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Abstract
Over the years, intensive research works have been devoted to conducting polymers due to their potential application in many 
fields such as fuel cell, sensors, and capacitors. To improve the properties of these compounds, several new approaches have 
been developed which consist in combining conducting polymers and nanoparticles. Then, this review intends to give a clear 
overview on nanocomposites based on conducting polymers, synthesis, characterization, and their application as electro-
chemical sensors. For this, the paper is divided into two parts: the first part will highlight the nanocomposites synthesized 
by combination of carbon nanomaterials (CNMs) and conducting polymers. The preparation of polymer/CNMs such as 
graphene and carbon nanotube modified electrode is presented coupled with relevant applications. The second part consists 
of a review of nanocomposites synthesized by combination of metal nanoparticles and conducting polymers.
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Abbreviations
1H NMR	� 1H nuclear magnetic reso-

nance spectrometer
3D-RGO	� Three-dimensional reduced 

graphene oxide
AA	� Ascorbic acid
AFM	� Atomic force microscope
AgNPs	� Silver nanoparticles
AgNWs	� Silver nanowires
AgαCRP	� C-reactive protein
ANI	� Aniline
ATP	� Attapulgite
AuNPs	� Gold nanoparticles
BET	� Brunauer–Emmett–Teller
C-CNTs	� Crosslinked carbon nanotubes

CNFs	� Carbon nanofibers
CNMs	� Carbon nanomaterials
CNs	� Carbon nanospheres
CNTs	� Carbon nanotubes
CPs	� Conducting polymers
CPE	� Carbon paste electrode
CRGO	� Chemically reduced graphene 

oxide
CTAB	� Cetyltrimethylammonium 

bromide
CuNPs	� Copper nanoparticles
CuS	� Copper sulfide
CV	� Cyclic voltammetry
DA	� Dopamine
DAN	� Diaminonaphthalene
DMF	� N,N-Dimethylformamide
DMFCs	� Direct methanol fuel cells
DMSO	� Dimethyl sulfoxide
EDOT	� 3,4-Ethylenedioxythiophene
EHDA	� Electrohydrodynamic
EIS	� Electrochemical impedance 

spectroscopy
f-MWCNTs	� Functionalized MWCNT
FTIR	� Fourier-transform infrared
GR	� Graphene
GaN	� Gallium nitride
GCE	� Glassy carbon electrode
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GO	� Graphene oxide
ITO	� Indium tin oxide
LOD	� Limit of detection
LOQ	� Limit of quantification
MIP	� Molecularly imprinted 

polymer
MIPM	� Molecularly imprinted poly-

mer membranes
MnO2-NPs	� Manganesedioxide 

nanoparticles
MNPs	� Metal nanoparticles
MoS	� Molybdenum disulfide 

nanosheets
MWCNT	� Multi-walled carbon 

nanotubes
MWNTsg-PtBMA-b-PS	� Multiwall carbon nanotube 

graft polystyrene-block-
poly(tert-butyl methacrylate)

NiPs	� Nickel ion particles
NPs	� Nanoparticles
p-AHNSA	� Poly4-amino-3-hydroxy-

1-naphthalene sulfonic acid
PANI	� Polyaniline
PdNPs	� Palladium nanoparticles
PEDOT	� Poly(3,4-ethylenedioxythio-

phene)
PEDOT:PSS	� Poly(3,4-ethylenedioxythio-

phene)–polystyrene sulfonic 
acid

PNPAg	� Nanocomposite blend
Poly(DTCPA-co-BHTBT)	� Poly((2,5-dithie-

nyl-3,4-(1,8-naphthalene) 
cyclopentadienone)-co-
4,7-bis(3-hexylthiophen-2-yl) 
benzo [c] [1,2,5] thiadiazole

PPy	� Polypyrrole
PPyox	� Overoxidized polypyrrole
PS	� Polystyrene
PS-b-PtBMA	� Polystyrene-block-poly(tert-

butyl methacrylate)
PSS	� Poly(sodium 

4-styrenesulfonate)
PTh	� Polythiophene
PtNPs	� Platinum nanoparticles
PVA	� Polyvinyl alcohol
PVP	� Polyvinylpyrrolydone
RGO	� Reduced graphene oxide
RGO-g-PANI	� Polyaniline grafted reduced 

graphene oxide
SDBS	� Sodium dodecylbenzene 

sulfonate
SEBS	� Poly(styrene-b-(ethylene-co-

butylene)-b-styrene)

