally con-
sidered that the intrinsic qualities of infused lymphocytes
are some of the determinants of success in CAR-T thera-
pies. The ex vivo manipulation of T cells provides a unique
opportunity to select for cellular subsets with enhanced
potential for mounting durable antitumor responses [54].
Selection of CD8" cytotoxic cellular subsets, ratios of
CD4:CDS, or use of natural killer cells may increase broad
effector activity [46, 55]. Although the ‘seed’ population
optimally suited for the production of long-lived CAR-Ts is
still a matter of debate, an emerging consensus postulates
that less-differentiated phenotypes such as cells presenting
naive and central memory phenotypes have superior pro-
liferative capacity and sustained survival and, as such, are
more effective at regressing established tumors than late-
differentiated effector memory and effector T cells [56].
Building on this concept, there is growing interest in devel-
oping protocols to conduct large-scale T cell amplification,
while simultaneously preserving the functional features of
early-memory T cells [57]. It was shown that reducing the
duration of ex vivo culture to 3-5 days yielded less-differ-
entiated cells with enhanced therapeutic potential compared
with cells expanded using standard 9- to 12-day protocols
[58]. An alternative strategy to limit cell differentiation dur-
ing CAR-T manufacturing is the pharmaceutical blockade of
the phosphoinositide 3-kinase (PI3 K)/AKT axis playing an
integral role in T cell activation downstream of the TCR and
co-stimulatory molecules [59, 60]. Another option would
be to substitute IL-7 and IL-15 for IL-2 as the growth factor
support during ex vivo generation of CAR-T products as this
cytokine combination was shown to enrich for T memory
stem cells [61]. In preclinical models, CAR-Ts expanded in
IL-7 and IL-15 showed superior persistence and antitumor
activity compared with counterparts grown in IL-2 [62].
Holding back the acquisition of full effector capacity
ex vivo by the reduction of culture duration or modulation
of T cell differentiation represents relatively easily translat-
able and widely applicable ways for the generation of early-
memory CAR-Ts. The question is whether these cells have

the therapeutic potential to be effective at lower infusion
doses, potentially mitigating acute toxicity and commensu-
rately trimming production costs [60].

The evolution of CAR design, to date, has focused pre-
dominantly on increasing signaling outputs through combi-
natorial modules of co-stimulatory domains fused in series
to ITAM-bearing CD3( activation domain [63]. However,
there is now a growing appreciation that functional tun-
ing of CAR signaling has an upper limit. Above this limit,
gains in the magnitude of effector outputs are negated by
augmentation of T cell differentiation, exhaustion, and
activation-induced cell death (AICD) [20, 21]. Accord-
ingly, the next challenge for future CAR generations will be
to calibrate CAR activation in order to achieve an optimal
balance between effector and memory programs in T cells.
Optimized configurations of CARs are being investigated
to better recapitulate the dynamic process of natural T cell
activation and co-stimulation, sharply differing from the
1:1 stoichiometry constraint within CAR designs currently
under clinical investigation. For example, the expression of
a CD28-based CAR along with 4-1BB ligand resulted in
higher therapeutic efficacy, reconciling tumoricidal func-
tion afforded by CD28 co-stimulation with increased T cell
persistence afforded by 4-1BB engagement [64]. Recently,
a CD28-based CAR containing a single functional ITAM
was shown to favor in vivo persistence of highly functional
CAR-Ts, balancing the replicative capacity of long-lived
memory cells with the acquisition of strong antitumor effec-
tor functions [65]. However, the optimal construct will likely
depend on several factors, including affinity (avidity) for tar-
get, tumor access, and the type of TME.

Therefore, while several options to improve both per-
sistence and expansion capacities of CAR-Ts are currently
being investigated, no universal solution has yet been iden-
tified. To this end, the empirical testing of CARs remains
the only option to evaluate the different potential schema
of CAR/T cell phenotype/additional functionality such as
TRUCKS.

