Skip to main content
Log in

Microstructural properties of novel nanocomposite material based on hydroxyapatite and carbon nanotubes: fabrication and nonlinear instability simulation

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this work, a novel porous bio-nanocomposite material containing the commercial nanocrystalline hydroxyapatite (n-HA) composed using single-walled carbon nanotubes (SWCNTs) with different weight fractions (0, 2.5, 5, and 7.5 wt%) is fabricated via a space holder technique for bone tissue engineering applications. The hydroxyapatite (HA) presents a weak mechanical performance which the addition of the SWCNT can enhance the mechanical strength of the matrix. The manufactured n-HA-SWCNT bio-nanocomposite samples are then coated by gelatin-ibuprofen (GN-IBO) bio-polymer with a dip-coating method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) are employed for the phase characterization and surface morphology analysis of the fabricated bio-nanocomposite specimens. The mechanical properties, the rate of drug release, and biological characteristics of the specimens with and without SWCNTs are investigated. After that, the nonlinear instability and vibration responses of an axially loaded plate-form bone implant made of the manufactured n-HA-SWCNT bio-nanocomposite samples coated with GN-IBO thin layers are simulated through a sandwich-plate model and based upon the experimentally extracted mechanical properties. The obtained results indicate the presence of SWCNT and n-HA in the composition due to the fuzzy metamorphism or degradation. It is found that by increasing the amount of SWCNTs, the mass density of the fabricated bio-nanocomposite samples reduces, but the porosity and strength of them are higher than those of the pure n-HA. Therefore, it is expected that these newly manufactured bio-nanocomposites have an excellent capability for bone formation with better bonds with surrounding tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomat 28(2), 344–353 (2007)

    CAS  Google Scholar 

  2. Balani, K., Anderson, R., Laha, T., Andara, M., Tercero, J., Crumpler, E., Agarwal, A.: Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomat 28(4), 618–624 (2007)

    CAS  Google Scholar 

  3. Wright, Z., Arnold, A., Holt, B., Eckhart, K., Sydlik, S.: Functional graphenic materials, graphene oxide, and graphene as scaffolds for bone regeneration. Regen Eng Transl Med 5(2), 190–209 (2019)

    CAS  Google Scholar 

  4. Aghadavoudi, F., Golestanian, H., Zarasvand, K.A.: Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling. Polym Bull 76(8), 4275–4294 (2019)

    CAS  Google Scholar 

  5. Nie, W., Peng, C., Zhou, X., Chen, L., Wang, W., Zhang, Y., Ma, P.X., He, C.: Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 116, 325–337 (2017)

    CAS  Google Scholar 

  6. Sahmani, S., Saber-Samandari, S., Shahali, M., Yekta, H.J., Aghadavoudi, F., Montazeran, A., Aghdam, M., Khandan, A.: Mechanical and biological performance of axially loaded novel bio-nanocomposite sandwich plate-type implant coated by biological polymer thin film. J Mech Behav Biomed Mater 88, 238–250 (2018)

    CAS  PubMed  Google Scholar 

  7. Rodriguez, D.E., Guiza-Arguello, V., Ochoa, O.O., Gharat, T., Sue, H.-J., Lafdi, K., Hahn, M.S.: Development of a hydroxyapatite-poly (d, l-lactide-co-glycolide) infiltrated carbon foam for orthopedic applications. Carbon 98, 106–114 (2016)

    CAS  Google Scholar 

  8. Ayatollahi, M., Barbaz Isfahani, R., Moghimi Monfared, R.: Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM. J Compos Mater 51(30), 4177–4188 (2017)

    CAS  Google Scholar 

  9. Chen, X., Wu, Y., Ranjan, V.D., Zhang, Y.: Three-dimensional electrical conductive scaffold from biomaterial-based carbon microfiber sponge with bioinspired coating for cell proliferation and differentiation. Carbon 134, 174–182 (2018)

    CAS  Google Scholar 

  10. Türk, S., Altınsoy, I., Efe, G.Ç., İpek, M., Özacar, M., Bindal, C.: 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C 92, 757–768 (2018)

    Google Scholar 

  11. Zhang, L., Pei, L., Li, H., Zhu, F.: Design and fabrication of pyrolytic carbon-SiC-fluoridated hydroxyapatite-hydroxyapatite multilayered coating on carbon fibers. Appl Surf Sci 473, 571–577 (2019)

    CAS  Google Scholar 

  12. Trakoolwannachai, V., Kheolamai, P., Ummartyotin, S.: Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Composition 173, 106974 (2019)

    CAS  Google Scholar 

  13. Sahmani, S., Shahali, M., Nejad, M.G., Khandan, A., Aghdam, M., Saber-Samandari, S.: Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur Phy J Plus 134(1), 7 (2019)

    Google Scholar 

  14. Khandan, A., Ozada, N., Saber-Samandari, S., Nejad, M.G.: On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceram Int 44(3), 3141–3148 (2018)

    CAS  Google Scholar 

  15. Sahmani, S., Khandan, A., Saber-Samandari, S., Aghdam, M.: Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: application, communication and simulation. Ceram Int 44(10), 11282–11291 (2018)

    CAS  Google Scholar 

  16. Sahmani, S., Khandan, A., Saber-Samandari, S., Aghdam, M.: Nonlinear bending and instability analysis of bioceramics composed with magnetite nanoparticles: Fabrication, characterization, and simulation. Ceram Int 44(8), 9540–9549 (2018)

    CAS  Google Scholar 

  17. Germain, L., Fuentes, C.A., van Vuure, A.W., Rieux, A., Dupont-Gillain, C.: 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Mater 151, 113–122 (2018)

    CAS  Google Scholar 

  18. Salmani, M.M., Hashemian, M., Yekta, H.J., Nejad, M.G., Saber-Samandari, S., Khandan, A.: Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application. J Supercond 33(9), 2809–2820 (2020). https://doi.org/10.1007/s10948-020-05530-1

    Article  CAS  Google Scholar 

  19. Revati, R., Majid, M.A., Ridzuan, M., Normahira, M., Nasir, N.M., Gibson, A.: Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mat Sci Eng C 75, 752–759 (2017)

    CAS  Google Scholar 

  20. Sahmani, S., Aghdam, M.: Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell. Phy Lett A 381(45), 3818–3830 (2017)

    CAS  Google Scholar 

  21. Sahmani, S., Aghdam, M.: Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J Biomech 65, 49–60 (2017)

    CAS  PubMed  Google Scholar 

  22. Naghieh, S., Foroozmehr, E., Badrossamay, M., Kharaziha, M.: Combinational processing of 3D printing and electrospinning of hierarchical poly (lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment. Mater 133, 128–135 (2017)

    CAS  Google Scholar 

  23. Tozar, A., Karahan, İH.: A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl Surf Sci 452, 322–336 (2018)

    CAS  Google Scholar 

  24. Sahmani, S., Aghdam, M.: Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Math Biosci 295, 24–35 (2018)

    CAS  PubMed  Google Scholar 

  25. Sahmani, S., Saber-Samandari, S., Aghdam, M., Khandan, A.: Nonlinear resonance response of porous beam-type implants corresponding to various morphology shapes for bone tissue engineering applications. J Mater Eng Perf 27(10), 5370–5383 (2018)