SEM	� Scanning electron 
microscopy

SMZ	� Herbicide simazine
SWCNT	� Single-walled carbon 

nanotubes
SWV	� Square wave voltammetry
TEM	� Transmission electron 

microscopy
TGA​	� Thermal gravimetric analysis
XPS	� X-ray photoelectron 

spectroscopy
YADH	� Alcohol dehydrogenase

Introduction

Organic conducting polymers, born in 1977 with the pio-
neering work of MacDiarmid, have received great attention 
due to their potential application [1, 2]. Intensive research 
works have been devoted to preparation and characteriza-
tion of conducting polymers such as polyaniline (PANI), 
polypyrrole (PPy), diaminonaphthalene (DAN), and their 
derivatives. Their application in batteries, sensors, capaci-
tors, electronic devices, or electrochromic displays was very 
promising [3–5]. Carbon nanomaterials (CNMs) including 
fullerenes, single-walled carbon nanotubes (SWCNT), multi-
walled carbon nanotubes (MWCNT), carbon nanofibers 
(CNFs), carbon nanospheres (CNs), graphene, and graphene 
oxide (GO) are novel materials of the twenty-first century 
[6] because of their large surface area, good environmental 
stability [7], exceptional electrical, thermal, chemical, and 
mechanical properties [8]. Due to these properties, CNMs 
had found a great interest in fields of composite materials 
and energy conversion [9], sensors [10], medicine [11], 
emission devices [12], and nanoscale electronic components 
[13].

Many efforts have been made to combine CNMs and 
polymers to produce functional nanocomposite materials 
with superior properties for fundamental and technological 
perspectives [10]. The conducting polymers such as poly-
aniline (PANI), polypyrrole (PPy), polythiophene (PTh), 
and poly(3,4-ethylenedioxythiophene) (PEDOT) have been 
explored as matrices to incorporate a number of CNMs 
such as: fullerenes [14], single and multi-walled carbon 
nanotubes (CNTs) [15, 16], carbon nanofibers (CNFs) 
[17, 18], carbon nanospheres (CNs) [19, 20], graphene, 
and graphene oxide [21–23]. The incorporation of carbon 
nanomaterials in polymer matrices is a very attractive way 
to combine the mechanical and electrical properties [24]. 
These new nanocomposites open up new opportunities, 
ranging from sensors [25–27], electrochemical capacitor 
[28, 29], solar cells [30], transistors [31], to molecular 
electronic devices [22], etc. More recently, nanocomposite 
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based on CPs, and metal nanoparticles (MNPs) such as 
gold, platinum, palladium, and silver with different com-
positions and dimensions have been intensively investi-
gated [32–36]. The incorporation of metal nanoparticles 
in polymers matrices would to a host nanocomposite with 
additional physical properties [37–39]. Several approaches 
have been described and employed to synthesize metal 
or metal oxide nanoparticle-conducting polymers nano-
composites [34, 38, 40]. Different approaches using elec-
trochemical methods involving incorporation of metal 
nanoparticles during the electrosynthesis of the polymer, 
electrodeposition of metal nanoparticles on the preformed 
polymer electrodes, reduction of metal salts dissolved in 
a polymer matrix or incorporation of preformed nano-
particles during polymerization of monomers have been 
reported. Chemical preparation [41], sonochemical method 
[42], sol–gel technique [43], ultrasonic irradiation [44], 
and photochemical preparation [45] have also been used. 
Nanocomposites based on conducting polymers and nano-
particles (CNMs or MNPs) were the focus of increasing 
numbers of papers or reviews to understand fundamental 
aspects and the potential applications of these nanostruc-
tures [46]. According to the sciences direct web site, the 
number of paper devoted to nanocomposites based CP and 
NPs increased from 3427 in 2011 to 7444 in July 2017, as 
shown in Fig. 1, indicating the importance of nanomate-
rial composites.

