Skip to main content

Advertisement

Log in

Reduction Removal of Cr(VI) from Wastewater by CO·−2 Deriving from Formate Anion Based on Activated Carbon Catalyzed Persulfate

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

As a strong reducing radical, carbon dioxide anion radical(CO·−2 can be generated by initiating sulfate radical(SO·−4 ) in the presence of formate anions(FA) for Cr(VI) reduction. Moreover, activated carbon(AC)-catalyzed persulfate(PS) oxidation is an economically justifiable, environmentally friendly, and easy-to-scale-up method to produce SO·−4 . The complete removal of Cr(VI) was achieved within 280 min for an initial Cr(VI) concentration of 50 mg/L under the optional condition of c(AC)=1 g/L, [PS]0=10 mmol/L, [FA]0=10 mmol/L, T=30 °C, and unadjusted pH. When the molar ratio of FA to PS was greater than or equal to 1, the system maintained a strong reduction state. The mechanism investigation confirmed that FA was converted to carboxyl anion radical(CO·−2 ) as the predominant radical for Cr(VI) reduction. This novel system may offer a potential platform technology for Cr(VI) wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobya M., Bioresour Technol., 2004, 91(3), 317

    CAS  PubMed  Google Scholar 

  2. du Preez S. P., Beukes J. P., van Zyl P. G., Metallurgical and Materials Transactions B, 2014, 46(2), 1002

    Google Scholar 

  3. Nakajima A., Baba Y., Water Res., 2004, 38(12), 2859

    CAS  PubMed  Google Scholar 

  4. Zhang Y. J., Ou J. L., Duan Z. K., Xing Z. J., Wang Y., Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2015, 481, 108

    CAS  Google Scholar 

  5. Fang Z., Qiu X., Huang R., Qiu X., Li M., Desalination, 2011, 280(1), 224

    CAS  Google Scholar 

  6. Bansal M., Singh D., Garg V. K., J. Hazard Mater., 2009, 171(1), 83

    CAS  PubMed  Google Scholar 

  7. Wang N., Zhu L., Deng K., She Y., Yu Y., Tang H., Applied Catalysis B: Environmental, 2010, 95(3/4), 400

    CAS  Google Scholar 

  8. Daulton T. L., Little B. J., Jones-Meehan J., Blom D. A., Allard L. F., Geochim Cosmochim Acta, 2007, 71(3), 556

    CAS  Google Scholar 

  9. Thomson R. C., Miller M. K., Acta Mater., 1998, 46(6), 2203

    CAS  Google Scholar 

  10. Zongo I., Leclerc J.-P., Maiga H. A., Wethe J., Lapicque F., Sep. Purif Technol., 2009, 66(1), 159

    CAS  Google Scholar 

  11. Tosco T., Papini M. P., Viggi C. C., Sethi R., Journal of Cleaner Production, 2014, 77, 10

    CAS  Google Scholar 

  12. Oh W.-D., Dong Z., Lim T.-T., Applied Catalysis B: Environmental, 2016, 194, 169

    CAS  Google Scholar 

  13. Rosso J. A., Bertolotti S. G., Braun A. M., Martire D. O., Gonzalez M. C., J. Phys. Org. Chem., 2001, 14(5), 300

    CAS  Google Scholar 

  14. Tachikawa T., Tojo S., Fujitsuka M., Majima T., Langmuir, 2004, 20(22), 9441

    CAS  PubMed  Google Scholar 

  15. Schutz O., Meyerstein D., Tetrahedron Lett., 2006, 47(7), 1093

    CAS  Google Scholar 

  16. Mora V. C., Rossoa J. A., Carrillo Le Roux G., Martire D. O., Gonzalez M. C., Chemosphere, 2009, 75(10), 1405

    CAS  PubMed  Google Scholar 

  17. Wu W., Liu G., Liang S., Chen Y., Shen L., Zheng H., Yuan R., Hou Y., Wu L., J. Catal., 2012, 290, 13

    CAS  Google Scholar 

  18. Berkovic A. M., Bertolotti S. G., Villata L. S., Gonzalez M. C., Pis Diez R., Martire D. O., Chemosphere, 2012, 89(10), 1189

    CAS  PubMed  Google Scholar 

  19. Berkovic A. M., Gonzalez M. C., Russo N., Michelini M. D. C., Pis Diez R., Martire D. O., J. Phys. Chem. A, 2010, 114(49), 12845

