Skip to main content
Log in

Transoral Robotic Surgery (TORS)—Inside Out Anatomy and Exposure of the Operating Field

  • Robotic Surgery in Otolaryngology (E Moore, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To optimize operating field exposure and improve understanding of surgical anatomy from the “inside out” perspective for transoral robotic surgery (TORS).

Recent Findings

In the last decade, TORS has become a common surgical technique for the management of early stage oropharyngeal cancers. Recent anatomic studies have focused on understanding the landmarks specific to each oropharynx subsite from the “inside out” perspective of a transoral surgeon.

Summary

Technical, anatomic, and oncologic factors should be considered pre-operatively to optimize surgical set-up, as exposure and access are the first steps to successful transoral surgery. Developing an understanding of the relationships between important transoral anatomic landmarks from the “inside out” perspective is critical for any surgeon performing a transoral surgical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. White J, Sharma A. Development and assessment of a transoral robotic surgery curriculum to train otolaryngology residents. ORL J Otorhinolaryngol Relat Spec. 2018;80(2):69–76. https://doi.org/10.1159/000479744.

    Article  PubMed  Google Scholar 

  2. Sperry SM, O’Malley BW Jr, Weinstein GS. The University of Pennsylvania curriculum for training otorhinolaryngology residents in transoral robotic surgery. ORL J Otorhinolaryngol Relat Spec. 2014;76(6):342–52. https://doi.org/10.1159/000369624.

    Article  PubMed  Google Scholar 

  3. Chia SH, Gross ND, Richmon JD. Surgeon experience and complications with transoral robotic surgery (TORS). Otolaryngol Head Neck Surg. 2013;149(6):885–92. https://doi.org/10.1177/0194599813503446.

    Article  PubMed  Google Scholar 

  4. Rich JT, Milov S, Lewis JS Jr, Thorstad WL, Adkins DR, Haughey BH. Transoral laser microsurgery (TLM) +/− adjuvant therapy for advanced stage oropharyngeal cancer: outcomes and prognostic factors. Laryngoscope. 2009;119(9):1709–19. https://doi.org/10.1002/lary.20552.

    Article  PubMed  Google Scholar 

  5. Olsen SM, Moore EJ, Koch CA, Price DL, Kasperbauer JL, Olsen KD. Transoral robotic surgery for supraglottic squamous cell carcinoma. Am J Otolaryngol. 2012;33(4):379–84. https://doi.org/10.1016/j.amjoto.2011.10.007.

    Article  PubMed  Google Scholar 

  6. Arora A, Kotecha J, Acharya A, Garas G, Darzi A, Davies DC, et al. Determination of biometric measures to evaluate patient suitability for transoral robotic surgery. Head Neck. 2015;37(9):1254–60. https://doi.org/10.1002/hed.23739.

    Article  PubMed  Google Scholar 

  7. • Baskin RM, Boyce BJ, Amdur R, Mendenhall WM, Hitchcock K, Silver N, et al. Transoral robotic surgery for oropharyngeal cancer: patient selection and special considerations. Cancer Manag Res. 2018;10:839–46. https://doi.org/10.2147/CMAR.S118891This review highlights the important patient anatomic factors surgeons need to consider when assessing TORS candidacy.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moore EJ, Janus J, Kasperbauer J. Transoral robotic surgery of the oropharynx: clinical and anatomic considerations. Clin Anat. 2012;25(1):135–41. https://doi.org/10.1002/ca.22008.

    Article  PubMed  Google Scholar 

  9. Weinstein GS, O’Malley BW. TransOral robotic surgery (TORS). San Diego: Plural Pub.; 2012.

    Google Scholar 

  10. Rubin F, Laccourreye O, Weinstein GS, Holsinger FC. Transoral lateral oropharyngectomy. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;134(6):419–22. https://doi.org/10.1016/j.anorl.2017.06.002.