The present review analyzes the recent progresses in 
the synthesis of nanocomposites based on conducting 
polymers and carbon nanomaterials and/or metal nano-
particles during the last years and their applications in the 
field of electrochemical sensors. It should be noted that 
only conducting polymers with conjugated-π-bond will be 
considered in this review.

Nanocomposites synthesized 
by combination of carbon nanomaterials 
and conducting polymers

Combination of conducting polymer matrix and carbon 
nanomaterials (CNMs) such as graphene, carbon nanofib-
ers (CNFs), and carbon nanotubes (CNTs) to form polymer 
nanocomposites plays a very promising role due to their 
better structural and functional properties such as high 
aspect ratio, high mechanical strength, and high electrical 
properties [24, 47, 48]. In the last decade, large progress 
was made, resulting in the opening of new possibilities in 
the use of these properties for a variety of applications. 
The overall performances of CNMs/polymer nanocompos-
ites are largely governed by the dispersion of CNM in the 
polymer matrix. Therefore, a homogeneous dispersion of 
CNM is an important issue in the preparation of CNM/
polymer nanocomposites [17, 22, 49–51]. Up to date, a 
large number of reviews have been reported on compos-
ites of conducting polymers and CNMs for application 
in supercapacitors and chemical sensors [52–54]. Carbon 
nanotubes and graphene are considered as the most inno-
vative CNMs who are attracting enormous interest for 
their use in sensors [52] and their potential application as 
energy storage materials [55]. The most commonly used 
conducting polymers are polyaniline (PANI), polypyrrole 
(PPy), and poly[3,4-ethylenedioxythiophene] (PEDOT) 
[56–58]. Several methods for synthesis of nanocompos-
ites have been reported in the literature. CNM/polymer 
nanocomposites can be synthesized by electrochemical 
or chemical processing. Chemical method is the common 
processing that can be performed either by solution mixing 
or by in situ chemical polymerization. Solution mixing is 
the method in which CNMs and polymer are mixed with a 
suitable solvent, and then, the nanocomposites are formed 
after the evaporation of the solvent in a controlled condi-
tion. It was demonstrated that this method enables to drop-
cast films with up to 60 wt% CNT content, although can 
result in reagglomeration of the CNTs during the casting/
evaporation process [52]. In situ chemical polymerization 
achieved by oxidation of corresponding monomers using 
an oxidizing agent. The main advantage of this method 
is that it produces polymer grafted CNMs, mixed with 
free polymer chains. Moreover, due to the small size of 
monomeric molecules, the homogeneity of the result-
ing composite adducts is much higher than mixing CNTs 
and polymer chains in solution [59]. However, it cannot 
achieve the same level of homogeneity and integrity in its 
polymerized product as can be produced by electrochemi-
cal polymerization [56]. The electrochemical polymeriza-
tion takes only some minutes instead of some hours in case 
of chemical polymerization. Polymers can be formed by 

Fig. 1   Histogram representing the numbers of scientific articles pub-
lished per year during the last 6 years (research performed on 10 July 
2017 with “Science Direct”, with CP and NPs)
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electrochemical deposition on electrodes modified with 
CNMs which leads to the better dispersion and interac-
tions between CNMs and polymer. Better uniformity can 
be obtained by the electrochemically co-deposited com-
posites from a solution containing monomers and dis-
persed CNMs leading to the most homogeneous network 
structure. Figure 2 shows the schematic illustration of the 
process of fabricating CNM/polymer nanocomposites with 
traditional chemical methods.

(a)	 Nanocomposites were prepared by in situ chemical 
polymerization involving monomer and carbon nano-
materials with different weight ratios after being soni-
cated to obtain homogenous mixture [60, 61].

(b)	 In mixing method, the commercial polymers were 
dissolved in suitable organic solvents, mixed and 
sonicated. Mangu et  al. used N,N-dimethylforma-
mide (DMF), dimethyl sulfoxide (DMSO) to dissolve 
PEDOT:PSS in the volume ratio of 3:1 and 2-propanol, 
ethylene glycol, DMSO, and DMF to dissolve PANI 
[62]. Then, carbon nanomaterials were added to this 
solution and sonicated. These nanocomposites obtained 

in solution form can be casted on suitable substrate or 
precipitated by filtration before being dried.

