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Abstract
In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between 
consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem 
is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two 
types of valid inequalities which aim to tighten the models’ representations. One of them is based on dominance rules from 
the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the 
proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger 
problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion 
of the valid inequalities in the basic MILP model on the results.
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Introduction

This paper addresses the two-machine permutation flowshop 
scheduling problem with minimal time lags where the objec-
tive is minimizing the total tardiness. This environment is 
characterized by n jobs ( i ∈ {1,… , n}) being processed non-
preemptively on two machines M1 and M2 in this order 
according to a processing time ai on M1 and bi on M2. For 
each job, an amount of time must be elapsed before the pro-
cessing of the second operation on the second machine. This 
time must be greater than or equal to a non-negative minimal 
time lag value denoted �min

i
 . Each job has a due date di . 

According to the standard notation provided by Graham 

et  al. (1979), the considered problem is denoted as 
F2��min

i
�
∑
i

Ti.

Investigating this problem is motivated by its practical 
relevance to the production environments. The time lags 
constraints are used frequently in both service and indus-
trial fields. For example in the chemistry field, the chemical 
reactions with different processing times may be represented 
by time lags (Chu and Proth 1996). Also, such constraints 
appear during the sequence of harvesting operations in the 
agriculture field (Foulds and Wilson 2005). As well as in a 
training center for which the sequence of modules taught 
must require some temporal constraints. Many other real 
examples are given by Deppner (2004).

Since the publication of Dell’Amico (1996) of his origi-
nal paper on the two-machine flowshop and jobshop with 
time lags, this problem has attracted an ever-growing atten-
tion in the operations research field. Then, this study was 
extended to consider various problems with time lags while 
optimizing different criteria. It is worth noting that the great 
majority of the researches address the makespan objective 
(Fondrevelle et al. 2006; Yu et al. 2004; Hamdi and Loukil 
2011) in spite that the due date-based criteria are the most 
met in the real situations.

Interestingly, these criteria and mainly the total tardi-
ness criterion is considered widely with the classical two-
machine flowshop problem where most of the researches are 
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characterized by applying the branch and bound algorithm 
accompanied by proposing and improving lower bounds and 
dominance properties (Kim 1993; Pan and Fan 1997; Pan 
et al. 2002; Schaller 2005).

However, only few researches considered the time lags. 
Yu et al. (2004) show the NP hardness of the problem even 
if all processing times are equal to one. Later, Hamdi et al. 
(2015) developed a branch and bound algorithm to reach an 
optimal solution by using some developed lower bounds and 
dominance criteria. These latter are developed to establish 
precedence constraints between jobs in an optimal sched-
ule. Some of them will be used later in this research. Also, 
they proposed some computationally efficient heuristics. 
Nearly at the same time, Hamdi and Loukil (2015b) extend 
the research about the permutation flowshop problem with 
minimal time lags by considering the case of m-machine 
and optimizing the total number of tardy jobs criterion. 
They proposed some heuristic procedures based on known 
and new rules. Then interestingly, they developed lower 
bounds based on Moore’s algorithm and logic-based Bend-
ers decomposition as a hybrid approach that mix the MILP 
and the constraint programming.

It is known that the MILP models can be used to obtain 
optimal schedules for small size problems. They are often 
classified based on the choice of the decision variables. Over 
the literature, a wide variety of permutation flowshop schedul-
ing problems were addressed while using the due date-based 
criteria. Kharbeche and Haouari (2013) proposed compact 
mixed-integer programming models and valid inequalities for 
the two-machine scheduling problem. They developed a lower 
bound that consistently outperforms the best bound from the 
literature. Then, their computational study reveals that most 
of the 30-job hard instances are optimally solved using their 
proposed MILP models. Also, Ronconi and Birgin (2012) pro-
posed mixed-integer linear programming formulations for the 
m-machine scheduling problem in the flowshop environment 
with unlimited and zero buffer, for the minimization of total 
earliness and tardiness.