    CAS  Google Scholar 

  26. Hasan, A., Waibhaw, G., Saxena, V., Pandey, L.M.: Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Bioll Macromol 111, 923–934 (2018)

    CAS  Google Scholar 

  27. Wang, W., Huang, B., Byun, J.J., Bártolo, P.: Assessment of PCL/carbon material scaffolds for bone regeneration. J Mech Behah Biomed Mater 93, 52–60 (2019)

    CAS  Google Scholar 

  28. Maghsoudlou, M.A., Isfahani, R.B., Saber-Samandari, S., Sadighi, M.: Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations. Compos 175, 107119 (2019)

    CAS  Google Scholar 

  29. Sahmani, S., Saber-Samandari, S., Khandan, A., Aghdam, M.M.: Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: fabrication, characterization and simulation. J Mech Behav Biomed Mater 95, 76–88 (2019)

    CAS  PubMed  Google Scholar 

  30. Hassanajili, S., Karami-Pour, A., Oryan, A., Talaei-Khozani, T.: Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Engin C 104, 109960 (2019)

    Google Scholar 

  31. Torgbo, S., Sukyai, P.: Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater Chem Phy 237, 121868 (2019)

    CAS  Google Scholar 

  32. Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M.S., Kim, H.H., Phan, T.T.V., Oh, J.: Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Mater Chem Phys 228, 344–356 (2019)

    CAS  Google Scholar 

  33. Sahmani, S., Saber-Samandari, S., Khandan, A., Aghdam, M.: Nonlinear resonance investigation of nanoclay based bio-nanocomposite scaffolds with enhanced properties for bone substitute applications. J Alloys Comp 773, 636–653 (2019)

    CAS  Google Scholar 

  34. Moncion, A., Harmon, J.S., Li, Y., Natla, S., Farrell, E.C., Kripfgans, O.D., Stegemann, J.P., Martín-Saavedra, F.M., Vilaboa, N., Franceschi, R.T.: Spatiotemporally-controlled transgene expression in hydroxyapatite-fibrin composite scaffolds using high intensity focused ultrasound. Biomater 194, 14–24 (2019)

    CAS  Google Scholar 

  35. Feng, P., Peng, S., Shuai, C., Gao, C., Yang, W., Bin, S., Min, A.: In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity. ACS Appl Mater Inter 12(41), 46743–46755 (2020)

    CAS  Google Scholar 

  36. Shuai, C., Yang, W., Feng, P., Peng, S., Pan, H.: Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioactive Mater 6(2), 490–502 (2021)

    CAS  Google Scholar 

  37. Foroutan, S., Hashemian, M., Khandan, A.: A porous sodium alginate-CaSiO3 polymer reinforced with graphene nanosheet: fabrication and optimality analysis. Fib Poly 3, 10 (2020)

    Google Scholar 

  38. Bagherifard, A., Joneidi Yekta, H., Akbari Aghdam, H., Motififard, M., Sanatizadeh, E., Ghadiri Nejad, M., Esmaeili, S., Saber-Samandari, S., Sheikhbahaei, E., Khandan, A.: Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Bio Eng Comput 58, 1681–1693 (2020)

    Google Scholar 

  39. Sun, C., Yarmohammadi, A., Isfahani, R.B., Nejad, M.G., Toghraie, D., Fard, E.K., Saber-Samandari, S., Khandan, A.: Self-healing polymers using electrosprayed microcapsules containing oil: molecular dynamics simulation and experimental studies. J Mole Liq 325, 115182 (2021)

    CAS  Google Scholar 

  40. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907–2915 (2006)

    CAS  PubMed  Google Scholar 

  41. Fan, Z., Wang, J., Wang, Z., Ran, H., Li, Y., Niu, L., Gong, P., Liu, B., Yang, S.: One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon 66, 407–416 (2014)

    CAS  Google Scholar 

  42. Ghayour, H., Abdellahi, M., Nejad, M.G., Khandan, A., Saber-Samandari, S.: Study of the effect of the Zn 2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co 1–x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia. J Aust Ceram Soc 54(2), 223–230 (2018)

    CAS  Google Scholar 

  43. Sahmani, S., Shahali, M., Khandan, A., Saber-Samandari, S., Aghdam, M.: Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Appl Clay Sci 165, 112–123 (2018)

    CAS  Google Scholar 

  44. Kordjamshidi, A., Saber-Samandari, S., Nejad, M.G., Khandan, A.: Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: fabrication, characterization and simulation. Ceram Int 45(11), 14126–14135 (2019)

    CAS  Google Scholar 

  45. Oladapo, B.I., Zahedi, S., Adeoye, A.: 3D printing of bone scaffolds with hybrid biomaterials. Composition 158, 428–436 (2019)

    CAS  Google Scholar 

  46. Sahmani, S., Khandan, A., Esmaeili, S., Saber-Samandari, S., Nejad, M.G., Aghdam, M.: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation. Ceram Int 46(2), 2447–2456 (2020)

    CAS  Google Scholar 

  47. Zhang, X.-Y., Chen, Y.-P., Han, J., Mo, J., Dong, P.-F., Zhuo, Y.-H., Feng, Y.: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Int J Biolo Macro 136, 1247–1257 (2019)

    CAS  Google Scholar 

  48. Olad, A., Hagh, H.B.K.: Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering. Composition 162, 692–702 (2019)

    CAS  Google Scholar 

  49. Esmaeili, S., Shahali, M., Kordjamshidi, A., Torkpoor, Z., Namdari, F., Samandari, S.S., Ghadiri Nejad, M., Khandan, A.: An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomed J 6(3), 183–194 (2019)

    CAS  Google Scholar 

  50. Hashemi, S.A., Esmaeili, S., Ghadirinejad, M., Saber-Samandari, S., Sheikhbahaei, E., Kordjamshidi, A., Khandan, A.: Micro-finite element model to investigate the mechanical stimuli in scaffolds fabricated via space holder technique for cancellous bone. ADMT J 13(1), 51–58 (2020)

    Google Scholar 

  51. Sahmani, S., Ansari, R.: Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions. J Mech Sci Tech 25(9), 2365 (2011)

    Google Scholar 

  52. Shen, H.-S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos 119, 67–78 (2017)

    CAS  Google Scholar 

  53. Sahmani, S., Aghdam, M.M.: Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civ Mech Eng 17(3), 623–638 (2017)

    Google Scholar 

  54. Sahmani, S., Aghdam, M.: Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur Phy J Plus 132(11), 1–17 (2017)

    Google Scholar 

  55. Shen, H.-S., Xiang, Y., Lin, F.: Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Wal Struct 118, 229–237 (2017)

    Google Scholar 

  56. Sahmani, S., Aghdam, M.: Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency. Acta Mech 229(1), 403–420 (2018)

    Google Scholar 

  57. Sahmani, S., Aghdam, M.: Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency. Res Phy 8, 879–892 (2018)

    Google Scholar 

  58. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration of sandwich plates with FG-GRC face sheets in thermal environments. Compos Strut 192, 642–653 (2018)

    Google Scholar 

  59. Shen, H.-S., Xiang, Y., Fan, Y., Hui, D.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos 136, 177–186 (2018)

    CAS  Google Scholar 

  60. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Comp Strut 186, 68–78 (2018)