Electrochemical methods are investigated to prepare 
CNM/polymer nanocomposites and are summarized in 
Fig. 3. Two methods are generally used:

(a)	 The modified electrode was prepared by dropping of 
the well-dispersed carbon nanomaterials on the sur-
face of the electrode substrate. Conducting polymers 
were electropolymerized using cyclic voltammetry in 
the presence of monomer dissolved in a solution gener-
ally in acidic medium [63, 64]. A typical example in 
Fig. 4 was obtained in our laboratory using this method 
and concern polymerization of 1,5-diaminonaphthalene 
with CNFs [65].

(b)	 Electrochemical co-deposition was performed in aque-
ous solution containing monomer and carbon nanoma-
terials, using potentiostatic, galvanostatic, or cyclic 
voltammetry (CV). The solution was stirred and ultra-
sonicated before polymerization. After electropolymer-
ization, the modified electrode was washed thoroughly 
with water and dried at room temperature [66–68].

Fig. 2   Schematic illustration of chemical preparation method of CNMs/conducting polymer nanocomposites: a in-situ chemical polymerization 
of monomer and carbon nanoparticles, b sonication of commercial polymer solution and carbon nanoparticles
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Fig. 3   Schematic illustration of electrochemical process of elaboration of CNMs/conducting polymer nanocomposites

Fig. 4   a Cyclic voltammograms of electropolymerization of 1,5-DAN 
at the surface of CPE/CNF during 40 consecutive potential cycles 
between − 0.2 and 1.0 V in a 1.0 M HCl solution containing 5 mM 

1,5-DAN, 50  mV  s−1, b compared voltammograms between CPE/
poly(1,5-DAN) and CPE/CNF/poly(1,5-DAN) at the 40th cycle [65]
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The properties of these nanocomposites are also related 
to the percentage of CNMs. The percentage of CNM plays 
an important role on the mechanical and electrical proper-
ties of nanocomposites and was studied by different authors. 
The influence of the percentage of CNT in CNT/PANI com-
posite was investigated by Liu et al., increasing the mass 
ratio of CNT to aniline, the diameter of core–shell poly-
mer decreased, and therefore, the composite conductivity 
decreased also. Less than 10% by weight, the composite 
CNT/PANI showed a gradually increasing conductivity 
[69]. Gui et al. developed three PANI/graphene oxide (GO) 
nanocomposite electrode materials from aniline (ANI) and 
GO by chemical polymerization with the mass ratio (ANI/
GO) 1000:1, 100:1, and 10:1. The PANI/GO composite syn-
thesized with the mass ratio (ANI/GO) 1000:1 possessed 
excellent capacitive behavior with a high specific capaci-
tance due to the unique morphology of Mace-like PANI/GO 
composite [70]. It seems that the low percentage of carbon 
nanomaterials gives better results in them of conductivity 
and mechanical properties.

Nanocomposites based on carbon nanotubes

Since its discovery by Iijima in 1991, carbon nanotubes have 
revolutionized the field of polymer nanocomposites [71]. 
It was categorized as single-walled and multi-walled nano-
tubes. SWNTs are seamless cylinder graphite sheets. They 
have a diameter of 2 nm and a length of several microme-
tres, while MWNTs consist of multiple layers of graphene 
rolled in on themselves and separated from one another by 
0.34 nm. Their diameter varied between 2 and 20 nm. A 
growing number of researchers worldwide have shown an 
interest in the combination of CNT with PANI. Recently, 
review articles have been published on the progress in the 
different synthesis methods of CNT/PANI nanocompos-
ites. The identifications methods, the properties of the final 
product, and the progress towards technological applications 
have been investigated [72, 73]. CNT/PANI composites can 
be synthesized by electrochemical or chemical processing. 
CNT functionality is the key to improve dispersion of the 
nanotubes in the liquid (aniline, solvent) and consequently in 
the CNT/PANI composite. It also helps to direct formation 
of PANI chains at the surface of CNT instead of bulk PANI. 
Due to their easy synthesis, processability and possibility to 
combine the properties of CNT and the properties of PANI 
with synergic effects, CNT/PANI composites present great 
interest for various applications as chemical sensors, capaci-
tors, fuel cells, and electronic devices. Recently, MWCNT-
conducting polymer nanocomposites for gas-sensing appli-
cations were investigated. Mangu et al. demonstrated that 
the use of conducting polymers like polyaniline (PANI) and 
poly(3,4-ethylenedioxythiophene)–polystyrene sulfonic acid 
(PEDOT:PSS) enhances the gas-sensing capabilities. The 

