Skip to main content

Advertisement

Log in

Nanoparticles Based Drug Delivery for Tissue Regeneration Using Biodegradable Scaffolds: a Review

  • Nanoparticle-based Drug Delivery (R Banerjee, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Today, tissue engineering is advancing rapidly due to application of technologies like computer-aided designing; solid free-form fabrication, nanomedicine, etc. Excessive requirement of artificial organs like skin, blood vessels, cartilage, bladder, etc. is helping in its rapid development. Nanomedicines are used to bind/encapsulate in porous biodegradable scaffolds in the form of antibiotics, proteins, growth factors, specific micro- and macro-nutrients to promote the tissue regeneration.

Recent Findings

In our recent study, we reported that the chitosan-silver-based nanocomposite supports the growth of skin tissues and acts as an antibiotic agent. It was also reported that silver nanoparticles loaded with chitosan and collagen are helpful in regulating macrophage activation and migration of fibroblast.

Summary

This review highlights the application of nanomedicines in biodegradable porous tissue scaffolds applied for organ regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cohen YS, Polyak B, Cohen S. Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology. 2014;25:14009.

    Article  CAS  Google Scholar 

  2. Vrabec T, Bhadra N, Wainright J, Bhadra N, Franke M, Kilgore K. Characterization of high capacitance electrodes for the application of direct current electrical nerve block. Med Biol Eng Comput. 2015;54(1):191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuo CK, Li W-J, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol. 2006;18:64–73.

    Article  PubMed  Google Scholar 

  4. Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev Rep. 2011;8:891–7.

    Article  CAS  Google Scholar 

  5. Mo X, Li D, Minden-Birkenmaier B, Bowlin GL. Application of electrospun fibers in tissue engineering. 2016;45–96.

  6. Song L, Murphy SV, Yang B, Xu Y, Zhang Y, Atala A. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng B Rev. 2014;20:163–72.

    Article  CAS  Google Scholar 

  7. De Isla N, Huseltein C, Jessel N, et al. Introduction to tissue engineering and application for cartilage engineering. Biomed Mater Eng. 2010;20(3):127–33.

    PubMed  Google Scholar 

  8. Xu CY, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kim Y, Ko H, Kwon IK, Shin K. Extracellular matrix revisited: roles in tissue engineering. Int Neurourol J. 2016;20:S23–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu H, Hoshiba T, Kawazoe N, Chen G. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011;32:2489–99.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Extracellular matrix and tissue engineering applications. J Mater Chem. 2009;19:5474–84.

    Article  CAS  Google Scholar 

  12. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv. 2009;6:851–64.

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro N, Martins A, Reis RL, Neves NM. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther. 2015;1:109–18.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–96.

    Article  CAS  PubMed  Google Scholar 

  16. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.

    Article  CAS  PubMed  Google Scholar 

  17. Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332(6030):680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  CAS  PubMed  Google Scholar 

  19. Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater. 2016;1(2):93–108.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ko CS, Huang JP, Huang CW, Chu IM. Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J Biosci Bioeng. 2009;107(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  21. Hule RA, Pochan DJ. Polymer nanocomposites for biomedical applications. MRS Bull. 2007;32:354–88.

    Article  CAS  Google Scholar 

  22. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. J Biomater Sci Polym Ed. 2008;19:1171–18.

    Article  CAS  PubMed  Google Scholar 

  23. Cai ZX, Mo XM, Zhang KH, Fan LP, Yin AL, He CL, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11(9):3529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3(3):1863–87.

    Article  CAS  Google Scholar 

  25. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med (Praha). 2008;53(8):397–411.

    Article  CAS  Google Scholar 

  26. Sahai N, Jain T, Kumar S, Dutta PK. Development and selection of porous scaffolds using computer-aided. Tissue Eng. 2015;1:351–88.

    Google Scholar 

  27. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835–51.

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Xia Z, Czernuszka JT. Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des. 2007;85(7):1051–64.

    Article  CAS  Google Scholar 

  29. Naderi H, Matin MM, Bahrami AR. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl. 2011;26(4):383–417.

    Article  CAS  PubMed  Google Scholar 

  30. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 2007;13(8):1845–66.

    Article  CAS  PubMed  Google Scholar 

  31. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.

    Article  CAS  PubMed  Google Scholar 

  32. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40(4):268–80.

    Article  CAS  PubMed  Google Scholar 

  33. Dalton PD, Woodfi T. Polymeric scaffolds for bone tissue engineering. Bone. 2008;32(3):477–86. https://doi.org/10.1002/jbm.a.31829.ELECTROSPINNING.