    Google Scholar 

  61. Sahmani, S., Aghdam, M.M., Rabczuk, T.: A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Mat Res Exp 5(4), 045048 (2018)

    Google Scholar 

  62. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Strut 198, 51–62 (2018)

    Google Scholar 

  63. Shen, H.-S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin-Wall Strut 124, 151–160 (2018)

    Google Scholar 

  64. Yang, L.-K., Shen, P., Guo, R.-F., Li, Y.-L., Jiang, Q.-C.: A novel strategy for fabricating biomimetic gradient metal-ceramic composites by dynamic freeze casting and pressure infiltration. Scri Mater 167, 101–104 (2019)

    CAS  Google Scholar 

  65. Sahmani, S., Fattahi, A.M., Ahmed, N.: Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comp 35(4), 1173–1189 (2019)

    Google Scholar 

  66. Sahmani, S., Aghdam, M.: Nonlocal electrothermomechanical instability of temperature-dependent FGM nanopanels with piezoelectric facesheets. Iran J Sci Technol Trans Mech Eng 43(1), 579–593 (2019)

    Google Scholar 

  67. Shishkovsky, I., Sherbakov, V., Ibatullin, I., Volchkov, V., Volova, L.: Nano-size ceramic reinforced 3D biopolymer scaffolds: Tribomechanical testing and stem cell activity. Compos Strut 202, 651–659 (2018)

    Google Scholar 

  68. Cannillo, V., Chiellini, F., Fabbri, P., Sola, A.: Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching. Comp Strut 92(8), 1823–1832 (2010)

    Google Scholar 

  69. Unnikrishnan, V., Unnikrishnan, G., Reddy, J.: Multiscale analysis of carbon nanotube-reinforced nanofiber scaffolds. Compos strut 93(2), 1008–1014 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$${u}_{x}\left(x,y,z\right)=u\left(x,y\right)-z\frac{\partial w(x,y)}{\partial x}+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]{\psi }_{x}\left(x,y\right)$$
(3)
$${u}_{y}\left(x,y,z\right)=v\left(x,y\right)-z\frac{\partial w(x,y)}{\partial y}+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]{\psi }_{y}\left(x,y\right)$$
(4)
$${u}_{z}\left(x,y,z\right)=w\left(x,y\right)$$
(5)

where \(u,v\) and \(w\) denote the displacement components of the plate type implant for x, y, and z-axis, respectively. Furthermore, \({\psi }_{x}\) and \({\psi }_{y}\) represent, the rotations relevant to the cross section of the implant at neutral-plane normal, respectively, for the y and x-axis.

According to the von Karman nonlinear strain displacement formulation, this yields

$$ \begin{aligned} \begin{aligned}\left\{\begin{array}{c}{\varepsilon }_{xx}\\ {\varepsilon }_{yy}\\ {\gamma }_{xy}\end{array}\right\}&=\left\{\begin{array}{c}{\varepsilon }_{xx}^{0} \\ {\varepsilon }_{yy}^{0}\\ {\gamma }_{xy}^{0}\end{array}\right\}+z\left\{\begin{array}{c}{\kappa }_{xx}^{(1)}\\ {\kappa }_{yy}^{(1)}\\ {\kappa }_{xy}^{(1)}\end{array}\right\}+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(2)}\\ {\kappa }_{yy}^{(2)}\\ {\kappa }_{xy}^{(2)}\end{array}\right\}=\left\{\begin{array}{c}\frac{\partial u}{\partial x}+\frac{1}{2}{\left(\frac{\partial w}{\partial x}\right)}^{2}\\ \frac{\partial v}{\partial y}+\frac{1}{2}{\left(\frac{\partial w}{\partial y}\right)}^{2}\\ \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}+\frac{\partial w}{\partial x}\frac{\partial w}{\partial y}\end{array}\right\}-z\left\{\begin{array}{c}\frac{{\partial }^{2}w}{\partial {x}^{2}}\\ \frac{{\partial }^{2}w}{\partial {y}^{2}}\\ 2\frac{{\partial }^{2}w}{\partial x\partial y}\end{array}\right\}\\&\quad+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]\left\{\begin{array}{c}\frac{\partial {\psi }_{x}}{\partial x}\\ \frac{\partial {\psi }_{y}}{\partial y}\\ \frac{\partial {\psi }_{x}}{\partial y}+\frac{\partial {\psi }_{y}}{\partial x}\end{array}\right\}\end{aligned} \end{aligned} $$
(6)
$$\left\{\begin{array}{c}{\gamma }_{xz}\\ {\gamma }_{yz}\end{array}\right\}=\left[\mathrm{cosh}\left(\frac{1}{2}\right)-\mathrm{cosh}\left(\frac{z}{h}\right)\right]\left\{\begin{array}{c}{\psi }_{x}\\ {\psi }_{y}\end{array}\right\}$$
(7)

where \({\varepsilon }_{ij}^{0}\), \({\kappa }_{ij}^{(1)}\), \({\kappa }_{ij}^{(2)}\) (\(i,j=x,y\)) are respectively related to the midplane strain components, the first and higher-order curvature components.

Accordingly, the constitutive relationship for a sandwich plate type implant will be like the following:

$$\left\{\begin{array}{c}{\sigma }_{xx}\\ {\sigma }_{yy}\\ {\sigma }_{xy}\\ {\sigma }_{xz}\\ {\sigma }_{yz}\end{array}\right\}=\left(\left[{Q}_{f1}\right]+\left[{Q}_{b}\right]+\left[{Q}_{f2}\right]\right)\left\{\begin{array}{c}{\varepsilon }_{xx}\\ {\varepsilon }_{yy}\\ {\gamma }_{xy}\\ {\gamma }_{xz}\\ {\gamma }_{yz}\end{array}\right\}$$
(8)

where

$$\left[{Q}^{f1}\right]=\left[{Q}^{f2}\right]=\left[\begin{array}{ccccc}\frac{{E}_{f}}{1-{\nu }_{f}^{2}}& \frac{{\nu }_{f}{E}_{f}}{1-{\nu }_{f}^{2}}& 0& 0& 0\\ \frac{{\nu }_{f}{E}_{f}}{1-{\nu }_{f}^{2}}& \frac{{E}_{f}}{1-{\nu }_{f}^{2}}& 0& 0& 0\\ 0& 0& \frac{{E}_{f}}{\left(1-{\nu }_{f}\right)\left(1+2{\nu }_{f}\right)}& 0& 0\\ 0& 0& 0& \frac{{E}_{f}}{\left(1-{\nu }_{f}\right)\left(1+2{\nu }_{f}\right)}& 0\\ 0& 0& 0& 0& \frac{{E}_{f}}{\left(1-{\nu }_{f}\right)\left(1+2{\nu }_{f}\right)}\end{array}\right]$$
(9)
$$\left[{Q}^{b}\right]=\left[\begin{array}{ccccc}\frac{{E}_{b}}{1-{\nu }_{b}^{2}}& \frac{{\nu }_{b}{E}_{b}}{1-{\nu }_{b}^{2}}& 0& 0& 0\\ \frac{{\nu }_{b}{E}_{b}}{1-{\nu }_{b}^{2}}& \frac{{E}_{b}}{1-{\nu }_{b}^{2}}& 0& 0& 0\\ 0& 0& \frac{{E}_{b}}{\left(1-{\nu }_{b}\right)\left(1+2{\nu }_{b}\right)}& 0& 0\\ 0& 0& 0& \frac{{E}_{b}}{\left(1-{\nu }_{b}\right)\left(1+2{\nu }_{b}\right)}& 0\\ 0& 0& 0& 0& \frac{{E}_{b}}{\left(1-{\nu }_{b}\right)\left(1+2{\nu }_{b}\right)}\end{array}\right]$$
(10)

in which \({E}_{b}\) and \({E}_{f}\) represent Young's modulus of the bulk and coating film, \({\nu }_{b}\) and \({\nu }_{f}\) are their Poisson's ratio for the sandwich plate type implant, that is extracted investigationally due to the fabricated n-HA-SWCNT bio-nanocomposites dip coated by GN-IBO thin layers as has been shown in Table 1.