MWCNT–PANI composite sensor synthesized was observed 
to show superior sensitivities and excellent reversibility to 
100 ppm of NO2 gas [62]. Later, Sharma et al. studied the 
thermal properties of the MWCNT-conducting polymer 
composite. They utilized MWCNT with PEDOT:PSS and 
PANI to develop high-temperature tolerant ammonia gas 
sensor. MWCNT–PEDOT:PSS composite was found to 
show better thermal stability than MWCNT–PANI com-
posite. The MWCNT–PEDOT:PSS composite sensor was 
found to exhibit excellent response for trace level sensing 
(1–50 ppm) of ammonia gas than MWCNT–PANI compos-
ite [74]. Pure carbon nanotubes (CNTs) were also used to 
prepare PEDOT conducting polymer nanocomposite. Elec-
trochemical polymerization of PEDOT/CNT nanocomposite 
was performed in EDOT aqueous solution containing only 
CNTs as the dopant. The solution was stirred and ultrasoni-
cated for 10 min before polymerization at 1.2 V for 30 s. Due 
to the excellent stability of the PEDOT/CNT nanocomposite 
and its catalytic property towards dopamine (DA), a highly 
stable and sensitive DA sensor was developed that performs 
favorably in the presence of a high concentration of the com-
mon interferant ascorbic acid [66].

Polypyrrole is also an interesting conducting polymer 
who has the structural uniformity and high conductivity 
by strong π–π stacking between PPy conjugate backbone 
and graphitic sidewall of CNTs. To avoid all complicated 
multiple-step procedures to synthesize PPy/CNT-based 
nanocomposites, poly(sodium 4-styrenesulfonate) (PSS) 
polyelectrolyte has been added as supporting electrolytes as 
well as dopants to improve the solubility and dispersion of 
CNT. A one-step electrochemically polymerized method was 
used to fabricate the PPy/PSS-CNT composite electrodes. 
Thus, the aqueous solution for electrochemical polymeriza-
tion consisted of pyrrole monomer, PSS, and long or short 
CNT. Comparing to the short CNT-incorporated PPy/PSS 
electrodes, long CNT-incorporated PPy/PSS electrodes 
show the relatively more superior capacitive behavior and 
cycle stability [75]. In other work, sodium dodecylbenzene 
sulfonate (SDBS) was used to disperse MWCNTs with ratio 
of 1:10 nanotubes to SDBS. MWCNTs, with different weight 
ratio (0.3, 0.5, 0.7, 0.9, and 1.1%) to the pyrrole monomer, 
were dispersed and sonicated in an SDBS solution. Then, 
PPy-MWCNTs’ layer was synthesized by electrochemical 
polymerization of distillated pyrrole on MWCNT. PPy/
MWCNT nanocomposite was used to improve the sensi-
tivity and selectivity of sensors via interfacial interactions 
between MWCNTs and the conducting polymer. The nano-
composite layers were used to modify the gold layer to detect 
trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions 
using the surface plasmon resonance technique [76]. Nano-
composite of PPy and carboxylated MWCNT was synthe-
sized by chemical polymerization for different MWCNT 
weight ratios. Six PPy-MWCNT nanocomposite samples 
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were prepared for different amounts of f-MWCNTs, and the 
weight ratio of functionalized MWCNT in PPy matrix varied 
from 0.25 to 8%. The PPy-MWCNT nanocomposite pellet 
sensors showed good sensitivity to NH3 gas at room tem-
perature. The most sensitive PPy-MWCNT nanocomposite 
sensor to NH3 gas was obtained with 4 wt% MWCNT ratio 
[77]. Polyphenazines and poly(triphenylmethanes) as con-
ducting polymers were also combined with CNT to develop 
electrochemical sensors and biosensors. Barsan et al. pub-
lished recently a review on preparation and characteriza-
tion of conducting polymer/CNT composites based on these 
phenazine polymers. The specific combination of phenazine/
triphenylmethane polymers with CNT leads to an improved 
performance of the resulting sensing devices because of their 
complementary electrical, electrochemical and mechanical 
properties, and also due to synergistic effects. The main ana-
lytical applications as sensor were reported [78].