    Article  Google Scholar 

  34. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:19.

    Article  Google Scholar 

  35. Shen D, Wu G, Suk H, Engineering C. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang Z, Starly B, Sun W. Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. CAD Comput Aided Des. 2005;37:65–72.

    Article  Google Scholar 

  37. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1(2):261–8.

    Article  Google Scholar 

  38. Nam J, Starly B, Darling A, Sun W. Computer aided tissue engineering for modeling and design of novel tissue scaffolds. Comput Aided Des Appl. 2004;1:633–40.

    Article  Google Scholar 

  39. Sun W, Lal P. Recent development on computer aided tissue engineering--a review. Comput Methods Prog Biomed. 2002;67:85–103.

    Article  Google Scholar 

  40. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aliakbarshirazi S, Talebian A. Electrospun gelatin nanofibrous scaffolds for cartilage tissue engineering. In: Materials Today: Proceedings. 2017;7(4):7059–7064.

  42. • Sekar MP, Roopmani P, Krishnan UM. Development of a novel porous polyvinyl formal (PVF) microfibrous scaffold for nerve tissue engineering. Polym (United Kingdom). 2018. This reference showed that fabricate electrospun fibrous scaffolds from PVF for tissue engineering applications exhibited a uniform nanoporous surface and a solid core that augmented neuronal cell adhesion and neurite extension.

  43. Fan Z, Li PY, Deng J, Bady SC, Cheng H (2018) Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res, 11, 5573, 5583.

  44. Lee EA, Yim H, Heo J, Kim H, Jung G, Hwang NS. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch Pharm Res. 2014;37(1):120–8.

    Article  CAS  PubMed  Google Scholar 

  45. Augustine R, Dan P, Sosnik A, et al. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017;12274-017–1549-8.

  46. Kumari S, Singh RP. Glycolic acid-functionalized chitosan-Co3O4-Fe3O4 hybrid magnetic nanoparticles-based nanohybrid scaffolds for drug-delivery and tissue engineering. J Mater Sci. 2013;50(3):878–83.

    Google Scholar 

  47. Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, et al. Nanomedicine: application areas and development prospects. Int J Mol Sci. 2011;12(5):3303–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano. 2014;8(3):1958–65.

    Article  CAS  PubMed  Google Scholar 

  52. Kateb B, Chiu K, Black KL, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? NeuroImage. 2011;54(1):5106–24.

    Google Scholar 

  53. Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007–15.

    Article  CAS  PubMed  Google Scholar 

  54. Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine. 2015;11(4):825–33.

    Article  CAS  PubMed  Google Scholar 

  55. Day ES, Zhang L, Thompson PA, Zawaski JA, Kaffes CC, Gaber MW, et al. Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine. 2012;7(8):1133–48.

    Article  CAS  PubMed  Google Scholar 

  56. Tan Q, Tang H, Hu J, Hu Y, Zhou X, Tao Y, et al. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 2011;6:929–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gahlaut N, Suarez S, Uddin MI, Gordon AY, Evans SM, Jayagopal A. Nanoengineering of therapeutics for retinal vascular disease. Eur J Pharm Biopharm. 2015;95:323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen HH, Chan EC, Lee JH, Bee YS, Lin TW, Dusting GJ, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine. 2015;10(13):2093–107.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou H, Yang L, Li H, Gong H, Cheng L, Zheng H, et al. Downregulation of VEGF mRNA expression by triamcinolone acetonide acetate-loaded chitosan derivative nanoparticles in human retinal pigment epithelial cells. Int J Nanomedicine. 2012;7:4649–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen CW, Yeh MK, Shiau CY, et al. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Int J Nanomedicine. 2013;7:4649–60.

    Google Scholar 

  61. Shen X, Li T, Chen Z, Geng Y, Xie X, Li S, et al. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics. Int J Nanomedicine. 2017;12:4299–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goel S, Chen F, Hong H, et al. VEGF 121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;7(24):13693–700.

    Google Scholar 

  63. Tran TB, Son SJ, Min J. Nanomaterials in label-free impedimetric biosensor: current process and future perspectives. Biochip J. 2016;10(4):318–30.

    Article  CAS  Google Scholar 

  64. Bakewell SJ, Carie A, Costich TL, Sethuraman J, Semple JE, Sullivan B, et al. Imaging the delivery of drug-loaded, iron-stabilized micelles. Nanomedicine. 2017;13:1353–62.

