Skip to main content
Log in

Industrial application of apodized gas sensor for on-line and in situ measurement of CO and CO2 concentration

  • Research
  • Published:
Journal of Theoretical and Applied Physics

Abstract

The performance of an apodized gas sensor is demonstrated through simultaneous detection of CO and CO2 absorption lines around 1.57 µm in the recuperator channel of a gas-fired industrial furnace at Shahid Montazeri power plant (SMPP) industry. This led to the concentration measurement of targeted molecules as less than ~ 1% and 9.5%, respectively, at atmospheric pressure and 350 °C, indicating close consistency with the reference data reported by SMPP. A minimum detectable absorption of ~ 0.4 × 10−3, corresponding to a detection sensitivity of ~ 4.8 × 10−9 cm−1 Hz−1/2 is measured in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lackner, M.: Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review. Rev. Chem. Eng. 23, 65–147 (2007)

    Article  Google Scholar 

  2. Tittel, F.K., Wysocki, G., Kosterev, A.A., Bakhirkin, Y.A.: Semiconductor laser based trace gas sensor technology: recent advances and applications. In: Ebrahim-Zadeh, M., Sorokina, I.T. (eds.) Mid-Infrared Coherent Sources and Applications, pp. 467–493. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Solga, S., Mudalel, M., Spacek, L., Lewicki, R., Tittel, F.K., Loccioni, C., Russo, A., Ragnoni, A., Risby, T.: Changes in the concentration of breath ammonia in response to exercise: a preliminary investigation. J. Breath Res. 8, 037103 (2014)

    Article  Google Scholar 

  4. Mohammadi Jozdani, M., Khorsandi, A., Ghavami Sabouri, S.: Polymeric fiber sensor for sensitive detection of carbon dioxide based on apodized wavelength modulation spectroscopy. Appl. Phys. B 118, 219–229 (2015)

    Article  ADS  Google Scholar 

  5. Li, H.: High sensitivity gas sensor based on IR spectroscopy technology and application. Photonic Sens. 6, 127 (2016)

    Article  ADS  Google Scholar 

  6. Koch, S., Jahnke, F., Chow, W.: Physics of semiconductor microcavity lasers. Semicond. Sci. Technol. 10, 739 (1995)

    Article  ADS  Google Scholar 

  7. Zeller, W., Naehle, L., Fuchs, P., Gerschuetz, F., Hildebrandt, L., Koeth, J.: DFB lasers between 760 nm and 16 µm for sensing applications. Sensors 10, 2492–2510 (2010)

    Article  Google Scholar 

  8. Liu, X., Stefanou, P., Wang, B., Woggon, T., Mappes, T., Lemmer, U.: Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy. Opt. Express 21, 28941–28947 (2013)

    Article  ADS  Google Scholar 

  9. Qi, H., Song, Z., Li, S., Guo, J., Wang, C., Peng, G.-D.: Apodized distributed feedback fiber laser with asymmetrical outputs for multiplexed sensing applications. Opt. Express 21, 11309–11314 (2013)

    Article  ADS  Google Scholar 

  10. Bagheri, M., Spiers, G., Fradet, M., Forouhar, S.: High-power distributed feedback semiconductor lasers near 2.05 mm. In: 18th Coherent Laser Radar Conference (2016)

  11. Sonnenfroh, D.M., Allen, M.G.: Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser. Appl. Opt. 36, 3298–3300 (1997)

    Article  ADS  Google Scholar 

  12. Cai, T., Gao, G., Chen, W., Liu, G., Gao, X.: Simultaneous measurements of CO2 and CO using a single distributed-feedback (DFB) diode laser near 1.57 µm at elevated temperatures. Appl. Spectrosc. 65, 108–112 (2011)

    Article  ADS  Google Scholar 

  13. Yu, H.B., Jin, W., Ho, H.L., Chan, K.C., Chan, C.C., Demokan, M.S., Stewart, G., Culshaw, B., Liao, Y.B.: Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique. Appl. Opt. 40(7), 1011–1020 (2001)

    Article  ADS  Google Scholar 

  14. Li, Z., Ma, W., Fu, X., Tan, W., Zhao, G., Dong, L., Zhang, L., Yin, W., Jia, S.: Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection. Opt. Express 21, 17961–17971 (2013)

    Article  ADS  Google Scholar 

  15. Maity, A., Pal, M., Maithani, S., Dutta Banik, G., Pradhan, M.: Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7.5 and 8 µm. Laser Phys. Lett. 15, 045701 (2018)

    Article  ADS  Google Scholar 

  16. McCurdy, M.R., Bakhirkin, Y.A., Wysocki, G., Lewicki, R., Tittel, F.K.: Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. J. Breath Res. 1, 014001 (2007)

    Article  ADS  Google Scholar 

  17. Wojtas, J., Tittel, F.K., Stacewicz, T., Bielecki, Z., Lewicki, R., Mikolajczyk, J., Nowakowski, N., Szabra, D., Stefanski, P., Tarka, J.: Cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy for human breath analysis. Int. J. Thermophys. 35, 2215–2225 (2014)

    Article  ADS  Google Scholar 

  18. Kosterev, A.A., Serebryakov, D.V., Malinovsky, A.L., Morozov, I.V.: Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  19. Li, H., Rieker, G.B., Liu, X., Jeffries, J.B., Hanson, R.K.: Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45(5), 1052–1061 (2006)

    Article  ADS  Google Scholar 

  20. Rieker, G.B., Jeffries, J.B., Hanson, R.K.: Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  ADS  Google Scholar 

  21. Goldenstein, C., Spearrin, R., Schultz, I., Jeffries, J., Hanson, R.: Wavelength-modulation spectroscopy near 1.4 µm for measurements of H2O and temperature in high-pressure and-temperature gases. Meas. Sci. Technol. 25, 055101 (2014)

    Article  ADS  Google Scholar 

  22. Hosseinzadeh Salati, S., Khorsandi, A.: Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment. Appl. Phys. B 116, 521–531 (2014)

    Article  ADS  Google Scholar 

  23. HITRAN on the web (2019)

  24. Chen, J.C., Liu, A.S., Huang, J.S.: Emission characteristics of coal combustion in different O2/N2, O2/CO2 and O2/RFG atmosphere. J. Hazard Mater. 142, 266–271 (2007)

    Article  ADS  Google Scholar 

  25. Heard, D.: Analytical Techniques for Atmospheric Measurement. Blackwell Publishing Ltd., Oxford (2006)

    Book  Google Scholar 

  26. Techenko, N.V.: Optical Spectroscopy: Methods and Instrumentations. Elsevier, Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khorsandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsandi, A., Ghavami Sabouri, S. Industrial application of apodized gas sensor for on-line and in situ measurement of CO and CO2 concentration. J Theor Appl Phys 14, 399–409 (2020). https://doi.org/10.1007/s40094-020-00396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40094-020-00396-z

Keywords

Navigation