    Article  CAS  PubMed  Google Scholar 

  11. Gun R, Ozer E. Surgical anatomy of oropharynx and supraglottic larynx for transoral robotic surgery. J Surg Oncol. 2015;112(7):690–6. https://doi.org/10.1002/jso.24020.

    Article  PubMed  Google Scholar 

  12. Dziegielewski PT, Kang SY, Ozer E. Transoral robotic surgery (TORS) for laryngeal and hypopharyngeal cancers. J Surg Oncol. 2015;112(7):702–6. https://doi.org/10.1002/jso.24002.

    Article  PubMed  Google Scholar 

  13. O’Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116(8):1465–72. https://doi.org/10.1097/01.mlg.0000227184.90514.1a.

    Article  PubMed  Google Scholar 

  14. Chan JY, Richmon JD. Transoral robotic surgery (TORS) for benign pharyngeal lesions. Otolaryngol Clin N Am. 2014;47(3):407–13. https://doi.org/10.1016/j.otc.2014.02.003.

    Article  Google Scholar 

  15. • Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery. Laryngoscope. 2016;126(4):864–9. https://doi.org/10.1002/lary.25724This important publication describes the surgical technique for TORS using the next generation of Da Vinci robots—the Da Vinci SP.

    Article  PubMed  Google Scholar 

  16. Overton LJ, Fritsch VA, Lentsch EJ. Squamous cell carcinoma of the uvula: an analysis of factors affecting survival. Laryngoscope. 2013;123(4):898–903. https://doi.org/10.1002/lary.23648.

    Article  PubMed  Google Scholar 

  17. Haeggblom L, Ramqvist T, Tommasino M, Dalianis T, Nasman A. Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res. 2017;4:1–11. https://doi.org/10.1016/j.pvr.2017.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer. 2017;123(12):2219–29. https://doi.org/10.1002/cncr.30588.

    Article  PubMed  Google Scholar 

  19. •• Fossum CC, Chintakuntlawar AV, Price DL, Garcia JJ. Characterization of the oropharynx: anatomy, histology, immunology, squamous cell carcinoma and surgical resection. Histopathology. 2017;70(7):1021–9. https://doi.org/10.1111/his.13140. This review summarizes the anatomy, histology, and immunology relevant to oropharyngeal cancer, and is an important read for all surgical, radiation, and medical oncologists to understand the rationale for our current multidisciplianry treatment paradigms.

    Article  PubMed  Google Scholar 

  20. Goyal N, Atmakuri M, Goldenberg D. Anatomy of the oropharynx: the robotic perspective. Oper Tech Otolaryngol Head Neck Surg. 2013;24(2):70–3. https://doi.org/10.1016/j.otot.2013.06.005.

    Article  Google Scholar 

  21. Lydiatt WM, Patel SG, O’Sullivan B, Brandwein MS, Ridge JA, Migliacci JC, et al. Head and neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):122–37. https://doi.org/10.3322/caac.21389.

    Article  PubMed  Google Scholar 

  22. Laccourreye O, Orosco RK, Rubin F, Holsinger FC. Styloglossus muscle: a critical landmark in head and neck oncology. Eur Ann Otorhinolaryngol Head Neck Dis. 2018;135(6):421–5. https://doi.org/10.1016/j.anorl.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  23. • Crawford JA, Bahgat AY, White HN, Magnuson JS. Hemostatic options for transoral robotic surgery of the pharynx and base of tongue. Otolaryngol Clin N Am. 2016;49(3):715–25. https://doi.org/10.1016/j.otc.2016.03.002This study reviews the anatomic blood supply of the oropahrynx and hemostatic techniques for TORS, a crucial step to maintain adequate visualization of the surgical field.

    Article  Google Scholar 

  24. Cohen DS, Low GMI, Melkane AE, Mutchnick SA, Waxman JA, Patel S, et al. Establishing a danger zone: an anatomic study of the lingual artery in base of tongue surgery. Laryngoscope. 2017;127(1):110–5. https://doi.org/10.1002/lary.26048.