Considering the continuum elasticity, the overall strain energy of the sandwich plate type implant could be stated as

$$ \begin{aligned}{\Pi }_{s}&=\frac{1}{2}{\int }_{S}{\int }_{-\frac{h}{2}}^\frac{h}{2}{\sigma }_{ij}{\varepsilon }_{ij}dzdS=\frac{1}{2}{\int }_{S}\left\{{N}_{xx}{\varepsilon }_{xx}^{0}+{N}_{yy}{\varepsilon }_{yy}^{0}+{N}_{xy}{\gamma }_{xy}^{0}+{M}_{xx}{\kappa }_{xx}^{(1)}+{M}_{yy}{\kappa }_{yy}^{(1)}\right.\\&\quad\left.+{M}_{xy}{\kappa }_{xy}^{(1)}+{R}_{xx}{\kappa }_{xx}^{(2)}+{R}_{yy}{\kappa }_{yy}^{(2)}+{R}_{xy}{\kappa }_{xy}^{(2)}+{Q}_{x}{\gamma }_{xz}+{Q}_{y}{\gamma }_{yz}\right\}dS\end{aligned} $$
(11)

where the stress resultants could be stated as

$$\left\{\begin{array}{c}{N}_{xx}\\ {N}_{yy}\\ {N}_{xy}\end{array}\right\}=\left[\begin{array}{ccc}{A}_{11}^{*}& {A}_{12}^{*}& 0\\ {A}_{12}^{*}& {A}_{22}^{*}& 0\\ 0& 0& {A}_{66}^{*}\end{array}\right]\left\{\begin{array}{c}{\varepsilon }_{xx}^{0}\\ {\varepsilon }_{yy}^{0}\\ {\gamma }_{xy}^{0}\end{array}\right\}+\left[\begin{array}{ccc}{B}_{11}^{*}& {B}_{12}^{*}& 0\\ {B}_{12}^{*}& {B}_{22}^{*}& 0\\ 0& 0& {B}_{66}^{*}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(1)}\\ {\kappa }_{yy}^{(1)}\\ {\kappa }_{xy}^{(1)}\end{array}\right\}+\left[\begin{array}{ccc}{B}_{11}^{**}& {B}_{12}^{**}& 0\\ {B}_{12}^{**}& {B}_{22}^{**}& 0\\ 0& 0& {B}_{66}^{**}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(2)}\\ {\kappa }_{yy}^{(2)}\\ {\kappa }_{xy}^{(2)}\end{array}\right\}$$
(12)
$$\left\{\begin{array}{c}{M}_{xx}\\ {M}_{yy}\\ {M}_{xy}\end{array}\right\}=\left[\begin{array}{ccc}{B}_{11}^{*}& {B}_{12}^{*}& 0\\ {B}_{12}^{*}& {B}_{22}^{*}& 0\\ 0& 0& {B}_{66}^{*}\end{array}\right]\left\{\begin{array}{c}{\varepsilon }_{xx}^{0}\\ {\varepsilon }_{yy}^{0}\\ {\gamma }_{xy}^{0}\end{array}\right\}+\left[\begin{array}{ccc}{D}_{11}^{*}& {D}_{12}^{*}& 0\\ {D}_{12}^{*}& {D}_{22}^{*}& 0\\ 0& 0& {D}_{66}^{*}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(1)}\\ {\kappa }_{yy}^{(1)}\\ {\kappa }_{xy}^{(1)}\end{array}\right\}+\left[\begin{array}{ccc}{D}_{11}^{**}& {D}_{12}^{**}& 0\\ {D}_{12}^{**}& {D}_{22}^{**}& 0\\ 0& 0& {D}_{66}^{**}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(2)}\\ {\kappa }_{yy}^{(2)}\\ {\kappa }_{xy}^{(2)}\end{array}\right\}(13)$$
(13)
$$\left\{\begin{array}{c}{R}_{xx}\\ {R}_{yy}\\ {R}_{xy}\end{array}\right\}=\left[\begin{array}{ccc}{B}_{11}^{**}& {B}_{12}^{**}& 0\\ {B}_{12}^{**}& {B}_{22}^{**}& 0\\ 0& 0& {B}_{66}^{**}\end{array}\right]\left\{\begin{array}{c}{\varepsilon }_{xx}^{0}\\ {\varepsilon }_{yy}^{0}\\ {\gamma }_{xy}^{0}\end{array}\right\}+\left[\begin{array}{ccc}{D}_{11}^{**}& {D}_{12}^{**}& 0\\ {D}_{12}^{**}& {D}_{22}^{**}& 0\\ 0& 0& {D}_{66}^{**}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(1)}\\ {\kappa }_{yy}^{(1)}\\ {\kappa }_{xy}^{(1)}\end{array}\right\}+\left[\begin{array}{ccc}{G}_{11}^{*}& {G}_{12}^{*}& 0\\ {G}_{12}^{*}& {G}_{22}^{*}& 0\\ 0& 0& {G}_{66}^{*}\end{array}\right]\left\{\begin{array}{c}{\kappa }_{xx}^{(2)}\\ {\kappa }_{yy}^{(2)}\\ {\kappa }_{xy}^{(2)}\end{array}\right\}$$
(14)
$$\left\{\begin{array}{c}{Q}_{x}\\ {Q}_{y}\end{array}\right\}=\left[\begin{array}{cc}{A}_{44}^{*}& 0\\ 0& {A}_{55}^{*}\end{array}\right]\left\{\begin{array}{c}{\psi }_{x}\\ {\psi }_{y}\end{array}\right\}$$
(15)

in which the stiffness parameters are given in Appendix A.