Nanocomposites based on graphene

Graphene oxide (GO) can be prepared in large scales from 
natural graphite. It was synthesized by a modified Hum-
mers method as described in the previous studies [79]. It 
is a single sheet of graphite oxide-bearing oxygen func-
tional groups on their basal planes. In recent years, GO has 
attracted great interest because of its superior mechanical, 
structural, and thermal properties and also its low cost 
compared to other conventional carbon nanomaterials 
like CNT. GO can be easily dispersed in aqueous solution 
and act as an excellent dopant for the chemical and elec-
trochemical polymerization of conducting polymers due 
to the abundance of carboxyl groups that are negatively 
charged in aqueous solution. Kim et al. demonstrated that 
GO can play a role as a chemical oxidant for various CPs 
(polythiophene, polyaniline, and polypyrrole). In addition, 
diverse graphene/CP composites (graphene/polythiophene, 
graphene/polyaniline, and graphene/polypyrrole) can 
simply and rapidly be synthesized using the GO as both 
graphene precursor and chemical oxidant [80]. Poly[3,4-
ethylenedioxythiophene] was largely studied to synthesize 
(GO/PEDOT) nanocomposites. Luo et al. have success-
fully synthesized GO/PEDOT nanocomposites by cyclic 
voltammetry using graphene oxide as dopant. The result-
ing nanocomposite is highly biocompatible with neuronal 
cells [68]. Due to their many negatively charged carboxyl 
groups, GO is an excellent dopant for the electropolym-
erization of conducting polymers. The formed film con-
tains functional groups promoting any modification of the 
surface of the nanocomposite film. These groups reach 
carboxyl groups of GO partially exposed to the surface 
of the film PEDOT/GO. Normally, GO is an electrically 
insulating material, but its conductivity is recovered by 
restoring its network through its reduction to form what is 

