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ABSTRACT

Introduction: The use of optical coherence
tomography (OCT) images is increasing in the
medical treatment of age-related macular
degeneration (AMD), and thus, the amount of
data requiring analysis is increasing. Advances
in machine-learning techniques may facilitate
processing of large amounts of medical image
data. Among deep-learning methods, convolu-
tion neural networks (CNNs) show superior
image recognition ability. This study aimed to
build deep-learning models that could

distinguish AMD from healthy OCT scans and
to distinguish AMD with and without exudative
changes without using a segmentation
algorithm.
Methods: This was a cross-sectional observa-
tional clinical study. A total of 1621 spectral
domain (SD)-OCT images of patients with AMD
and a healthy control group were studied. The
first CNN model was trained and validated
using 1382 AMD images and 239 normal ima-
ges. The second transfer-learning model was
trained and validated with 721 AMD images
with exudative changes and 661 AMD images
without any exudate. The attention area of the
CNN was described as a heat map by class acti-
vation mapping (CAM). In the second model,
which classified images into AMD with or
without exudative changes, we compared the
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learning stabilization of models using or not
using transfer learning.
Results: Using the first CNN model, we could
classify AMD and normal OCT images with
100% sensitivity, 91.8% specificity, and 99.0%
accuracy. In the second, transfer-learning
model, we could classify AMD as having or not
having exudative changes, with 98.4% sensi-
tivity, 88.3% specificity, and 93.9% accuracy.
CAM successfully described the heat-map area
on the OCT images. Including the transfer-
learning model in the second model resulted in
faster stabilization than when the transfer-
learning model was not included.
Conclusion: Two computational deep-learning
models were developed and evaluated here;
both models showed good performance.
Automation of the interpretation process by
using deep-learning models can save time and
improve efficiency.
Trial Registration: No15073.

Keywords: Age-related macular degeneration;
Artificial intelligence; Class activation mapping;
Convolution neural network; Deep learning;
Machine learning; Optical coherence
tomography; Transfer learning

INTRODUCTION

Age-related macular degeneration (AMD) is the
leading cause of severe visual loss, and the
number of patients with this condition is
increasing with the rapid aging of the popula-
tion in developed countries [1]. The 10-year
cumulative incidence of AMD was reported to
be 12.1% in the Beaver Dam Study in the United
States and 14.1% in the Blue Mountains Eye
Study in Australia [2, 3]. AMD is categorized
into dry and wet AMD, based on the absence or
presence of neovascularization [4]. In wet AMD,
fluid leakage or bleeding from the permeable
capillary network in the sub-retinal pigment
epithelium (RPE) and fibrotic scars in the sub-
retinal areas result in severe photoreceptor
degeneration [5]. Several recent large clinical
trials have shown the effectiveness of anti-vas-
cular endothelial growth factor (VEGF) therapy
(ranibizumab, bevacizumab, and aflibercept) for

neovascular AMD [6–10]. However, follow-up
studies of these trials have also reported that
retaining good visual acuity for a long period of
time in real practice was difficult, indicating
that monthly monitoring of patients receiving
anti-VEGF treatment requires much effort from
patients and medical staff, and increases medi-
cal costs [11].

Spectral-domain optical coherence tomogra-
phy (SD-OCT) is a commercially available
device that clearly describes particular findings
of AMD, such as drusen, intra-retinal fluid (IRF),
sub-retinal fluid (SRF), sub-retinal hyper-reflec-
tive material, including hemorrhage and retinal
pigment epithelium detachment, etc. [12].
Among these, exudative changes (intra- and
sub-retinal fluid and hemorrhage) are the key
indication for most physicians to initiate anti-
VEGF therapy and evaluate the therapeutic
effect [13]. Zero tolerance has been applied for
the large clinical trial mentioned above [14].
Therefore, the amount of OCT data requiring
analysis is increasing, beyond clinical capacity
[15].