Besides, the sandwich plate type implant’s kinetic energy of the manufactured n-HA-SWCNT bio-nanocomposites dip coated considering GN-IBO thin layers based upon the hyperbolic shear deformable plate model may be stated as

$${\Pi }_{T}=\frac{1}{2}{\int }_{S}{\int }_{-\frac{h}{2}}^\frac{h}{2}\rho \left\{{\left(\frac{\partial u}{\partial t}-z\frac{{\partial }^{2}w}{\partial x\partial t}+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]\frac{\partial {\psi }_{x}}{\partial t}\right)}^{2}+{\left(\frac{\partial v}{\partial t}-z\frac{{\partial }^{2}w}{\partial y\partial t}+\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]\frac{\partial {\psi }_{y}}{\partial t}\right)}^{2}+{\left(\frac{\partial w}{\partial t}\right)}^{2}\right\}dzdS=\frac{1}{2}{\int }_{S}\left\{{I}_{0}{\left(\frac{\partial u}{\partial t}\right)}^{2}-2{I}_{1}\frac{\partial u}{\partial t}\frac{{\partial }^{2}w}{\partial x\partial t}+2{I}_{3}\frac{\partial u}{\partial t}\frac{\partial {\psi }_{x}}{\partial t}+{I}_{2}{\left(\frac{{\partial }^{2}w}{\partial x\partial t}\right)}^{2}-2{I}_{4}\frac{{\partial }^{2}w}{\partial x\partial t}\frac{\partial {\psi }_{x}}{\partial t}+{I}_{5}{\left(\frac{\partial {\psi }_{x}}{\partial t}\right)}^{2}+{I}_{0}{\left(\frac{\partial v}{\partial t}\right)}^{2}-2{I}_{1}\frac{\partial v}{\partial t}\frac{{\partial }^{2}w}{\partial y\partial t}+2{I}_{3}\frac{\partial v}{\partial t}\frac{\partial {\psi }_{y}}{\partial t}+{I}_{2}{\left(\frac{{\partial }^{2}w}{\partial y\partial t}\right)}^{2}-2{I}_{4}\frac{{\partial }^{2}w}{\partial y\partial t}\frac{\partial {\psi }_{y}}{\partial t}+{I}_{5}{\left(\frac{\partial {\psi }_{y}}{\partial t}\right)}^{2}+{I}_{0}{\left(\frac{\partial w}{\partial t}\right)}^{2}\right\}dS$$
(16)

where \({I}_{0}, {I}_{1},\dots ,{I}_{5}\) are given in Appendix A.

Additionally, \({\Pi }_{P}\) achieved by the external distributed load \(\mathcal{q}\) may be expressed as

$${\Pi }_{P}={\int }_{S}\mathcal{q}wdS$$
(17)

So, after utilizing Hamilton's principle, the non-linear governing differential equations of motion considering the stress resultants might be written as

$$\frac{\partial {N}_{xx}}{\partial x}+\frac{\partial {N}_{xy}}{\partial y}={I}_{0}\frac{{\partial }^{2}u}{\partial {t}^{2}}-{I}_{1}\frac{{\partial }^{3}w}{\partial x\partial {t}^{2}}+{I}_{3}\frac{{\partial }^{2}{\psi }_{x}}{\partial {t}^{2}}$$
(18)
$$\frac{\partial {N}_{xy}}{\partial x}+\frac{\partial {N}_{yy}}{\partial y}={I}_{0}\frac{{\partial }^{2}v}{\partial {t}^{2}}-{I}_{1}\frac{{\partial }^{3}w}{\partial y\partial {t}^{2}}+{I}_{3}\frac{{\partial }^{2}{\psi }_{y}}{\partial {t}^{2}}$$
(19)
$$\frac{{\partial }^{2}{M}_{xx}}{\partial {x}^{2}}+2\frac{{\partial }^{2}{M}_{xy}}{\partial x\partial y}+\frac{{\partial }^{2}{M}_{yy}}{\partial {y}^{2}}+{N}_{xx}\frac{{\partial }^{2}w}{\partial {x}^{2}}+2{N}_{xy}\frac{{\partial }^{2}w}{\partial x\partial y}+{N}_{yy}\frac{{\partial }^{2}w}{\partial {y}^{2}}=-{I}_{1}\left(\frac{{\partial }^{3}u}{\partial x\partial {t}^{2}}+\frac{{\partial }^{3}v}{\partial y\partial {t}^{2}}\right)+{I}_{0}\frac{{\partial }^{2}w}{\partial {t}^{2}}-{I}_{2}\left(\frac{{\partial }^{4}w}{\partial {x}^{2}\partial {t}^{2}}+\frac{{\partial }^{4}w}{\partial {y}^{2}\partial {t}^{2}}\right)-{I}_{4}\left(\frac{{\partial }^{3}{\psi }_{x}}{\partial x\partial {t}^{2}}+\frac{{\partial }^{3}{\psi }_{y}}{\partial y\partial {t}^{2}}\right)+\mathcal{q}$$
(20)
$$\frac{\partial {R}_{xx}}{\partial x}+\frac{\partial {R}_{xy}}{\partial y}-{Q}_{x}={I}_{3}\frac{{\partial }^{2}u}{\partial {t}^{2}}-{I}_{4}\frac{{\partial }^{3}w}{\partial x\partial {t}^{2}}+{I}_{5}\frac{{\partial }^{2}{\psi }_{x}}{\partial {t}^{2}}$$
(21)
$$\frac{\partial {R}_{xy}}{\partial x}+\frac{\partial {R}_{yy}}{\partial y}-{Q}_{y}={I}_{3}\frac{{\partial }^{2}v}{\partial {t}^{2}}-{I}_{4}\frac{{\partial }^{3}w}{\partial y\partial {t}^{2}}+{I}_{5}\frac{{\partial }^{2}{\psi }_{y}}{\partial {t}^{2}}$$
(22)

In that way, the Airy stress function \(f\left(x,y\right)\) is stated as

$${N}_{xx}=\frac{\partial f(x,y)}{\partial {y}^{2}} , {N}_{yy}=\frac{\partial f(x,y)}{\partial {x}^{2}} , {N}_{xy}=-\frac{\partial f\left(x,y\right)}{\partial x\partial y}$$
(23)

Moreover, considering the perfect geometric assumption for the plate type implant, the compatibility equation relevant to the mid-plane strain components yields

$$\frac{{\partial }^{2}{\varepsilon }_{xx}^{0}}{\partial {x}^{2}}+\frac{{\partial }^{2}{\varepsilon }_{yy}^{0}}{\partial {y}^{2}}-\frac{{\partial }^{2}{\gamma }_{xy}^{0}}{\partial x\partial y}={\left(\frac{{\partial }^{2}w}{\partial x\partial y}\right)}^{2}-\frac{{\partial }^{2}w}{\partial {x}^{2}}\frac{{\partial }^{2}w}{\partial {y}^{2}}$$
(24)