2.4 Improving Targeting of Heterogeneous Tumors

Although not specific to solid tumors, due to the paucity of
truly tumor-restricted antigens in solid tumor tissues, CAR-
Ts will need to become capable of recognizing patterns of
gene expression that are different between normal and malig-
nant cells, rather than relying on single—though highly
specific—antigenic markers. One approach that was inves-
tigated is to engineer CAR-Ts with dual specificity, whereby
two receptors targeting distinct antigens act as ‘AND/NOT’
Boolean logic gates [66, 67] in order to prevent toxicity
while maintaining efficacy, rather than irreversibly delet-
ing CAR-Ts that are toxic against both tumor and host. The
‘AND’ gates require the successful recognition of a set of
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pairwise upregulated tumor antigens by two different CARs
to initiate full immune cell functions [68, 69], whereas
‘NOT’ gates employ receptors that prevent T cell activa-
tion when engaging antigens found on healthy tissues [70].
While Boolean logical sensing may enhance the specificity
of CAR-Ts towards tumors, this approach is still limited by
the fixed antigen specificity of conventional CAR design,
and by the fact that the therapeutic window will require an
optimal expression pattern of multiple targets while a single
target antigen loss could severely disable the system.

An alternative to this classical antibody-based CAR
limitation would be to harness the multiple ligand-binding
ability of physiological immune receptors such as NKG2D
(natural killer group 2 member D). NKG2D recognizes sev-
eral stress-induced ligands expressed within the TME of
cancers from diverse origins, not only on the tumor cells
themselves but also on tumor neovasculature and tumor-
associated immune cells. Thus, a CAR bearing NKG2D as
the targeting moiety holds the potential to eliminate a broad
array of cancers, simultaneously altering the tumor and its
supportive framework [71-73]. A second ligand-based CAR
approach targets the ErbB receptor family, for which at least
one member is expressed in 88% of solid tumors [74-77].

Another possibility is to target the CAR-Ts towards anti-
gens expressed on tumor stroma and vasculature, which are
expressed by multiple tumor types and would increase the
homing into the TME [78, 79].

2.5 Mitigating Toxicity

A first option to mitigate the potential on-target, off-tissue
toxicity of CAR-Ts is the use of CAR-Ts with reduced per-
sistence capacities such as transiently expressed CARs using
non-viral approaches including messenger RNA (mRNA)
electroporation [80], sleeping beauty transposition [81], and/
or a multiple-dose schedule of short persisting CAR-Ts to
control engraftment [80, 82]. Furthermore, the hypofunc-
tionality of CAR-Ts within the TME may also be overcome
by a multiple-dosing approach [16, 17, 83].

Equipping CAR-Ts with properties aimed at enhancing
their potency or their infiltration into tissues should ide-
ally be coupled with stringent safety attributes that allow
for temporal regulation of activity or persistence of infused
cells in the patients. Co-expression of suicide genes encod-
ing surface molecules or enzymes conferring susceptibility
to antibody- or drug-mediated cell death allows for selec-
tive and irreversible depletion of the transduced T cells after
infusion into the patients [84—86].

To avoid the irrevocable elimination of potentially ther-
apeutic cells, several platforms have been developed to
repeatedly turn on and off CAR-T activity at will after re-
infusion into the patients (called ‘safety switch’ or ‘advanced
cell programming technology’) to prevent and/or limit the
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likelihood of toxicity. These ‘switchable’ CAR-Ts are not
directed to a cell surface target antigen and are per se inert
but become operative strictly in the presence of a bispecific
adaptor molecule that mediates formation of the immuno-
logical synapse between the target cancer cell and the lym-
phocyte [87-92]. After rapid elimination of the adaptor mol-
ecule from the peripheral blood, CAR-Ts automatically turn
off, thus providing a self-limiting safety switch. Moreover,
the modularity of the switchable CAR-T approach provides
options for altering specificity post-adoptive transfer by
delivery of adaptor molecules targeting different antigens
together with one single cellular product, which may be an
effective strategy for addressing antigen loss relapse and het-
erogeneity of tumor populations. Furthermore, the ability
to titrate CAR-T activity in vivo through adaptor molecule
dosing paradigms offers the opportunity to achieve a gradual
clearance of cancer cells, minimizing acute toxicity in high
tumor burden patients. Finally, low-dose treatment with an
adaptor molecule maintained a larger central memory com-
partment within CAR-Ts than did high-dose regimens, with
the potential to boost in vivo cell endurance, as discussed
earlier. However, the potential drawback of this approach
lies in the need for multiple costly reagents and the chal-
lenge of ensuring that the engager and CAR-T meet in the
correct location at a concentration of each entity sufficient
to drive a therapeutic response. Within the parenchyma of a
solid tumor, this would likely be a major dosing challenge.