Advances in machine-learning techniques
provide a solution for meaningful interpreta-
tion of large amounts of medical image data
arising from the frequent treatment and follow-
up monitoring of patients [16]. In particular,
convolution neural networks (CNNs) have
greatly advanced the classification of medical
images using multi-layer neural networks and
deep-learning algorithms [17]. In ophthalmol-
ogy, the excellent accuracy of CNNs has already
been reported in the classification of diabetic
retinopathy from fundus photographs, visual
field examination of glaucoma patients, grading
of pediatric nuclear cataracts, etc. [18–20]. The
impressive performance of neural networks in
the classification of AMD images has also been
reported for the automated detection of AMD
features in OCT and fundus photographs, for
guidance of anti-VEGF therapy, and monitoring
disease progression [18, 21–28]. Although some
studies have classified the exudative feature of
AMD for automated segmentation [21, 29], to
our knowledge, there are no reports about the
classification of exudative change with AMD in
deep learning models without segmentation.
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The purpose of the present study was to build
two deep-learning models and to evaluate their
performance without using a segmentation
algorithm. The first CNN model was built to
distinguish AMD eyes from healthy eyes on
OCT scans, and the second transfer-learning
model was used to distinguish between AMD
with and without exudative changes.

METHODS

This research was conducted in line with the
Helsinki Declaration of 1964, and the research
protocols and their implementation were
approved by the Ethics Committee of Kobe City
Medical Center General Hospital (approval date;
Sept. 17, 2015 and approval number: No15073).
The committee waived the requirement for
obtaining informed consent given that this was
a retrospective observational study of medical
records, and retrospectively registered.

We included the records of patients who
visited Kobe City Medical Center General
Hospital from March 2016 to November 2017.
We included SD-OCT (Heidelberg Spectralis,

Heidelberg Engineering, Heidelberg, Germany)
images of normal subjects and of patients with
AMD.

The outline we have researched is as follows
(Fig. 1). We built two classification models. In
the first CNN model, we classified images into
normal and AMD images. In the second trans-
fer-learning model, we classified AMD images
into those with and those without exudative
changes. We used class activation mapping
(CAM) as a heat map to show the location of the
images that the CNN models emphasized in the
classification. Additionally, in the second
model, we compared the speed of learning sta-
bility with the model using transfer learning
and the single CNN model.

Patients diagnosed with AMD and normal
control subjects were enrolled at the outpa-
tients’ clinic during the same period. AMD was
diagnosed by means of fundus examinations,
fluorescein angiography/indocyanine green
angiography, and OCT images by independent
retinal specialists. Only one eye per patient was
selected for analysis. The exclusion criteria were
poor image quality and the presence of other
potentially confounding retinal pathologies.

Fig. 1 We built two classification models. In the first
CNN model, we classified images into normal and AMD
images. In the second transfer-learning model, we classified
AMD images into those with and those without exudative
changes. We used CAM to show the location of the image
that CNN models emphasized in the classification as the

heat map. Additionally, in the second model, we compared
the speed of learning stability with the model using
transfer learning and the single CNN model. AMD age-
related macular degeneration, CNN convolution neural
network, CAM class activation mapping
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We included 120 eyes of 120 AMD patients,
and 49 eyes from 49 normal subjects, as the
training data group, and 77 eyes of 77 AMD
patients, and 25 eyes from 25 normal subjects,
as the test data group. We used OCT images for
training and validating deep-learning models.
In the first model, 185 normal images and 1049
AMD images were used for training data, and
the CNN model was subsequently evaluated
using another 49 normal images and 333 AMD
images. In the second model, 535 AMD images
with exudative changes and 514 AMD images
without exudative changes were selected as
training data, and the second model was sub-
sequently evaluated using another 188 images
with exudative changes and 154 images without
exudative changes.

Building the Models

We built two classification models. In the first
CNN model, we classified images into normal
and AMD images. In the second transfer-learn-
ing model, we classified AMD images into those
with and those without exudative changes
(Fig. 1).

The process of image classification is sum-
marized in Fig. 2. The CNN classification mod-
els were constructed using a cropped image
obtained by dividing the original image into
three in order not to degrade the image quality.
After classifying the cropped images with the
CNN models, three cropped images were
reassembled into the original image to deter-
mine the original image classification.