Using formulations (6) and (11), the non-linear governing differential equations of motion may be stated as the displacement components like the following,

$$\left(\frac{{A}_{11}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}f}{\partial {x}^{4}}+\left(\frac{1}{{A}_{66}^{*}}-\frac{2{A}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}f}{\partial {x}^{2}\partial {y}^{2}}+\left(\frac{{A}_{22}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}f}{\partial {y}^{4}}+\left(\frac{{A}_{11}^{*}{B}_{12}^{*}-{A}_{12}^{*}{B}_{11}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}w}{\partial {x}^{4}}+\left(\frac{{A}_{11}^{*}{B}_{11}^{*}+{A}_{22}^{*}{B}_{22}^{*}-2{A}_{12}^{*}{B}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{2{B}_{66}^{*}}{{A}_{66}^{*}}\right)\frac{{\partial }^{4}w}{\partial {x}^{2}\partial {y}^{2}}+\left(\frac{{A}_{22}^{*}{B}_{12}^{*}-{A}_{12}^{*}{B}_{22}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}w}{\partial {y}^{4}}-\left(\frac{{A}_{11}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{11}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{3}{\psi }_{x}}{\partial {x}^{3}}-\left(\frac{{A}_{11}^{*}{B}_{11}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{B}_{66}^{**}}{{A}_{66}^{*}}\right)\frac{{\partial }^{3}{\psi }_{x}}{\partial x\partial {y}^{2}}-\left(\frac{{A}_{22}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{22}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{3}{\psi }_{y}}{\partial {y}^{3}}-\left(\frac{{A}_{22}^{*}{B}_{22}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{B}_{66}^{**}}{{A}_{66}^{*}}\right)\frac{{\partial }^{3}{\psi }_{y}}{\partial {x}^{2}\partial y}={\left(\frac{{\partial }^{2}w}{\partial x\partial y}\right)}^{2}-\frac{{\partial }^{2}w}{\partial {x}^{2}}\frac{{\partial }^{2}w}{\partial {y}^{2}}$$
(25)
$$\left({D}_{11}^{*}-\frac{{A}_{11}^{*}\left({\left({B}_{11}^{*}\right)}^{2}+{\left({B}_{12}^{*}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}w}{\partial {x}^{4}}+\left(2\left({D}_{12}^{*}+2{D}_{66}^{*}\right)-\frac{{A}_{11}^{*}\left({\left({B}_{11}^{*}\right)}^{2}+{\left({B}_{12}^{*}\right)}^{2}\right)+{A}_{22}^{*}\left({\left({B}_{22}^{*}\right)}^{2}+{\left({B}_{12}^{*}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-4\frac{{\left({B}_{66}^{*}\right)}^{2}}{{A}_{66}^{*}}\right)\frac{{\partial }^{4}w}{\partial {x}^{2}\partial {y}^{2}}+\left({D}_{22}^{*}-\frac{{A}_{22}^{*}\left({\left({B}_{22}^{*}\right)}^{2}+{\left({B}_{12}^{*}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{4}w}{\partial {y}^{4}}+\left(\frac{{A}_{11}^{*}\left({\left({B}_{11}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-{D}_{11}^{**}\right)\frac{{\partial }^{3}{\psi }_{x}}{\partial {x}^{3}}+\left(\frac{2{A}_{11}^{*}{B}_{11}^{**}{B}_{12}^{**}-{A}_{12}^{*}\left({{\left({B}_{11}^{**}\right)}^{2}+\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}+2\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}-\left({D}_{12}^{**}+2{D}_{66}^{**}\right)\right)\frac{{\partial }^{3}{\psi }_{x}}{\partial x\partial {y}^{2}}+\left(\frac{{A}_{22}^{*}\left({\left({B}_{22}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-{D}_{22}^{**}\right)\frac{{\partial }^{3}{\psi }_{y}}{\partial {y}^{3}}+\left(\frac{2{A}_{22}^{*}{B}_{22}^{**}{B}_{12}^{**}-{A}_{12}^{*}\left({{\left({B}_{22}^{**}\right)}^{2}+\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}+2\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}-\left({D}_{12}^{**}+2{D}_{66}^{**}\right)\right)\frac{{\partial }^{3}{\psi }_{y}}{\partial {x}^{2}\partial y}=\frac{{\partial }^{2}w}{\partial {x}^{2}}\frac{{\partial }^{2}f}{\partial {y}^{2}}-2\frac{{\partial }^{2}w}{\partial x\partial y}\frac{{\partial }^{2}f}{\partial x\partial y}+\frac{{\partial }^{2}w}{\partial {y}^{2}}\frac{{\partial }^{2}f}{\partial {x}^{2}}-{I}_{0}\frac{{\partial }^{2}w}{\partial {t}^{2}}+\left({I}_{2}-\frac{{I}_{1}{I}_{3}}{{I}_{0}}\right)\left(\frac{{\partial }^{4}w}{\partial {x}^{2}\partial {t}^{2}}+\frac{{\partial }^{4}w}{\partial {y}^{2}\partial {t}^{2}}\right)+\left({I}_{4}-\frac{{I}_{1}{I}_{3}}{{I}_{0}}\right)\left(\frac{{\partial }^{3}{\psi }_{x}}{\partial x\partial {t}^{2}}+\frac{{\partial }^{3}{\psi }_{y}}{\partial y\partial {t}^{2}}\right)+\mathcal{q}$$
(26)
$$\left(\frac{{A}_{11}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{11}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{3}f}{\partial {x}^{3}}+\left(\frac{{A}_{11}^{*}{B}_{11}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{B}_{66}^{**}}{{A}_{66}^{*}}\right)\frac{{\partial }^{3}f}{\partial x\partial {y}^{2}}+\left(\frac{{A}_{11}^{*}\left({B}_{11}^{*}{B}_{11}^{**}+{B}_{12}^{*}{B}_{12}^{**}\right)-{A}_{12}^{*}\left({B}_{12}^{*}{B}_{11}^{**}+{B}_{11}^{*}{B}_{12}^{**}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-{D}_{11}^{**}\right)\frac{{\partial }^{3}w}{\partial {x}^{3}}+\left(\frac{{A}_{11}^{*}\left({B}_{11}^{*}{B}_{12}^{**}+{B}_{12}^{*}{B}_{11}^{**}\right)-{A}_{12}^{*}\left({B}_{12}^{*}{B}_{12}^{**}+{B}_{11}^{*}{B}_{11}^{**}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}+2\frac{{B}_{66}^{*}{B}_{66}^{**}}{{A}_{66}^{*}}-\left({D}_{12}^{**}+2{D}_{66}^{**}\right)\right)\frac{{\partial }^{3}w}{\partial x\partial {y}^{2}}+\left({G}_{11}^{*}-\frac{{A}_{11}^{*}\left({\left({B}_{11}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial {x}^{2}}+\left({G}_{66}^{*}-\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial {y}^{2}}+\left({G}_{12}^{*}+{G}_{66}^{*}+\frac{{A}_{12}^{*}\left({\left({B}_{11}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}\right)\frac{{\partial }^{2}{\psi }_{y}}{\partial x\partial y}-{A}_{44}^{*}{\psi }_{x}=\left(\frac{{I}_{3}^{2}}{{I}_{0}}-{I}_{4}\right)\frac{{\partial }^{3}w}{\partial x\partial {t}^{2}}+\left({I}_{5}-\frac{{I}_{3}^{2}}{{I}_{0}}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial {t}^{2}}$$
(27)
$$\left(\frac{{A}_{22}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{22}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{3}f}{\partial {y}^{3}}+\left(\frac{{A}_{22}^{*}{B}_{22}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{B}_{66}^{**}}{{A}_{66}^{*}}\right)\frac{{\partial }^{3}f}{\partial {x}^{2}\partial y}+\left(\frac{{A}_{22}^{*}\left({B}_{22}^{*}{B}_{22}^{**}+{B}_{12}^{*}{B}_{12}^{**}\right)-{A}_{12}^{*}\left({B}_{12}^{*}{B}_{22}^{**}+{B}_{22}^{*}{B}_{12}^{**}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-{D}_{22}^{**}\right)\frac{{\partial }^{3}w}{\partial {y}^{3}}+\left(\frac{{A}_{22}^{*}\left({B}_{22}^{*}{B}_{12}^{**}+{B}_{12}^{*}{B}_{22}^{**}\right)-{A}_{12}^{*}\left({B}_{12}^{*}{B}_{12}^{**}+{B}_{22}^{*}{B}_{22}^{**}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}+2\frac{{B}_{66}^{*}{B}_{66}^{**}}{{A}_{66}^{*}}-\left({D}_{12}^{**}+2{D}_{66}^{**}\right)\right)\frac{{\partial }^{3}w}{\partial {x}^{2}\partial y}+\left({G}_{22}^{*}-\frac{{A}_{22}^{*}\left({\left({B}_{22}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}{\psi }_{y}}{\partial {y}^{2}}+\left({G}_{66}^{*}-\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}\right)\frac{{\partial }^{2}{\psi }_{y}}{\partial {x}^{2}}+\left({G}_{12}^{*}+{G}_{66}^{*}+\frac{{A}_{12}^{*}\left({\left({B}_{22}^{**}\right)}^{2}+{\left({B}_{12}^{**}\right)}^{2}\right)}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}-\frac{{\left({B}_{66}^{**}\right)}^{2}}{{A}_{66}^{*}}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial x\partial y}-{A}_{55}^{*}{\psi }_{y}=\left(\frac{{I}_{3}^{2}}{{I}_{0}}-{I}_{4}\right)\frac{{\partial }^{3}w}{\partial y\partial {t}^{2}}+\left({I}_{5}-\frac{{I}_{3}^{2}}{{I}_{0}}\right)\frac{{\partial }^{2}{\psi }_{y}}{\partial {t}^{2}}$$
(28)