Even with the existence of other types of the time lags like 
the maximal time lags (denoted �max

i,k
 in the case of m-machine 

to indicate the maximal time lag of the job i between the two 
machines k and k + 1 ) and the exact time lags (denoted �i,k ), 
the linear programming method was the scope of numerous 
papers. Hamdi and Loukil (2015a) proposed a mathematical 
formulation for the problem F���min

i,k
, �max

i,k
�
∑
i

Ti which was use-

ful to distinguish the effect of the time lags on the results. 
Moreover, it was used to evaluate the performance of some 
proposed heuristic methods by determining the percentage 
deviation from the optimal solution provided by running the 
proposed MILP with the CPLEX solver. In the same context, 
Dhouib et al. (2013) proposed a mixed-integer mathematical 
programming formulation for the permutation flowshop 

problem with minimal and maximal time lags while the objec-
tive is to hierarchically minimize two criteria, the primary 
criterion is the minimization of the number of tardy jobs and 
the secondary one minimizes the makespan. It is then used to 
solve optimally problems until the size 20-jobs and 5-machine 
and for comparison reason with a proposed simulated anneal-
ing algorithm. Later, Hamdi and Loukil (2017) proposed three 
different MILP models to solve the problem F���i,k�

∑
i

(Ei + Ti) 

which show that there is a little difference between them when 
referring to the CPU time in spite that the number of decision 
variables is almost the same for all the formulations. Thereaf-
ter, the obtained optimal solution is used to evaluate the per-
formance of some proposed upper and lower bounds until the 
size 20-job and 5-machine.

It is worth mentioning that the MILP models are used 
frequently by the recent researches that concerned by solv-
ing scheduling problems with due date-based criteria (i.e., 
Moreno-Camacho et al. 2018; Huang et al. 2013; Keshavarz 
et al. 2019).

The contribution of this paper is twofold: First, we propose 
two mathematical formulations distinguished by the used 
decision variables which are: the completion time variables 
and the idle time variables. Second, we present two sets of 
valid inequalities that can be used to improve the proposed 
MILP resolution as the CPU time required to solve the prob-
lem can be significantly reduced. To this aim, we exploit some 
dominance rules from the literature for the first set, and we 
propose a lower bound on the completion time for the second 
set. Then, these sets are introduced separately and together to 
the completion time-based formulation to distinguish their 
effect on the resolution performance. Thus, a total of five 
MILP formulations are computationally compared by using 
the CPLEX solver. To the best of our knowledge, this is the 
first attempt to investigate MILP models for F2��min

i
�
∑
i

Ti.

The remainder of this paper is organized as follows: 
mathematical formulations of the considered problem are 
presented in “MILP models2” section. In “Valid inequali-
ties3” section, we present the two types of valid inequali-
ties: valid inequalities based on dominance rules from the 
literature, and position-based valid inequalities. Then, com-
putational results are reported in “Computational results4” 
section. Finally, we discuss concluding remarks in “Conclu-
sion5” section.

MILP models

This section lists two MILP formulations: the completion 
time-based formulation and the idle time-based formulation, 
respectively. The considered problem is characterized by n 
jobs being processed on 2 machines always in the same order 
while a minimal time lag �min

i
 is defined between each couple 
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of operations of each job i. Each machine carries only one job 
at a time, we assume that all jobs are independent and available 
for processing at time 0, and preemptions are not allowed .

A common feature for both formulations is that they are 
based on the positional decision variables. That is, the resolu-
tion of the problem consists in assigning each job to only one 
position in the schedule that leads to the optimal value of the 
total tardiness.

Completion time‑based formulation

This formulation is based on the following decision variables:

•	 Xi,j ∶ binary variable that takes value 1 if job i is scheduled 
in position j, 0 otherwise ∀i, j ∈ {1, 2,… , n}

•	 Cj,k : completion time of job in position j on machine k, 
∀j ∈ {1, 2,… , n}, ∀k ∈ {1, 2}

•	 Tj : tardiness of the job in position j ∀j ∈ {1, 2,… , n}

The used data are given as follows:

•	 ai : processing time of job i on machine 1, ∀i ∈ {1, 2,… , n}

•	 bi : processing time of job i on machine 2, ∀i ∈ {1, 2,… , n}

•	 �min

i
 : minimal time lag between the two machines of each 

job i ∀i ∈ {1, 2,… , n}

Then the MILP formulation is presented as follows

(1)Minimize
∑

j

Tj

(2)
n∑

i=1

Xi,j = 1 ∀j = 1,… , n

(3)
n∑

j=1

Xi,j = 1 ∀i = 1,… , n

(4)C1,1 =

n∑

i=1

Xi,1ai

(5)Cj,1 +

n∑

i=1

(Xi,j+1ai) ≤ Cj+1,1 ∀j = 1,… , n − 1

(6)Cj,2 ≥ Cj,1 +

n∑

i=1

Xi,j (bi + �min

i
) ∀j = 1,… , n

(7)Cj,2 +

n∑

i=1

(Xi,j+1bi) ≤ Cj+1,2 ∀j = 1,… , n − 1

The objective (1) is to minimize the total tardiness. Con-
straints (2) ensure that each position can be occupied by 
only one job; however constraints (3) ensure that each job 
can only be assigned to a sequence position. Constraints (4) 
determine the competition time of the job in the first position 
on the first machine. Constraints (5) find the completion time 
of the other jobs on the first machine. Constraints (6) find 
the completion time of each job with respect to the minimal 
time lags between operations and the precedence constraints. 
Constraints (7) define the precedence constraint of each two 
successive positions in the second machine. Constraints (8) 
find the tardiness value of each job. Constraints (9) impose 
the tardiness and the completion time to be positive values. 
Then, constraints (10) define Xi,j as a binary variable which 
is equal to 1 if the job i is assigned to position j and 0 else. 
In this formulation, the number of binary variables is n2 , 
the number of integer variables is 3n, and the number of 
constraints is 9n − 1.

Idle time‑based formulation

This formulation is based on the same data and variables 
defined in the previous formulation, just we use the variable 
Ij instead of Cj,k ; it represents the idle time on machine 2 
between the completion time of the job in position j and the 
starting time of the job in position j + 1 . Then, the formula-
tion is presented as follows.

(8)Tj − Cj,2 +

n∑

i=1

(diXi,j) ≥ 0 ∀j = 1,… , n

(9)Cj,k, Tj ≥ 0 ∀j = 1,… , n , ∀k = 1, 2

(10)Xi,j ∈ {0, 1} ∀i, j = 1,… ., n

(11)Minimize
∑

j

Tj

(12)
n∑

i=1

Xi,j = 1 ∀j = 1,… , n

(13)
n∑

j=1

Xi,j = 1 ∀i = 1,… , n

(14)

j−1∑

k=1

n∑

i=1

(bi + �min

i
)Xi,k −

j∑

k=2

n∑

i=1

(ai + �min

i
)Xi,k

+

j∑

k=2

Ik ≥ 0 ∀j = 2,… , n
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The objective (11) and the first two constraints (12) and (13) 
are defined as same in the previous MILP model. Constraints 
(14) state that the idle time of the job in position j is greater 
than or equal to the completion time of the job in position 
j on the first machine minus the completion time of the job 
in position ( j − 1 ) on the second machine. Constraints (15) 
and (16) determine the tardiness value of job in position 1 
and the other jobs from position 2 until position n, respec-
tively. Constraints (17) are used to express the relationship 
among several times such as the processing times, the idle 
times and the time lags among jobs and the two machines. 
In this formulation, the number of binary variables is n2 , 
the number of integer variables is 2n − 1 , and the number of 
constraints is 6n − 1.

Valid inequalities

The two proposed MILP models include almost the same 
number of decision variables, which can’t solve large sized 
problems. Then by adding cuts, their performance can be 
enhanced by reducing the number of decision variables and 
then the search space. Two types of valid inequalities are 
presented in this section.

Valid inequalities based on dominance rules

For this first type of the valid inequalities, a preprocess-
ing step is needed to define a set of precedence con-
straints by using some dominance rules. Let this set denote 