SD-OCT images obtained with either a radial-
scan (scan length: 6.0 mm) or cross-scan (scan
length: 9.0 mm) protocol were included. In the
cross-scan image, the central 6.0-mm area was
cropped to obtain the same scan length as radial
scans and resized to 496 9 496 pixels.

Considering (0,0) as the bottom-left corner
of an OCT image, and the left-to-right as the x-
axis direction and top-to-bottom as the y-axis
direction, 3 points for which y was on the RPE
line were determined automatically, with a
fixed value of x as 112, 247, or 399. With these
points as centers, we cropped three images from
each OCT image to a size of 224 9 224 pixels to

increase the numbers in the data set without
resizing images.

Three ophthalmologists (N. M., M. M, Y. H.)
who have extensive experience with macular
outpatients independently labeled the three
cropped images. In the first model, labelling the
images as ‘‘normal’’ or ‘‘AMD’’ was conducted in
two steps. First, each cropped image was labeled
as ‘‘without AMD finding’’ and ‘‘with AMD
finding,’’ depending on whether the image
contained any AMD findings, such as drusen,
pseudo-drusen, pigmented epithelial detach-
ment (PED), drusenoid PED, geographic atro-
phy, hyperreflective foci, or sub-retinal hyper-
reflective material. Only images in which the
three physician’s diagnoses matched were
included in the next step. Original images were
judged as ‘‘normal’’ when all three images were
labeled as ‘‘without AMD finding’’ and judged as
‘‘AMD’’ only when at least one of the three
images was labeled as ‘‘with AMD finding.’’

In the second model, we cropped three
images from the AMD OCT images, as in the
first model. We then labeled these images as
‘‘exudative change = fluid’’ or ‘‘without exuda-
tive change = no fluid’’ in two steps. First, each
cropped image was labeled as ‘‘with fluid find-
ing’’ and ‘‘without any fluid finding,’’ depending
on whether the image contained any fluid, such
as exudative changes (intra- and sub-retinal
fluid and hemorrhage), as judged indepen-
dently by the same three well-trained ophthal-
mologists. Only the images for which the three
physicians reached agreement were included in
the next step. Original images were then cate-
gorized as ‘‘without exudative change = no
fluid’’ when all three images were labeled as
‘‘without any fluid finding,’’ and were catego-
rized as ‘‘exudative change = fluid’’ only when
there was at least one of the three images that
was labeled as ‘‘with fluid finding.’’

The number of images was expanded about
1000 times with flips, translations, or rotations.
A batch size of 32 images and an epoch number
of 1000 times was used during the training
phase, using an optimization function of the
Adam algorithm. Finally, from 1000 CNN
models, we selected the one with the highest
area under the receiver operating characteristic
curve (AUROC). In this study, a system running
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Ubuntu 16.04 OS, and with a single GTX 1080
TI graphics card (Nvidia, Santa Clara, CA, USA),
was used.

We examined the AUROC to assess the per-
formance of the CNN models for classification
of the cropped images. In order to classify the
original image, the cropped images were
recombined, and the sensitivity, specificity, and
accuracy of the classification models were
determined.

Furthermore, we compared the necessary
number of epochs for the training loss to con-
verge, and classification performance, between
the transfer-learning model and the CNN of the
same architecture without transfer learning. To
build a robust classification model, the data
augmentation and dropout technique were also
applied in the training phase for both models.

CNN Model Architecture

We applied a deep-learning model using CNNs
for use in our classification system (Table 1).
Two classification models were built. We
arranged convolutional layers as layer 1, 2, 4, 5,
7, 8, 10, 12, and 14 for the activation functions
of rectified linear units (ReLU) and batch nor-
malization next to convolutional layers [29, 30].
We arranged max. pooling layers as layers 3, 6,
9, 11, and 13 after convolutional layers. The
global average pooling layer was layer 15. We
set the dropout layer (drop rate: 0.2) as layer 16
and the fully connected layers as layers 16 and
17. Finally, in the final output layer, we arran-
ged layer 18 as the softmax layer. This CNN
architecture was applied to both models.
Transfer learning was used to retrain a CNN that

Fig. 2 a CNN classification models were constructed
using a cropped image obtained by dividing the original
image into three in order not to degrade the image quality.
b After classifying the cropped images with CNN models,
the three cropped OCT images were returned to the
original image to determine the original image classifica-
tion. If at least one of the three cropped OCT images

showed AMD findings, the original image was judged as
AMD, and it was judged as normal only if all three
cropped images were without AMD findings. The second
judgement of the presence of exudative fluid was similarly
performed. CNN convolution neural network, OCT
optical coherence tomography, AMD age-related macular
degeneration
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had previously been constructed, and most unit
weights were pretrained.