Likewise, the equilibrium condition of the applied loads in the x-axis direction could be written as

$${\int }_{0}^{{L}_{2}}{N}_{xx}dy+{L}_{2}h{\sigma }_{xx}=0$$
(29)

Furthermore, the shortenings of the sandwich plate type implant along the x and y-axis are formulated as follows

$$\frac{{\Delta }_{x}}{{L}_{1}}=-\frac{1}{{L}_{1}{L}_{2}}{\int }_{0}^{{L}_{1}}{\int }_{0}^{{L}_{2}}\frac{\partial u}{\partial x}dxdy=-\frac{1}{{L}_{1}{L}_{2}}{\int }_{0}^{{L}_{1}}{\int }_{0}^{{L}_{2}}\left\{\left(\frac{{A}_{11}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}f}{\partial {y}^{2}}-\left(\frac{{A}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}f}{\partial {x}^{2}}+\left(\frac{{A}_{11}^{*}{B}_{11}^{*}-{A}_{12}^{*}{B}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}w}{\partial {x}^{2}}+\left(\frac{{A}_{11}^{*}{B}_{12}^{*}-{A}_{12}^{*}{B}_{11}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}w}{\partial {y}^{2}}-\left(\frac{{A}_{11}^{*}{B}_{11}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{\partial {\psi }_{x}}{\partial x}-\left(\frac{{A}_{11}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{11}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{\partial {\psi }_{y}}{\partial y}-\frac{1}{2}{\left(\frac{\partial w}{\partial x}\right)}^{2}\right\}dxdy$$
(30)
$$\frac{{\Delta }_{y}}{{L}_{2}}=-\frac{1}{{L}_{1}{L}_{2}}{\int }_{0}^{{L}_{1}}{\int }_{0}^{{L}_{2}}\frac{\partial v}{\partial y}dxdy=-\frac{1}{{L}_{1}{L}_{2}}{\int }_{0}^{{L}_{1}}{\int }_{0}^{{L}_{2}}\left\{\left(\frac{{A}_{22}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}f}{\partial {x}^{2}}-\left(\frac{{A}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}f}{\partial {y}^{2}}+\left(\frac{{A}_{22}^{*}{B}_{12}^{*}-{A}_{12}^{*}{B}_{22}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}w}{\partial {x}^{2}}+\left(\frac{{A}_{22}^{*}{B}_{22}^{*}-{A}_{12}^{*}{B}_{12}^{*}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{{\partial }^{2}w}{\partial {y}^{2}}-\left(\frac{{A}_{22}^{*}{B}_{12}^{**}-{A}_{12}^{*}{B}_{22}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{\partial {\psi }_{x}}{\partial x}-\left(\frac{{A}_{22}^{*}{B}_{22}^{**}-{A}_{12}^{*}{B}_{12}^{**}}{{{A}_{11}^{*}{A}_{22}^{*}-\left({A}_{12}^{*}\right)}^{2}}\right)\frac{\partial {\psi }_{y}}{\partial y}-\frac{1}{2}{\left(\frac{\partial w}{\partial y}\right)}^{2}\right\}dxdy$$
(31)
$${\mathcal{P}}_{x}={\mathcal{P}}_{x}^{\left(0\right)}+{\mathcal{P}}_{x}^{\left(2\right)}{\left({\mathcal{W}}_{m}\right)}^{2}+{\mathcal{P}}_{x}^{\left(4\right)}{\left({\mathcal{W}}_{m}\right)}^{4}+\dots $$
(32)
$${\delta }_{x}={\delta }_{x}^{(0)}+{\delta }_{x}^{(2)}{\left({\mathcal{W}}_{m}\right)}^{2}+{\delta }_{x}^{(4)}{\left({\mathcal{W}}_{m}\right)}^{4}+\dots $$
(33)
$${\omega }_{L}=\sqrt{{K}_{1}/{K}_{0}} (18)$$
(34)
$${\omega }_{NL}={\omega }_{L}\sqrt{1+\frac{9{K}_{1}{K}_{3}-10{K}_{2}^{2}}{12{K}_{1}^{2}}{\left({\mathcal{W}}_{m}\right)}^{2}}$$
(35)