2.6 Combination of Approaches into One Cellular
Product

The future of CAR-T cellular therapies for solid tumors
resides in the alliance of wisely selected complemen-
tary approaches that will generate a cellular product with
enhanced tissue penetration and homing, well-balanced
effector and memory outputs, enhanced specificity/safety,
and the ability to resist TME immunosuppression while
concurrently reviving the endogenous host immune system
(see Table 1). Using healthy donor cells instead of each
patient’s cells, i.e., development of allogeneic approaches
with a decreased risk of graft-versus-host disease (GvHD)
and management of host-versus-graft disease (HvGD), may
provide answers to some of these issues. The use of a single
donor should provide a greater degree of product consist-
ency, while the likely youthful healthy donor would poten-
tially provide a T cell product that has not been skewed by
the long-term exposure to tumor cells as would be the case
for an autologous product. From a practical perspective, allo-
geneic CAR-T therapy may also provide economic benefits
through reduced per patient costs and the fact that patients
would not need to wait for the length of the manufactur-
ing period before receiving the product. Earlier treatment of
patients with acute disease could be of critical importance
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with respect to therapeutic readouts. One approach being
pursued to generate an allogeneic CAR-T product is the
complete elimination of TCR and human leukocyte antigen
(HLA) molecules usually performed by gene-editing tech-
niques [93, 94].

Yet, a major task is the transition from proof-of-concept
studies employing human tumor cell line xenografts into
immunocompromised mice to the development of clinically
implementable technologies. Indeed, the clinical predictive
power of such experimental systems is challenged by the
fact that they imperfectly reflect the structural complex-
ity and heterogeneity of established solid human tumors,
poorly inform about potential cross-reactivity against
healthy human tissues, and provide limited insights about
how CAR-Ts interface with the host immune components.
Patient-derived xenografts may represent more clinically
relevant models but suffer from a variable engraftment rate
and poor availability [95]. In addition, stromal cells from
the original human tumor cannot proliferate continuously
and are replaced by cells derived from the recipient mouse
[96], thereby preventing investigations into the impact of
therapy on TME. Ultimate validation of which combinato-
rial approaches or defined T cell subsets composition will
achieve sustainable effective responses in the human con-
text will only come from future clinical trials carried out to
evaluate the resulting conclusion.

3 Current Treatment of Solid Tumors
in the Clinic

Based on the first successes obtained with hematologic
indications, and apart from the optimizations of the co-
stimulatory domains and overall CAR vector construct and
viral vector selection, the majority of clinical studies tar-
geting solid tumors did not further modify the construct,
the ex vivo cell culture conditions, or the administration
procedures, nor did they use combinations to specifically
counteract the hurdles raised by solid tumors. Early studies
targeting solid tumors with a single intravenous infusion of
first- or second-generation CAR-Ts reported little evidence
of clinical effectiveness, while there was some evidence of
on-target, off-tumor toxicity seen using CAR-Ts targeting
carbonic anhydrase-IX [97, 98] in renal cell carcinoma or
HER?2 (human epidermal growth factor receptor 2)/neu in
colorectal cancer [99], which further limited the develop-
ment of CAR-Ts in the solid tumor field.

As of May 2019, around 160 completed or ongo-
ing CAR-T clinical trials registered with the US National
Library of Medicine (ClinicalTrials.gov) are targeting solid
tumors (Fig. 1) (64% of them in phase I, 30% in phase 1/
II, 3% in phase II, 2% in long-term follow-up, and 1% ret-
rospective studies) over a total of ~510 clinical trials in

A\ Adis

the CAR-T field. The most investigated targets are meso-
thelin, GD2 (disialoganglioside), HER2, MUC1 (mucin
1), CEA (carcinoembryonic antigen), GPC3 (glypican 3),
and EGFRVIII (variant III of the epidermal growth factor
receptor [EGFR]) (Fig. 2) and several companies that are
currently developing CAR-T approaches for solid tumor
indications have reported some preliminary clinical data
(Tables 2, 3).