called graphene or reduced graphene oxide. This reduc-
tion can be done thermally, electrochemically, or chemi-
cally using strong reducing agents such as hydrazine or 
sodium borohydride. GO is also an attractive platform for 
the production of functionalized graphene platelets with 
improved mechanical, thermal, and/or electronic proper-
ties [81–84]. Ambrosi and Pumera confirmed later that the 
electrochemical reduction is more interesting, because this 
process allows to control accurately the obtained chemi-
cal structures of graphene with reproducible density of 
the oxygen functionalities PEDOT/GO nanocomposite 
of reduced GO-doped conducting polymer PEDOT was 
prepared to improve electrochemical catalytic property of 
the resulting nanocomposite [85]. The same nanocompos-
ite was electrodeposited on GCE and followed by elec-
trochemical reduction. The obtained modified electrode 
was used as a sensitive sensor for DA detection without 
ascorbic and uric acids interference [86]. Seekaew et al. 
performed a gas sensor based on graphene–PEDOT:PSS 
composite film. Incorporating graphene in the polymer 
increased the specific adsorption surface area which has 
improved the NH3 response [87]. The preparation and the 
thermoelectric proprieties of PEDOT composites contain-
ing PEDOT, reduced graphene oxide (RGO), and single-
walled CNT (SWCNT) were also reported by Li et al. [88]. 
Nanocomposites based on PPy and GO exhibited enhance-
ment in electrical conductivity. Bora et al. synthesized 
polypyrrole (PPy)/graphene oxide (GO) nanocomposites 
via liquid/liquid interfacial polymerization. The developed 
PPy/GO nanocomposite, comparing to pure polypyrrole, 
has shown improvement in electrical conductivity [89]. In 
another work, GO/PPy nanocomposites were performed 
by a one-step co-electrodeposition method. During the 
pyrrole electropolymerization, a negative charge of GO 
was incorporated into the polymer to balance the posi-
tive charge on the polymer. Moreover, the π–π interactions 
between GO and PPy play a considerably role in the for-
mation of GO/PPy nanocomposites [67]. Overoxidized 
polypyrrole (PPyox) was used to synthesize PPyox/gra-
phene nanocomposite due to their cation exchange and 
molecular sieve properties. The nanocomposite-modified 
GCE has been prepared and applied as dopamine sensors 
without the interference of ascorbic acid [64]. GO/PPy was 
also used to prepare molecularly imprinted polymer (MIP) 
for quercetin detection [63]. In the same way, the reduced 
form of graphene was combined with PPy for application 
as supercapacitors or sensors [90]. As example of sensor, 
Rong et al. have prepared GO/PPy by reducing GO to RGO 
and polymerization of PPy using potentiostatic mode. The 
resulted nanocomposites were applied for ammonia and 
Pb2+ detection [91]. In a comparative study, properties of 
PANI/G and PANI/MCWNT nanocomposites were inves-
tigated. It was proved that the charge transfer between the 
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PANI and carbon materials (MWCNTs and G) improved 
the electrical conductivity of PANI. The obtained compos-
ites have different morphologies and conductivities. It was 
elucidated that PANI/G composite has a plate form, while 
PANI/MCWNT composite is tubular [92]. An electro-
chemical biosensor based on PANI/RGO nanocomposite 
has been reported. The nanocomposite was synthesized by 
chemical oxidative polymerization method and was then 
used as the sensitive layer of a DNA adsorbent for detect-
ing Hg2+. The detection limit was 0.035 nM [93]. Nguyen 
et al. synthesized PANI grafted RGO composites via a 
two-step method. First, RGO was modified with 1,3-diami-
nopropane providing reactive NH2 groups on surface witch 
can polymerize with aniline. The formed GO–NH2 was 
then grafted with polymer chains by in situ chemical poly-
merisation. The RGO-g-PANI composites were used for 
the chemical detection of hydrogen peroxide in aqueous 
solutions [94]. The G/PANI-modified electrode allowed 
selective determination of the target metals in the presence 
of bismuth Bi(III). Graphene–polyaniline (G/PANI) nano-
composite was used to develop an electrochemical sensor 
for simultaneous detection of Zn(II), Cd(II), and Pb(II). 
To prevent nanoparticle aggregation during nanocompos-
ites synthesis, they added polyvinylpyrrolidone (PVP) by 
a method called reverse dropping which creates a solution 
of well-dispersed particles [95]. Under optimal conditions, 
the detection limits were 1.0 µg L−1 for Zn(II) and 0.1 µg 
L−1 for both Cd(II) and Pb(II). Recently, electrospun gra-
phene/polyaniline/polystyrene (G/PANI/PS) nanoporous 
fiber-modified screen-printed carbon electrode was inves-
tigated and optimized also to simultaneous determination 
of Pb2+ and Cd2+ in the presence of bismuth. The limits 
of detection were found to be 3.30 µg L−1 for Pb2+ and 
4.43 µg L−1 for Cd2+ [96]. Poly(diaminonaphthalene) com-
bined with RGO was synthesized in one step using cyclic 
voltammetry. The chelating capacity of poly(1,5 diami-
nonaphthalene) and the properties of RGO were used to 
elaborate a lead sensor [97].

Nanocomposites based on carbon black

Only one paper is devoted to carbon black. Mallya et al. used 
a nanocomposite of a novel thiophene-based conducting pol-
ymer and carbon black as a volatile organic compound sen-
sor. The obtained sensors were tested for the determination 
of toluene, acetone, carbon tetrachloride, and cyclohexane 
and showed maximum response to toluene [98]. Since the 
low cost of carbon black more research must be conducted 
in this area.