Heatmap Creation

One method that represents the area of the
CNN classification model on a heatmap is class
activation mapping (CAM); this technique was
applicable in our case, as a global average
pooling layer was used in our proposed CNN
architecture. Using this technique, heat maps
were generated for each model. For the first
model, we generated a heat map for the AMD

category, indicating the effective region for the
model to identify AMD, while for the second
model, a heat map was created for the discrim-
inative region used to identifying AMD with or
without the presence of fluid [31].

RESULTS

We evaluated the performance of the deep-
learning models using cropped OCT images. In
the first model, we obtained an AUROC of
99.5% for each individual cropped OCT image

Table 1 The CNN configurations used in this study

Layer Type Kernel numbers Kernel size Stride Activation

0 Input 3 224 9 224 – –

1 Convolution 32 3 9 3 – –

2 Convolution 32 3 9 3 – ReLU

3 Max pooling – – 2 –

4 Convolution 64 3 9 3 – –

5 Convolution 64 3 9 3 – ReLU

6 Max pooling – – 2 –

7 Convolution 64 3 9 3 – –

8 Convolution 64 3 9 3 – ReLU

9 Max pooling – – 2 –

10 Convolution 128 3 9 3 – ReLU

11 Max pooling – – 2 –

12 Convolution 128 3 9 3 – ReLU

13 Max pooling – – 2 –

14 Convolution 256 3 9 3 – ReLU

15 Global average pooling

16 Fully connected 256 – – ReLU, dropout

17 Fully connected 2 – – ReLU

18 Softmax – – –

With each OCT image in the training data labeled, we trained a CNN classification model to distinguish AMD OCT
images from normal images. To build a robust classification model, data augmentation and the dropout technique were
applied in the training phase
CNN convolution neural network, AMD age-related macular degeneration, ReLu rectified linear unit
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(Fig. 3). From the constructed ROC curve, we
calculated the optimal threshold for distin-
guishing AMD from normal eyes, and the peak
sensitivity and specificity using this threshold
were 97.33% and 98.51%, respectively. In the
second model, we obtained an AUROC of 99.1%
for each individual cropped OCT image (Fig. 3).
From the ROC curve constructed, the optimal
threshold was calculated for distinguishing
AMD with and without exudative changes, and
the peak sensitivity and specificity with this
threshold were 93.78% and 96.54%,
respectively.

To evaluate the classification of the original
image, the cropped images were then recom-
bined. In the first model, correct AMD diagnosis
(true positives) was made in 333 cases. There
were no cases of non-detection of AMD (false
negatives). In the normal control group, correct
diagnosis (true negative) was made in 4 cases,
while AMD was diagnosed (false positives) in 45
cases. Therefore, the sensitivity of the classifier
was 100%, the specificity was 91.8%, and the
accuracy was 99.0% (Tables 2, 3).

In the second model, correct diagnosis of the
presence of fluid (true positives) was made in
185 cases, while in 3 cases with exudative
changes, fluid was not detected (false nega-
tives). In the no-fluid group, correct diagnosis

(true negatives) was made in 18 cases, and an
incorrect diagnosis (false positives) was made in
136 cases. Therefore, the sensitivity of the clas-
sifier was 98.4%, the specificity was 88.3%, and
the accuracy was 93.9% (Tables 2, 3).

In both models, CAM was able to identify the
pathologic region on OCT successfully, based
on the generated heat map (Fig. 4). Addition-
ally, in the second model, the learning stabi-
lized faster with transfer learning than with
CNN (Fig. 5).