    Article  PubMed  Google Scholar 

  25. Lauretano AM, Li KK, Caradonna DS, Khosta RK, Fried MP. Anatomic location of the tongue base neurovascular bundle. Laryngoscope. 1997;107(8):1057–9. https://doi.org/10.1097/00005537-199708000-00010.

    Article  CAS  PubMed  Google Scholar 

  26. Van Abel KM, Mallory GW, Kasperbauer JL, M D, Moore EJ, Price DL, et al. Transnasal odontoid resection: is there an anatomic explanation for differing swallowing outcomes? Neurosurg Focus. 2014;37(4):E16. https://doi.org/10.3171/2014.7.FOCUS14338.

    Article  PubMed  Google Scholar 

  27. Sumida K, Ando Y, Seki S, Yamashita K, Fujimura A, Baba O, et al. Anatomical status of the human palatopharyngeal sphincter and its functional implications. Surg Radiol Anat. 2017;39(11):1191–201. https://doi.org/10.1007/s00276-017-1855-6.

    Article  PubMed  Google Scholar 

  28. Cho JH, Kim JK, Lee H-Y, Yoon J-H. Surgical anatomy of human soft palate. Laryngoscope. 2013;123(11):2900–4. https://doi.org/10.1002/lary.24067.

    Article  PubMed  Google Scholar 

  29. Li KK, Meara JG, Alexander A Jr. Location of the descending palatine artery in relation to the Le Fort I osteotomy. J Oral Maxillofac Surg. 1996;54(7):822–5 discussion 6-7.

    Article  CAS  Google Scholar 

  30. Hacein-Bey L, Daniels DL, Ulmer JL, Mark LP, Smith MM, Strottmann JM, et al. The ascending pharyngeal artery: branches, anastomoses, and clinical significance. AJNR Am J Neuroradiol. 2002;23(7):1246–56.

    PubMed  Google Scholar 

  31. Dirix P, Nuyts S, Bussels B, Hermans R, Van den Bogaert W. Prognostic influence of retropharyngeal lymph node metastasis in squamous cell carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys. 2006;65(3):739–44. https://doi.org/10.1016/j.ijrobp.2006.02.027.

    Article  PubMed  Google Scholar 

  32. Moore EJ, Ebrahimi A, Price DL, Olsen KD. Retropharyngeal lymph node dissection in oropharyngeal cancer treated with transoral robotic surgery. Laryngoscope. 2013;123(7):1676–81. https://doi.org/10.1002/lary.24009.

    Article  PubMed  Google Scholar 

  33. Cagimni P, Govsa F, Ozer MA, Kazak Z. Computerized analysis of the greater palatine foramen to gain the palatine neurovascular bundle during palatal surgery. Surg Radiol Anat. 2017;39(2):177–84. https://doi.org/10.1007/s00276-016-1691-0.

    Article  PubMed  Google Scholar 

  34. Maglione MG, Guida A, Pavone E, Longo F, Aversa C, Villano S, et al. Transoral robotic surgery of parapharyngeal space tumours: a series of four cases. Int J Oral Maxillofac Surg. 2018;47(8):971–5. https://doi.org/10.1016/j.ijom.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari M, Schreiber A, Mattavelli D, Lombardi D, Rampinelli V, Doglietto F, et al. Surgical anatomy of the parapharyngeal space: multiperspective, quantification-based study. Head Neck. 2019;41(3):642–56. https://doi.org/10.1002/hed.25378.

    Article  PubMed  Google Scholar 

  36. Dallan I, Seccia V, Muscatello L, Lenzi R, Castelnuovo P, Bignami M, et al. Transoral endoscopic anatomy of the parapharyngeal space: a step-by-step logical approach with surgical considerations. Head Neck. 2011;33(4):557–61. https://doi.org/10.1002/hed.21488.