    CAS  PubMed  Google Scholar 

  20. Ren H., Hou Z., Han X., Zhou R., Chem. Eng. J., 2017, 309, 638

    CAS  Google Scholar 

  21. Harbour J. R., Hair M. L., Canadian Journal of Chemistry, 1979, 57(10), 1150

    CAS  Google Scholar 

  22. Wang J., Wang S., Chem. Eng. J., 2018, 334, 1502

    CAS  Google Scholar 

  23. Wang G., Chen S., Quan X., Yu H., Zhang Y., Carbon, 2017, 115, 730

    CAS  Google Scholar 

  24. Kordkandi S. A., Forouzesh M., Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5), 2597

    CAS  Google Scholar 

  25. Li J., Lin H., Zhu K., Zhang H., Chemosphere, 2017, 188, 139

    CAS  PubMed  Google Scholar 

  26. Vega E., Valdes H., Microporous Mesoporous Mater., 2018, 259, 1

    CAS  Google Scholar 

  27. Lee Y. C., Lo S. L., Kuo J., Huang C. P., J. Hazard Mater., 2013, 261, 463

    CAS  PubMed  Google Scholar 

  28. Yang S., Yang X., Shao X., Niu R., Wang L., J. Hazard Mater., 2011, 186(1), 659

    CAS  PubMed  Google Scholar 

  29. Forouzesh M., Ebadi A., Aghaeinejad-Meybodi A., Sep. Purif Technol., 2019, 210, 145

    CAS  Google Scholar 

  30. Fierro V., Torne-Fernandez V., Celzard A., Montane D., J. Hazard Mater., 2007, 149(1), 126

    CAS  PubMed  Google Scholar 

  31. Liang C., Lin Y. T., Shih W. H., Ind. Eng. Chem. Res., 2009, 48(18), 8373

    CAS  Google Scholar 

  32. Diao Z. H., Xu X. R., Jiang D., Kong L. J., Sun Y. X., Hu Y. X., Hao Q. W., Chen H., Chem. Eng. J., 2016, 302, 213

    CAS  Google Scholar 

  33. Wang N., Zhu L., Deng K., She Y., Yu Y., Tang H., Applied Catalysis B: Environmental, 2010, 95(3/4), 400

    CAS  Google Scholar 

  34. Liang C., Huang C. F., Mohanty N., Kurakalva R. M., Chemosphere, 2008, 73(9), 1540

    CAS  PubMed  Google Scholar 

  35. Sun Y., Yue Q., Mao Y., Gao B., Yuan G., Huang L., J. Hazard Mater., 2014, 265(2), 191

    CAS  PubMed  Google Scholar 

  36. Cheng S., Zhang L., Ma A., Xia H., Peng J., Li C., Shu J., J. Environ. Sci., 2018, 65, 92

    Google Scholar 

  37. Xu M., Gu X., Lu S., Qiu Z., Sui Q. J. I., Ind. Eng. Chem. Res., 2014, 53(3), 1056

    CAS  Google Scholar 

  38. Guedidi H., Reinert L., Lévêque J. M., Soneda Y., Duclaux L. J. C., Carbon, 2013, 54, 432

    CAS  Google Scholar 

  39. Liu W., Zhang J., Zhang C., Ren L., Chem. Eng. J., 2012, 189, 295

    Google Scholar 

  40. Gupta V. K., Shrivastava A. K., Jain N., Water. Res., 2001, 35(17), 4079

    CAS  PubMed  Google Scholar 

  41. Reymond J. P., Kolenda F., Powder Technol., 1999, 103(1), 30

    CAS  Google Scholar 

  42. Mohan D., Pittman C. U. Jr., J. Hazard Mater., 2006, 137(2), 762

    CAS  PubMed  Google Scholar 

  43. Powell R. M., Blowes D. W., Gillham R. W., Schultz D., Sivavec T., Puls R. W., Vogan J. L., Powell P. D., Landis R., Office of Research and Development, Office of Solid Waste and Emergenly Response, USEPA, EPA/600/R-98/125, 1998

  44. Santos A., Fernandez J., Rodriguez S., Dominguez C. M., Lominchar M. A., Lorenzo D., Romero A., Sci. Total. Environ., 2018, 615, 1070

    CAS  PubMed  Google Scholar 

  45. Yang J. F., Yang L. M., Zhang S. B., Ou L. H., Liu C. B., Zheng L. Y., Yang Y. F., Ying G. G., Luo S. L., Chem. Eng. J., 2017, 321, 113

    CAS  Google Scholar 

  46. Danis U., Environ. Prog. Sustain Energy, 2011, 30(2), 177

    CAS  Google Scholar 

  47. Vega F. A., Covelo F. E., Spanish Journal of Soil Science, 2011, 1(1), 20

    Google Scholar 

  48. Lei Y., Chen C. S., Tu Y. J., Huang Y. H., Zhang H., Environ. Sci. Technol., 2015, 49(11), 6838

    CAS  PubMed  Google Scholar 

  49. Liu H., Bruton T. A., Doyle F. M., Sedlak D. L., Environ. Sci. Technol., 2014, 48(17), 10330

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Villamena F. A., Locigno E. J., Rockenbauer A., Hadad C. M., Zweier J. L., J. Phys. Chem. A, 2006, 110(49), 13253

    CAS  PubMed  Google Scholar 

  51. Zamora P. L., Villamena F. A., J. Phys. Chem. A, 2012, 116(26), 7210

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Das S., Mishra J., Das S. K., Pandey S., Rao D. S., Chakraborty A., Sudarshan M., Das N., Thatoi H., Chemosphere, 2014, 96, 112

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqian Jiao.

Additional information

Supported by the National Nature Science Foundation of China(No.41302184), the Project of the Research on Water Environmental Protection Strategy and Management Policy in Beijing-Tianjin-Hebei Region, China(No.2018ZX07111001), the Scientific Frontier and Interdisciplinary Research Project of Jilin University, the Outstanding Youth Cultivation Plan of Jilin University, the Fund of the Key Laboratory of Groundwater Resources and Environmental of Ministry of Education(Jilin University), China, and the Project of the National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology of China.

Supplementary 1 Material

40242_2020_169_MOESM1_ESM.pdf

Reduction Removal of Cr(VI) from Wastewater by CO·−2 Deriving from Formate Anion Based on Activated Carbon Catalyzed Persulfate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Li, T., Zhang, L. et al. Reduction Removal of Cr(VI) from Wastewater by CO·−2 Deriving from Formate Anion Based on Activated Carbon Catalyzed Persulfate. Chem. Res. Chin. Univ. 36, 870–876 (2020). https://doi.org/10.1007/s40242-020-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0169-0

Keywords

Navigation