(15)
n∑

i=1

(ai + bi + �min

i
)Xi,1 −

n∑

i=1

diXi,1 ≤ T1

(16)

n∑

i=1

(ai + �min

i
)Xi,1 +

j∑

k=1

n∑

i=1

biXi,k +

j∑

k=2

Ik

−

n∑

i=1

diXi,j ≤ Tj ∀j = 2,… , n

(17)

n∑

j=1

n∑

i=1

aiXi,j + �min

n
≤

n∑

i=1

(ai + �min

i
)Xi,1

+

n∑

j=1

n∑

i=1

biXi,j +

n−1∑

j=1

Ij

(18)Ij ≥ 0 ∀j = 1,… , n − 1

(19)Tj ≥ 0 ∀j = 1,… , n

(20)Xi,j ∈ {0, 1} ∀i, j = 1,… , n

� = {(i, s) ∈ J2 ∶ there exists an optimal schedule such that 
a job s is processed after a job i , then the valid inequalities 
to be added to the proposed MILP model is:

where 
∑n

j=1
jXi,j indicates the position index of the job i as 

the binary variable Xi,j takes value 1 if and only if job i is 
assigned to position j. Then, these inequalities are derived 
by using some specified rules. These rules are proposed by 
Hamdi et al. (2015) for the same studied problem which aim 
to sequence a job i in an optimal sequence if some properties 
holds. They are provided as follows:

Rule 1: For any two adjacent jobs (i, s) ∈ J2 , if

(a) min{as + �min
s

, bi + �min

i
} ≥ ai + �min

i

(b) bi + �min

i
≤ bs + �min

s

(c) di ≤ ds

Then there exists an optimal schedule such that i is pro-
cessed before s.

Rule 2: For job i, if there is a job s satisfying

(a) ai + �min

i
+ bi ≥ as + �min

s
+ bs

(b) �min

i
≤ �min

s

(c) bi − di ≤ bs − ds

Then, there exists an optimal schedule such that i is not the 
first job of the sequence. So that, the variable Xi,1 will be 
eliminated from the formulation.

Position‑based valid inequalities

These inequalities are based on the fact that the completion 
time of a job in position j is greater than a lower bound ( �j) . 
Then, we have:

The lower bound value ( �j ) can be calculated easily by using 
the following proposed formula:

Here, 
∑
i

bi

n
 is the mean value of the processing times on the 

second machine; then by relaxing the minimal time lags 
constraints (as we consider only the minimal value) and 
adding the minimal value of processing time on the first 
machine ( ai) , we obtain a lower bound on the completion 

(21)
n∑

j=1

jXi,j + 1 ≤

n∑

j=1

jXi,s, (i, s) ∈ �

(22)Cj,2 ≥

n∑

i=1

�jXi,j ∀j = 1,… , n

�j = min
i
{ai} +min

i
{�min

i
} + j × {

∑
i

bi

n
} ∀j = 1,… , n
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time of the job in position 1. Therefore, to determine the 
lower bound on the completion time of each job in posi-

tion j (�j) , we should multiply 
∑
i

bi

n
 by j ∀j = 1,… , n to sat-

isfy the condition 𝜆1 < 𝜆2 < ⋯ < 𝜆n in accordance with 
C1,2 < C2,2 < ⋯ < Cn,2.

Computational results

Computational experiments are done to assess the effective-
ness of the proposed models, mainly the enhancement pro-
vided by adding the cuts and the effect of varying the mini-
mal time lags intervals. These models are tested by running 
the CPLEX 11 solver on a DELL PC/2.20 GHz with 4.00 
Go RAM. The tests are conducted on a set of generated 
instances following the scheme described in Hamdi and 
Loukil (2015b). The processing times and the minimal time 
lags are generated from a uniform distribution between 20 
and 50 and [0, �min ], respectively where �min ∈ {0, 7, 14} . 
The due dates are generated as di = P × Drange , where P is a 
lower bound of the makespan which is given as follows: 
P = min

i
{ai + �min

i
} +

∑n

i=1
bi and Drange = [0.8, 1.2] . The 

number of jobs n is taken to be equal to 10, 15, 20, 25, 40, 
and 60 jobs. For each combination of n and �min , five 
instances are generated and the average value of the total 
tardiness is determined. The upper limit of the CPU time for 
solving a problem is set to 3600 s.

We test the following different formulations:

F1 : Completion time-based formulation
F2 : Idle time-based formulation
F3 : F1 + valid inequality based on dominance rules
F4 : F1 + position-based valid inequality
F5 : F1 + the two sets of inequalities

The results are displayed in Table 1. For each tested prob-
lem, we provide the CPU time and the number of nodes 
required to solve it. The number between parenthesis indi-
cates the number of unsolved instances.

From the above table, we observe the following points:

•	 In spite that both MILP models include O(n2) binary 
variables and O(n) integer variables, the idle-based for-
mulation requires a bit more number of nodes for almost 
all the sizes, thus, it consumes more CPU time to solve 
problems.