    Article  CAS  PubMed  Google Scholar 

  65. Shah K, Crowder D, Overmeyer J, Maltese W, Yun Y. Hyaluronan drug delivery systems are promising for cancer therapy because of their selective attachment, enhanced uptake, and superior efficacy. Biomed Eng Lett. 2015;5(2):109–23.

    Article  Google Scholar 

  66. Zarrintaj P, Bakhshandeh B, Saeb MR, Sefat F, Rezaeian I, Ganjali MR, et al. Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomater. 2018;72:16–34.

    Article  CAS  PubMed  Google Scholar 

  67. Abzan N, Kharaziha M, Labbaf S, Saeidi N. Modulation of the mechanical, physical and chemical properties of polyvinylidene fluoride scaffold via non-solvent induced phase separation process for nerve tissue engineering applications. Eur Polym J. 2018;104:115–27.

    Article  CAS  Google Scholar 

  68. •• Gao S, Chen M, Wang P, Li Y, Yuan Z, Guo W, et al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater. 2018;73:127–40. This reference showed that rabbits with scaffold implanting could regenerate neo-menisci in different time points.

  69. Yuan M, Wang Y, Qin YX. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomedicine. 2018;14(4):1337–47.

    Article  CAS  PubMed  Google Scholar 

  70. Sedghi R, Sayyari N, Shaabani A, et al. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polym (United Kingdom). 2018;03:45.

    Google Scholar 

  71. Mclaughlin S, Podrebarac J, Ruel M, et al. Nano-engineered biomaterials for tissue regeneration: what has been achieved so far? Front Mater. 2016;3:27.

    Article  Google Scholar 

  72. Chung YI, Ahn KM, Jeon SH, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121(1–2):919.

    Google Scholar 

  73. Ratanavaraporn J, Furuya H, Tabata Y. Local suppression of pro-inflammatory cytokines and the effects in BMP-2-induced bone regeneration. Biomaterials. 2012;33(1):304–16.

    Article  CAS  PubMed  Google Scholar 

  74. Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci. 2014;2:1195–209.

    Article  CAS  PubMed  Google Scholar 

  75. Park JS, Park K, Woo DG, Yang HN, Chung HM, Park KH. PLGA microsphere construct coated with TGF-?? 3 loaded nanoparticles for neocartilage formation. Biomacromolecules. 2008;9(8):2162–9.

    Article  CAS  PubMed  Google Scholar 

  76. Jung Y, Il CY, Kim SH, et al. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-β1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Biomaterials. 2009;30(27):4657–64.

    Article  CAS  PubMed  Google Scholar 

  77. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13(4):952–62.

    Article  CAS  PubMed  Google Scholar 

  78. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A. 2009;15(11):3605–19.

    Article  CAS  Google Scholar 

  79. Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. 2018;15(1):016018.

    Article  PubMed  Google Scholar 

  80. Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale. 2014;6(16):9410–4.

    Article  CAS  PubMed  Google Scholar 

  81. Smith AST, Yoo H, Yi H, Ahn EH, Lee JH, Shao G, et al. Micro-and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun. 2017;53:7412–5.

    Article  CAS  Google Scholar 

  82. Wang L, Wu Y, Guo B, Ma PX. Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano. 2015;9(9):9167–79.

    Article  CAS  PubMed  Google Scholar 

  83. Ju YM, Atala A, Yoo JJ, Lee SJ. In situ regeneration of skeletal muscle tissue through host cell recruitment. Acta Biomater. 2014;10(10):4332–9.

    Article  CAS  PubMed  Google Scholar 

  84. •• Mohandas A, Deepthi S, Biswas R, Jayakumar R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater. 2017;3(3):267–77. This article is a review that focuses on the different nanocomposites containing Chitosan and metal / metal oxide nanoparticles such as Chitosan/Ag, Chitosan/Au, Chitosan/Cu, Chitosan/ZnO and Chitosan/TiO2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

Download references

Acknowledgments

This work was supported by North Eastern Hill University, Shillong-793022, Meghalaya, India, by providing logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manashjit Gogoi.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nanoparticle-based Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahai, N., Ahmad, N. & Gogoi, M. Nanoparticles Based Drug Delivery for Tissue Regeneration Using Biodegradable Scaffolds: a Review. Curr Pathobiol Rep 6, 219–224 (2018). https://doi.org/10.1007/s40139-018-0184-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-018-0184-8

Keywords

Navigation