In total, only 61 trials (of which 51 are still ongoing) are
evaluating one or two strategies specific to targeting solid
tumors, with loco-regional administration being the most
represented option, followed by TME neutralization (Fig. 2).

Loco-regional delivery (detailed in Sect. 2.1) is being
or was investigated in 22 trials and is the only option that,
to date, has demonstrated clinical activity and, in addition,
provides a way to circumvent the potential on-target, off-
tumor toxicities by confining transferred cells within their
targeted organs. Glioblastoma is, by far, the indication where
the results were the most encouraging. Multiple intracra-
nial infusions (to bypass the blood—brain barrier and target
tumor cells throughout the entire central nervous system)
of first-generation IL-13Ra2-specific CAR-Ts led to tran-
sient anti-glioma responses and an encouraging duration
of overall survival in the first three patients with recurrent
glioblastoma multiforme (GBM) treated in the trial [100]. A
recent case report demonstrated that repeated intracavitary
infusions of second-generation IL-13Ra2-specific CAR-Ts
further demonstrated regression of all intracranial and spinal
tumors, lasting for 7.5 months in one 50-year-old patient
with recurrent multifocal GBM [101]. Of 16 evaluable
patients with GBM treated with HER2-specific CARs, one
had a partial response lasting for more than 9 months and
seven had stable disease (SD) ranging in duration between
8 weeks and 29 months [102] (sponsored by Mustang Bio).

The next most important strategies being investigated
are approaches to neutralizing or resisting the effects of
the TME (18 trials) and/or reverting the TME to a stimula-
tory environment through the intrinsic release of cytokines
(six trials) (see Sect. 2.2 for both approaches). As an exam-
ple, one trial run by the Memorial Sloan Kettering Cancer
Center and targeting pleural mesothelioma patients (recently
licensed by Atara) with intrapleural administrations of mes-
othelin-targeting CAR-Ts observed two complete responses
(CRs) out of 14 patients after combination with a checkpoint
inhibitor [103].

A good example of a trial on a CAR-T that can mitigate
toxicity (approach detailed in Sect. 2.5) is Bellicum Phar-
maceuticals’ autologous prostate stem cell antigen (PSCA)-
targeting CAR-T product (BPX-601). This CAR-T employs
a rimiducid-inducible myeloid differentiation primary
response 88 (MyD88)/CD40 co-activation switch to aug-
ment T cell proliferation and persistence, which provides
control over the degree of activation of the CAR-Ts through
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SOLID CAR T CLINICAL TRIALS - PER TARGET

VEGFR2 AXL D171
CD117CD20
AFP CcD70
P16 " CD80/86
NY-ESO-1 CEA
NKG2D ligands .
MUC16 Claudin18.2

cMet

MUC1 DR5

MMP

MG7
DLL-3

FAP
FR-alpha

HER2 GPC3 gp100

Fig.2 CAR-T clinical trials targeting solid tumors. Based on the US
National Library of Medicine (ClinicalTrials.gov; excluding long-
term follow-up and retrospective studies). AFP a-fetoprotein, CAR
chimeric antigen receptor, CAR-T chimeric antigen receptor T cell,
CEA carcinoembryonic antigen, DLL-3 delta-like protein 3, DRS
death receptor 5, EGFR epidermal growth factor receptor, EGFRvIII
variant III of the epidermal growth factor receptor, EPCAM epithe-
lial cell adhesion molecule, EpHA2 Ephrin type A receptor 2, FAP
fibroblast activation protein, FR-alpha folate receptor-a, GD2 disialo-
ganglioside, gp100 glycoprotein 100, GPC3 glypican 3, HER2 human