•	 It is obvious that the five models are able to solve opti-
mally problems with up to n = 40 in less than one hour, 
and even some instances with up to 60 jobs.

•	 Increasing the minimal time lags intervals has a distin-
guishable impact on increasing the number of nodes and 
the CPU time.

•	 We could prove the effet of adding constraints on tight-
ening the search space as the number of nodes and the 
CPU for the three last models tend to be decreased while 

Table 1   Impact of the valid inequalities and the minimal time lags on the results

n �min F1 F2 F3 F4 F5

Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU

10 0 1.152 0.04 2.540 0.04 2.290 0.04 1.210 0.02 872 0.02
7 920 0.03 2.180 0.08 1.652 0.04 1.089 0.02 914 0.02

14 2.230 0.14 4.271 1.82 3.121 0.04 1.826 0.04 890 0.03
15 0 4.029 1.18 5.320 1.20 3.540 1.17 2.720 0.04 1.581 0.03

7 3.244 2.11 7.211 2.16 3.768 1.15 2.542 1.10 2.044 0.07
14 5.720 2.25 9.017 3.67 6.543 2.50 3.204 1.17 3.000 1.10

20 0 29.276 2.80 41.432 2.97 14.546 2.18 19.768 2.70 15.536 1.89
7 30.671 3.78 40.713 4.21 20.622 2.66 27.756 2.85 20.429 2.50

14 35.810 4.31 55.715 5.32 27.783 2.32 29.077 2.86 29.008 2.75
25 0 97.879 8.87 180.661 10.49 95.670 6.81 85.880 5.43 80.545 5.11

7 109.220 9.10 217.319 10.67 110.989 9.21 93.940 7.21 87.443 6.72
14 178.702 10.76 275.552 12.63 118.901 9.80 112.850 9.40 100.420 9.06

40 0 1255.61 29.14 1060.34 20.64 1409.44 33.29 816.25 17.28 410.88 11.47
7 2190.17 45.46 3019.78 49.29 1780.28 47.12 1970.27 50.32 1849.22 38.91

14 5478.27 67.82 7267.22 70.40 4817.32 58.88 5192.68 60.75 3455.18 41.69
60 0 17,562.278 192.18 27,361.913 210.75 (2) 10,462.667 87.41 11,378.410 160.29 8658.919 128.19

7 24,445.612 331.39 (3) 68,431.224 410.65 (3) 24,556.901 208.54 (1) 22,798.016 200.48 (2) 18,678.138 158.10
14 65,122.679 427.10 (3) 91,245.119 481.45 (3) 39,901.778 228.50 (2) 42,560.186 269.10 (2) 28,924.715 170.26 (1)
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adding the valid inequalities. The model F5 , character-
ized by adding the two sets of the inequalities, is the most 
efficient as it is less time-consuming than the models F3 
and F4 .

To confirm this last point and to assess the improvement 
induced by the included type of inequalities to the basic 
MILP model, we determine for each of the last three formu-
lations ( F3 , F4 , and F5 ), the ratio of the CPU time required 
by each problem to the CPU time required by this problem 
in the original formulation (F1) . Then, the results are shown 
in Table 2.

The last column in Table 2 indicates the average value 
of the calculated ratio values for each formulation (F3,F4, 
and F5) by considering all n and �min . Then, adding the two 
valid inequalities can induce a great improvement for the 
original formulation by reducing significantly the CPU time 
until 5.5 times.

Conclusion

In this paper, we proposed two mathematical formulations 
for the two-machine permutation flowshop problem with 
minimal time lags scheduling problem. Two sets of valid 
inequalities are proposed, where the first one is based on 
some dominance rules from the literature and the second 
one is based on a lower bound of the job completion time. 
Different ways are used to integrate these inequalities to the 
completion time-based model which leads to compare five 
mathematical models. As of our knowledge, it is the first 
paper that proposes and compares the computational perfor-
mance of some mathematical formulations while consider-
ing the minimal time lags constraints. There was noticeable 
improvement in terms of reducing the search space and the 
time-consuming required to solve the problem mainly the 
model F5 characterized by adding the two types of the valid 
inequalities.
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