DISCUSSION

In this study, we built two deep-learning models
and evaluated their performance in either dis-
tinguishing normal and AMD eyes on OCT
images, or classifying AMD into the presence or
absence of exudative changes.

Using the first model, we could classify AMD
and normal OCT images with 100% sensitivity,
91.8% specificity, and 99.0% accuracy. Recent
studies have also reported that deep-learning
techniques have achieved a high accuracy in
identifying AMD from normal eyes using fun-
dus photographs and OCT images. Our results
are consistent with those of recent reports
[24, 26]. Lee et al. reported that a CNN trained

Fig. 3 a The ROC curve for classification of AMD and
healthy eyes from cropped OCT images. The ROC curve
for the first model yielded an AUROC of 99.5%. b The
ROC curve for classification of AMD cropped images into

the presence or absence of fluid. The ROC curve for the
second model yielded an AUROC of 99.1%. ROC receiver
operating characteristic curve, AUROC area under the
ROC curve
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on about 80,000 OCT images could classify
normal and AMD images with 92.64% sensi-
tivity, 93.69% specificity, with an AUROC of
97.46% [24]. Treder et al. reported building a
CNN model in which all layers except the last
layer were pretrained with ImageNet data con-
sisting of more than 1.2 million non-OCT
images; the last layer was trained with 1012
cross-sectional SD-OCT scans. This model was
able to distinguish normal from AMD images
with 100% sensitivity, 92% specificity, and 96%
accuracy [26]. As the sensitivity was as high as
100%, it was considered to be useful for a
screening test. Classifying AMD-affected eyes
from normal eyes in screening tests can be
useful for preventive healthcare and ensuring
appropriate treatment [32, 33]. Our results add
to the evidence that CNNs are able to distin-
guish between disease images and normal ima-
ges with high accuracy.

Using the second model, we were able to clas-
sify AMD according to the presence or absence of
any fluid, with 98.4% sensitivity, 88.3% speci-
ficity, and 93.9% accuracy. Identification of IRF
and SRF is a key indication for commencing anti-
VEGF treatment administration and re-dosing

[12]. Moreover, IRF and SRF have been reported as
prognostic factors for visual impairment [34].
Recent reports have shown that deep-learning
methods can accurately quantify the amount of
fluid and can clearly distinguish between IRF and
SRF [35]. Previous reports about automatic classi-
ficationof exudative changesused a segmentation
algorithm [21, 29]. Chakravarthy et al. reported
that their automated segmentation algorithm
could distinguish between IRF and SRF in AMD
OCT scans with 92% sensitivity, 91% specificity,
and 93% accuracy [21]. Our results are consistent
with their report. We built deep-learning models
without a segmentation algorithm using transfer
learning and a method of dividing an original
image into three cropped images without reduc-
ing the image pixels. In general, reducing the
image resolution makes the classification inaccu-
rate. There have been other reports of deep
learning that donot use a segmentation algorithm
of AMD, but they included classifications of AMD,
drusen, and normal, and the classification pur-
pose was different [27]. It is increasingly being
reported that deep-learningmodels are as accurate
as ophthalmology experts [18]. Meta-analyses
have shown that active treatment can typically

Table 2 The sensitivity, specificity, and accuracy of the model for classification of AMD and normal OCT images

Based on images AMD by doctors Normal by doctors Specificity

AMD by the model 333 4 98.8%

Normal by the model 0 45 100.0%

Sensitivity 100.0% 91.8% Accuracy

99.0%

The sensitivity of the classifier was 100%, the specificity was 91.8%, and the accuracy was 99.0%

Table 3 The sensitivity, specificity, and accuracy of the model for classification of the presence or absence of exudative
changes

Based on images Fluid by doctors No fluid by doctors Specificity

Fluid by the model 185 18 91.1%

No fluid by the model 3 136 97.8%

Sensitivity 98.4% 88.3% Accuracy

93.9%

The sensitivity of the classifier was 98.4%, the specificity was 88.3%, and the accuracy was 93.9%
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maintain visual function, although in some cases,
there is a risk of loss of vision, despite long-term
treatment. Starting treatment while eyesight is
still good leads to a good prognosis; thus, early
detection of exudative changes and early treat-
ment are important for maximizing visual acuity,
and deep-learning models to distinguish medical
images are likely to be used more in the future.
Telemedicine is becoming amore frequently used
method of increasing the opportunities to see
patients who have difficulty in attending clinical
institutions, and thereby can prevent severe
chronic diseases, such as AMD. Advances in OCT
technologyhave yielded several scan-patternOCT
images, increasing the amount of OCT data that
needs to be analyzed to the extent that it exceeds
clinical capacity. Therefore, image analysis by
artificial intelligence (AI) using deep learning is
likely to contribute markedly to the field of med-
icine in the future.