Appendix B

$$ \left\{ {\begin{array}{*{20}c} {A_{{11}}^{*} } \\ {A_{{22}}^{*} } \\ {A_{{12}}^{*} } \\ {A_{{66}}^{*} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f1}} } \\ {Q_{{22}}^{{f1}} } \\ {Q_{{12}}^{{f1}} } \\ {Q_{{66}}^{{f1}} } \\ \end{array} } \right\}\int_{{z_{0} }}^{{z_{1} }} {dz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{b} } \\ {Q_{{22}}^{b} } \\ {Q_{{12}}^{b} } \\ {Q_{{66}}^{b} } \\ \end{array} } \right\}} + \int_{{z_{1} }}^{{z_{2} }} {dz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f2}} } \\ {Q_{{22}}^{{f2}} } \\ {Q_{{12}}^{{f2}} } \\ {Q_{{66}}^{{f2}} } \\ \end{array} } \right\} + \int_{{z_{2} }}^{{z_{3} }} {dz} } $$
(36)
$$ \left\{ {\begin{array}{*{20}c} {B_{{11}}^{*} } \\ {B_{{22}}^{*} } \\ {B_{{12}}^{*} } \\ {B_{{66}}^{*} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f1}} } \\ {Q_{{22}}^{{f1}} } \\ {Q_{{12}}^{{f1}} } \\ {Q_{{66}}^{{f1}} } \\ \end{array} } \right\}\int_{{z_{0} }}^{{z_{1} }} {zdz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{b} } \\ {Q_{{22}}^{b} } \\ {Q_{{12}}^{b} } \\ {Q_{{66}}^{b} } \\ \end{array} } \right\}} \int_{{z_{1} }}^{{z_{2} }} {zdz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f2}} } \\ {Q_{{22}}^{{f2}} } \\ {Q_{{12}}^{{f2}} } \\ {Q_{{66}}^{{f2}} } \\ \end{array} } \right\}} \int_{{z_{2} }}^{{z_{3} }} {zdz} $$
(37)
$$ \left\{ {\begin{array}{*{20}c} {D_{{11}}^{*} } \\ {D_{{22}}^{*} } \\ {D_{{12}}^{*} } \\ {D_{{66}}^{*} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f1}} } \\ {Q_{{22}}^{{f1}} } \\ {Q_{{12}}^{{f1}} } \\ {Q_{{66}}^{{f1}} } \\ \end{array} } \right\}\int_{{z_{0} }}^{{z_{1} }} {zdz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{b} } \\ {Q_{{22}}^{b} } \\ {Q_{{12}}^{b} } \\ {Q_{{66}}^{b} } \\ \end{array} } \right\}} \int_{{z_{1} }}^{{z_{2} }} {zdz + \left\{ {\begin{array}{*{20}c} {Q_{{11}}^{{f2}} } \\ {Q_{{22}}^{{f2}} } \\ {Q_{{12}}^{{f2}} } \\ {Q_{{66}}^{{f2}} } \\ \end{array} } \right\}} \int_{{z_{2} }}^{{z_{3} }} {zdz} $$
(38)
$$\left\{\begin{array}{c}{B}_{11}^{**}\\ {B}_{22}^{**}\\ {B}_{12}^{**}\\ {B}_{66}^{**}\end{array}\right\}=\left\{\begin{array}{c}{Q}_{11}^{f1}\\ {Q}_{22}^{f1}\\ {Q}_{12}^{f1}\\ {Q}_{66}^{f1}\end{array}\right\}{\int }_{{z}_{0}}^{{z}_{1}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{11}^{b}\\ {Q}_{22}^{b}\\ {Q}_{12}^{b}\\ {Q}_{66}^{b}\end{array}\right\}{\int }_{{z}_{1}}^{{z}_{2}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{11}^{f2}\\ {Q}_{22}^{f2}\\ {Q}_{12}^{f2}\\ {Q}_{66}^{f2}\end{array}\right\}{\int }_{{z}_{2}}^{{z}_{3}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz$$
(39)
$$\left\{\begin{array}{c}{D}_{11}^{**}\\ {D}_{22}^{**}\\ {D}_{12}^{**}\\ {D}_{66}^{**}\end{array}\right\}=\left\{\begin{array}{c}{Q}_{11}^{f1}\\ {Q}_{22}^{f1}\\ {Q}_{12}^{f1}\\ {Q}_{66}^{f1}\end{array}\right\}{\int }_{{z}_{0}}^{{z}_{1}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{11}^{b}\\ {Q}_{22}^{b}\\ {Q}_{12}^{b}\\ {Q}_{66}^{b}\end{array}\right\}{\int }_{{z}_{1}}^{{z}_{2}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{11}^{f2}\\ {Q}_{22}^{f2}\\ {Q}_{12}^{f2}\\ {Q}_{66}^{f2}\end{array}\right\}{\int }_{{z}_{2}}^{{z}_{3}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz$$
(40)
$$\left\{\begin{array}{c}{G}_{11}^{*}\\ {G}_{22}^{*}\\ {G}_{12}^{*}\\ {G}_{66}^{*}\end{array}\right\}=\left\{\begin{array}{c}{Q}_{11}^{f1}\\ {Q}_{22}^{f1}\\ {Q}_{12}^{f1}\\ {Q}_{66}^{f1}\end{array}\right\}{\int }_{{z}_{0}}^{{z}_{1}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz+\left\{\begin{array}{c}{Q}_{11}^{b}\\ {Q}_{22}^{b}\\ {Q}_{12}^{b}\\ {Q}_{66}^{b}\end{array}\right\}{\int }_{{z}_{1}}^{{z}_{2}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz+\left\{\begin{array}{c}{Q}_{11}^{f2}\\ {Q}_{22}^{f2}\\ {Q}_{12}^{f2}\\ {Q}_{66}^{f2}\end{array}\right\}{\int }_{{z}_{2}}^{{z}_{3}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz$$
(41)
$$\left\{\begin{array}{c}{A}_{44}^{*}\\ {A}_{55}^{*}\end{array}\right\}=\left\{\begin{array}{c}{Q}_{44}^{f1}\\ {Q}_{55}^{f1}\end{array}\right\}{\int }_{{z}_{0}}^{{z}_{1}}\left[\mathrm{cosh}\left(\frac{1}{2}\right)-\mathrm{cosh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{44}^{b}\\ {Q}_{55}^{b}\end{array}\right\}{\int }_{{z}_{1}}^{{z}_{2}}\left[\mathrm{cosh}\left(\frac{1}{2}\right)-\mathrm{cosh}\left(\frac{z}{h}\right)\right]dz+\left\{\begin{array}{c}{Q}_{44}^{f2}\\ {Q}_{55}^{f2}\end{array}\right\}{\int }_{{z}_{2}}^{{z}_{3}}\left[\mathrm{cosh}\left(\frac{1}{2}\right)-\mathrm{cosh}\left(\frac{z}{h}\right)\right]dz$$
(42)
$${I}_{0}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}dz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}dz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}dz$$
(43)
$${I}_{1}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}zdz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}zdz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}zdz$$
(44)
$${I}_{2}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}{z}^{2}dz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}{z}^{2}dz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}{z}^{2}dz$$
(45)
$${I}_{3}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}\left[z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz$$
(46)
$${I}_{4}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}\left[{z}^{2}\mathrm{cosh}\left(\frac{1}{2}\right)-zh\mathrm{sinh}\left(\frac{z}{h}\right)\right]dz$$
(47)
$${I}_{5}={\rho }_{f1}{\int }_{{z}_{0}}^{{z}_{1}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz+{\rho }_{b}{\int }_{{z}_{1}}^{{z}_{2}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz+{\rho }_{f2}{\int }_{{z}_{2}}^{{z}_{3}}\left[{\left(z\mathrm{cosh}\left(\frac{1}{2}\right)-h\mathrm{sinh}\left(\frac{z}{h}\right)\right)}^{2}\right]dz$$
(48)

where \({\rho }_{f1}, {\rho }_{f2}, {\rho }_{b}\) stand for the mass density of the upper and lower coating film, and the bulk of the sandwich plate type implant, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Saber-Samandari, S., Aghdam, M.M. et al. Microstructural properties of novel nanocomposite material based on hydroxyapatite and carbon nanotubes: fabrication and nonlinear instability simulation. J Nanostruct Chem 12, 1–22 (2022). https://doi.org/10.1007/s40097-021-00395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00395-9

Keywords

Navigation