    Article  PubMed  Google Scholar 

  37. •• Gun R, Durmus K, Kucur C, Carrau RL, Ozer E. Transoral surgical anatomy and clinical considerations of lateral oropharyngeal wall, parapharyngeal space, and tongue base. Otolaryngol Head Neck Surg. 2016;154(3):480–5. https://doi.org/10.1177/0194599815625911This study reviews the relevant anatomy and important structures of the parapharyngeal space. Knowledge of these structures from the inside out perspective is necessary to ensure safety and efficacy in TORS.

    Article  PubMed  Google Scholar 

  38. Slavin KV. Eagle syndrome: entrapment of the glossopharyngeal nerve? Case report and review of the literature. J Neurosurg. 2002;97(1):216–8. https://doi.org/10.3171/jns.2002.97.1.0216.

    Article  PubMed  Google Scholar 

  39. Wang C, Kundaria S, Fernandez-Miranda J, Duvvuri U. A description of the anatomy of the glossopharyngeal nerve as encountered in transoral surgery. Laryngoscope. 2016;126(9):2010–5. https://doi.org/10.1002/lary.25706.

    Article  PubMed  Google Scholar 

  40. Paulsen F, Tillmann B, Christofides C, Richter W, Koebke J. Curving and looping of the internal carotid artery in relation to the pharynx: Frequency, embryology and clinical implications. J Anat. 2000;197(3):373–81. https://doi.org/10.1017/S0021878299006809.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pfeiffer J, Becker C, Ridder GJ. Aberrant extracranial internal carotid arteries: new insights, implications, and demand for a clinical grading system. Head Neck. 2016;38(Suppl 1):E687–93. https://doi.org/10.1002/hed.24071.

    Article  PubMed  Google Scholar 

  42. Jun BC, Jeon EJ, Kim DH, Kim BY, Lee JH, Jin SY, et al. Risk factors for decreased distance between internal carotid artery and pharyngeal wall. Auris Nasus Larynx. 2012;39(6):615–9. https://doi.org/10.1016/j.anl.2011.10.018.

    Article  PubMed  Google Scholar 

  43. Brickman D, Gross ND. Robotic approaches to the pharynx: tonsil cancer. Otolaryngol Clin N Am. 2014;47(3):359–72. https://doi.org/10.1016/j.otc.2014.03.002.

    Article  Google Scholar 

  44. Shakir A, Popescu A, Archard N, Zeitoun H. How close is that carotid? A radiological study of carotid depth for peritonsillar abscess drainage. Otorhinolaryngologist. 2017;10(1):19–20.

    Google Scholar 

  45. Wang C, Kundaria S, Fernandez-Miranda J, Duvvuri U. A description of arterial variants in the transoral approach to the parapharyngeal space. Clin Anat. 2014;27(7):1016–22. https://doi.org/10.1002/ca.22273.

    Article  PubMed  Google Scholar 

  46. Byeon HK, Duvvuri U, Kim WS, Park YM, Hong HJ, Koh YW, et al. Transoral robotic retropharyngeal lymph node dissection with or without lateral oropharyngectomy. J Craniofac Surg. 2013;24(4):1156–61. https://doi.org/10.1097/SCS.0b013e318293f860.

    Article  PubMed  Google Scholar 

  47. Vasan NR, Medina JE. Retropharyngeal node dissection. Oper Tech Otolaryngol Head Neck Surg. 2004;15(3 SPEC.ISS):180–3. https://doi.org/10.1016/j.otot.2004.04.003.

    Article  Google Scholar 

  48. Ozlugedik S, Acar HI, Apaydin N, Esmer AF, Tekdemir I, Elhan A, et al. Retropharyngeal space and lymph nodes: an anatomical guide for surgical dissection. Acta Otolaryngol. 2005;125(10):1111–5. https://doi.org/10.1080/00016480510035421.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Van Abel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Robotic Surgery in Otolaryngology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L.X., Moore, E.J. & Van Abel, K.M. Transoral Robotic Surgery (TORS)—Inside Out Anatomy and Exposure of the Operating Field. Curr Otorhinolaryngol Rep 7, 260–267 (2019). https://doi.org/10.1007/s40136-019-00257-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-019-00257-7

Keywords

Navigation