adjustments to the schedule of rimiducid administration, but
still in a tumor-dependent manner. Results from a phase I
study evaluating BPX-601 in PSCA-positive metastatic pan-
creatic, gastric, or prostate cancer patients with or without
prior preconditioning were presented at the American Asso-
ciation of Clinical Oncology (ASCO) meeting in 2019 [104]
and reported rimiducid-dependent cell expansion, persis-
tence, and cytokine secretion with no dose-limiting toxicity
or cytokine release syndrome. After BPX-601 + rimiducid
(15 patients treated), the best responses were eight SD and
three progressive disease (one patient was non-evaluable).
The trial is still ongoing with a more complete lymphode-
pleting regimen.

Other encouraging results were observed in clinical tri-
als that include a combination of strategies (described in
Sect. 2.6). A first example is a trial targeting pediatric neu-
roblastoma with single or multiple intravenous infusions
of CAR-T-specific subpopulations (approach detailed in
Sects. 2.3 and 2.5). There was one CR in the six patients
treated with three intravenous infusions of CD8™ cytotoxic
T lymphocytes co-expressing a CD171-targeting CAR and
a selection-suicide expression enzyme, followed by addi-
tional treatment with salvage chemotherapy [105]. Similarly,
three of 11 high-risk neuroblastoma patients with active
disease achieved CR following infusions of Epstein Barr

SOLID CAR T CLINICAL TRIALS - PER APPROACH

Loco-regional

Loco-regional + cytokines
Cytokines

% Cytokines + mitigation ot toxicity

TME neutralization + cytokines

Only CAR (i.e. without
further optimization
specific to solid tumors)

TME neutralization

TME neutralization +
mitigation of toxicity
TME neutralization + other

Other
Other + mitigation of toxicity
Mitigation of toxicity

epidermal growth factor receptor 2, IL-13Ra2 interleukin-13 receptor
a2, LMP]I latent membrane protein 1, MAGE melanoma associated
antigen, MMP matrix metalloproteinase, MUC! mucin 1, NKG2D
natural killer group 2 member D, NY-ESO-1 New York esophageal
squamous cell carcinoma 1, PD-LI programmed death-ligand 1,
PSCA prostate stem cell antigen, PSMA prostate-specific membrane
antigen, RORI1/2 receptor tyrosine kinase-like orphan receptor 1/2,
TME tumor microenvironment, VEGFR-2 vascular epidermal growth
factor receptor-2

virus-specific cytotoxic T lymphocytes and CD3-specific
antibody OKT3-activated T cells expressing GD2-targeting
CAR-Ts, and persistence of cells beyond 6 weeks was associ-
ated with superior clinical outcome [106, 107].