CNNs are neural networks with many layers
that demonstrate particularly excellent perfor-
mance in the field of image recognition [17].
A CNN contains a repeated structure of convo-
lution layers, which is responsible for local fea-
ture extraction of the image, and a pooling layer
(subsampling layer) which summarizes the fea-
tures of each area. The number of parameters is
significantly reduced by CNNs, as compared to a
simple all-coupled network, because the param-
eters of the convolution filter are shared in all
locations in the image.Weight is adjusted so as to
eliminate the difference calculated from the
supervised data and the input image. In our sec-
ondmodel,we applied transfer learning,which is
an efficient technique for retraining a previously
constructed CNN; and most unit weights are
pretrained. The efficiency of training aCNNwith
transfer learning is high, and in most cases,
stable classificationperformance canbe achieved

Fig. 4 Heat maps for two CNN classification models.
a Heat map for the first model for classifying normal and
AMD OCT images, b heat map for the second model for
classifying the presence or absence of any fluid. CAM was

able to identify characteristic areas on the OCT, and it is
presented as a heat map. CAM class activation mapping,
AMD age-related macular degeneration, CNN convolution
neural network, OCT optical coherence tomography
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more rapidly when including transfer learning
than when training a CNN without transfer
learning. In our second model using transfer
learning,we could obtain ahighly accurate result
with a smaller dataset. This is therefore particu-
larly useful when it is difficult to amass image
data, such as in cases of rare diseases.

We found that CAM was able to identify the
characteristic area on the OCT image and rep-
resent it as a heatmap. In essence, the purpose of
CAM is to specify the part of the image with a
large effect on the probability score for each class
by averaging the differential coefficients. It
quantifies changes in a certainty degree, as a
heat map, and thereby highlights important
areas. Therefore, it is possible to confirm the area
of interest on the image by using CAM. When
many OCT examination images obtained by
frequent examinations and long-term follow-up
need to be analyzed, AI judgment making use of
a heat map can be used to both shorten the
analysis time and prevent overlooking, and as a
training mechanism for non-experts. In the
future, AMD clinics may make use of real-time
automated detection of many AMD findings.

Our study had several limitations. We used
only images from patients who met our inclu-
sion criteria, and the neural network was
trained only on these images. We excluded low-

quality images and patients who had other
concomitant diseases. It is necessary to imple-
ment image classification by adding a process of
determining good image quality [36] to ensure
utility in future clinical practice, such as tele-
medicine. In this case, only OCT images passing
through the fovea of the cross scan and radial
scan were used. However, to ensure utility for
classification of diseases in clinical practice, it is
necessary to develop machine learning, includ-
ing OCT volume scanning, more widely We also
excluded images on which the three ophthal-
mologists did not agree regarding the presence
or absence of SRF or IRF. Therefore, it is unclear
whether our results can be applied in general. In
addition, our models were trained using images
from a single OCT device at a single academic
center. In the future, images from various OCT
devices at multiple facilities should be included,
and it is desirable to develop deep learning from
more images to ensure reliability.

CONCLUSION

In this study, we developed and evaluated reli-
able computational deep-learning models for
distinguishing AMD from normal OCT images,
and for classifying AMD according to the pres-
ence or absence of exudative changes without a
segmentation algorithm. In this era, where
treatment of AMD is decided based on inter-
pretation of OCT images, it is important to
maximize the capacity to process the increasing
number of images from the growing number of
patients. Automation of the interpretation pro-
cess by using deep-learning models can improve
cost and time efficiency.
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