Kings College, London has developed another combined
approach with genetically engineered T cells (T4 CAR-Ts
or LEU-001), which co-express two chimeric receptors:
one CAR-T specific for ErbB ligands (HER2, HER3, and
EGFR) and a second chimeric cytokine receptor (4ap)
which converts the IL-4 signal into a strong and selective
growth signal, i.e., a CAR-T product that combines several
approaches: multiple targeting and reshaping of the TME
through release of pro-inflammatory cytokines (see Sects.
2.2,2.4, and 2.6). A clinical study (ClinicalTrials.gov iden-
tifier NCT01818323) is currently evaluating intratumoral
administration of T4 CAR-Ts for patients with head and
neck squamous cell carcinoma without prior lymphodeple-
tion [108, 109]. Results made public at the CAR-T Congress
EU in January 2019 revealed nine of 15 injected patients
with SD, with potential survival improvement. One patient
received further treatment with the anti-PD-1 inhibitor pem-
brolizumab and was in CR 2.5 years after pembrolizumab
treatment, suggesting a combination of their CAR-T therapy
and an anti-checkpoint inhibitor might be the way to improve
efficacy.
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Celyad is also involved in CAR-T development for solid
tumors. Based on the broad (eight-ligand) targeting capa-
bility of NKG2D CAR-TSs that target cancer cells and also
stressed stromal cells within the solid tumor environment
(approach detailed in Sect. 2.4), in 2016 Celyad initiated a
complete clinical development plan first based on its lead
product candidate, CYAD-01 (also known as NKR-2), a
‘first-generation’ CAR (comprising the full-length human
NKG2D receptor fused to the intracellular domain of CD3()
functioning rather like a second-generation CAR-T thanks to
its interaction with the naturally endogenously expressed co-
stimulatory molecule DAP-10 (DNAX-activating protein 10)
at the T cell surface. Three studies evaluating the CYAD-01
product are directed against solid tumor indications [110].
Preliminary data indicated signs of clinical activity follow-
ing multiple intravenous administrations of CYAD-01 with-
out prior lymphodepletion preconditioning in patients with
colorectal cancer or ovarian cancer (four SD over the 14
patients recruited in the solid tumor arm [111]). The sec-
ond trial is SHRINK (NCT03310008), which is evaluating
CYAD-01 administered concurrently to a standard neoad-
juvant FOLFOX (leucovorin [folinic acid], 5-fluorouracil,
and oxaliplatin) chemotherapy regimen in metastatic colo-
rectal cancer (mCRC) with the aim of improving CYAD-01
engraftment in addition to the TME remodeling induced by
the chemotherapy (approach detailed in Sect. 2.2). Prelimi-
nary data presented at SITC (Society for Immunotherapy of
Cancer) 2018 indicated encouraging signs of activity with a
partial response observed in one of three patients [111]. The
LINK study (NCT03370198) focuses on loco-regional infu-
sion into the hepatic artery of the CYAD-01 cells in patients
with mCRC (approach detailed in Sect. 2.1).

Importantly, Celyad also developed an allogeneic analog
of CYAD-01, using a TCR inhibitor molecule (TIM) coded
within the vector construct to control the risk of GvHD,
called CYAD-101, which is currently being evaluated in a
phase I study with a similar study design as the SHRINK
study—the alloSHRINK study (NCT03692429). At this
time, this is the only clinical trial with an allogeneic CAR-T
in a solid tumor, while there are still very limited allogeneic
programs specifically designed for solid tumors in preclini-
cal development (approach detailed in Sect. 2.6).

4 Methodology

For the pie charts in Figs. 1 and 2, a list of clinical trials
evaluating CAR-T therapies was compiled from the Clinical-
Trials.gov registry and the number of trials targeting specific
organ classes or using a specific approach was counted for
each represented option. Only for the pie chart represent-
ing the target antigens used in trials targeting solid tumors
(Fig. 2; left chart), the numbers represented consider all

trials evaluating that specific target antigen, i.e., where a
trial is evaluating several targets in parallel, it is counted
individually for each target (as detailed in Table 2).

5 Conclusions

CAR-T therapy for the treatment of solid tumors is currently
being evaluated in approximately one-third of the clinical
trials of CAR-T approaches, with several companies now
moving into the area (Table 3). While the number of patients
with solid tumors dramatically outnumber those with hema-
tological malignancies (Fig. 1), CAR-T therapies targeting
solid cancers have yet to demonstrate the clinical activity
achieved with hematological indications [112].

Considerable efforts have been made in recent years to
develop new approaches to overcome the hurdles raised by
solid tumors and optimize the CAR-T therapy for these spe-
cific indications, including strategies to increase the tumor
accessibility and infiltration of CAR-Ts within the tumor
site, neutralize and/or modulate the immunosuppressive
TME, improve the CAR-T functions, and/or mitigate poten-
tial toxicities.

Finally, apart from those strategies to make CAR-Ts
work in solid tumors, there will also be the need to make
those technologies more affordable for their clinical usage
to become widespread. By using healthy donor cells instead
of each patient’s cells, allogeneic CAR-T could be one way
of reaching this goal.

Still, to date, despite a few interesting results, there is lit-
tle evidence that CAR-T therapy can advance as a standard
treatment option for patients with solid tumors. Therefore, a
key question is whether the current CAR-T structure utiliz-
ing one of the strategies discussed here is able, for example,
to circumvent all of the mentioned hurdles, or whether those
CAR-Ts will require additional fundamental changes in their
architecture to eventually be sufficiently active against solid
tumors.
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