In conclusion, the carbon nanomaterials and conduct-
ing polymer nanocomposites are very promising materials 
because of multifunctional and unique properties. Therefore, 

such nanocomposites have been reported in the literature as 
promising prototype materials for chemical sensors applica-
tions, as it is summarized in Table 1.

Nanocomposites synthesized 
by combination of metal nanoparticles 
and conducting polymers

Nanocomposites based on conducting polymers (CPs) and 
metal nanoparticles (MNPs) are a new class of nanomateri-
als that have received a considerable attention during the last 
decade [104]. These nanocomposites are formed by combin-
ing the unique properties of MNPs and CPs, in the aim to 
enhance the chemical and/or physical properties. The combi-
nation of these materials can give rise to a new nanostructure 
with novel properties and promising potential applications in 
various fields of nanoscience and nanotechnology. Recently, 
many efforts have been made to synthesize new nanocom-
posites of conducting polymers and metal nanoparticles with 
new properties and applications [105, 106].

In this part, we will give an overview about the most 
method used to synthesis different metal nanoparticles such 
as Au, Pt, Pd, Ag, Cu, and Bi. We will also discuss the main 
parameters affecting their structural, physical, and chemi-
cal properties. On the other hand, a special attention will be 
paid to the recent advances in the synthesis of nanocompos-
ites based on metal nanoparticles and conducting polymers 
such as polythiophene (PTh), polypyrrole (PPy), polyaniline 
(PANI), poly(3,4-ethylenedioxythiophene) (PEDOT), and 
their derivatives. We will also focus on their current catalytic 
and sensing applications.

Different strategies for the synthesis of metal 
nanoparticles

Metal nanoparticles could be prepared using two different 
approaches, which are bottom–up and top–down. In the first 
approach, the metal nanoparticles are fabricated by starting 
from metals atoms dissolved in aqueous or organics solu-
tion and then deposed under appropriate experimental con-
ditions. In the second approach, the metal nanoparticles are 
prepared by subdivision of bulk metals usually using physi-
cal methods [107, 108]. Considering the above approaches, 
the methods of synthesis of metal nanoparticles could be 
classified to six mean methods, as shown in Fig. 5.

The chemical reduction is considered the common 
method reported in the literature for the synthesis of metal 
nanoparticles, which are formed by reducing metal salts in 
the presence of an appropriate reducing agent and a stabi-
lizer usually a special ligand, polymer, or surfactant. The 
electrochemical methods are widely used in the synthesis 
of metal nanoparticles. The metal species is dissolved in 
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aqueous or organics solution, then followed by the reduction 
of metal ions on an appropriate support using cyclic voltam-
metric or a constant reduction potential.

•	 Metal nanoparticles immobilized in polymer matrix
	   In general, there are three ways to obtaining metal nan-

oparticles within polymer matrix, including dispersion, 
deposition, and immersion. The dispersion method starts 
with mixing metal precursor with protective polymer and 
the metal ions are subsequently reduced in the solution. 
In deposition process, metal precursor which was mixed 
with protective polymer is deposited onto a substrate.

•	 Sol–gel
	   Sol–gel methods are also considered as a very prom-

ising method for the synthesis of metals nanoparticles 
[109]. During their synthesis, the experimental condi-
tions including pH, nature of solvent, and temperature 
strongly affects on properties of the synthesized metal 
nanoparticles.

•	 Electromagnetic irradiation
	   The metal nanoparticles could also be prepared using 

electromagnetic irradiation methods including UV, 
microwave, ultrasonic, and laser irradiation [110, 111].

•	 Thermal decomposition

Table 1   Typical applications of CNMs/conducting polymer nanocomposites as sensor

Nanocomposite Polymer CNM Application LOD Characterization Refs.

PEDOT/GO PEDOT GO Dopamine detection 39 nM EIS–SEM [86]
MWCNT–PEDOT:PSS
MWCNT–PANI

PEDOT:PSS
PANI

MWCNT Ammonia gas sensor FTIR–SEM–TEM [74]

SEBS/MWCNT SEBS MWCNT Temperature sensors TGA, SEM [99]
PPyox/graphene PPyox graphene Detection of Dopamine 0.1 μM SEM [64]
MIP/GO PPy Graphene oxide Quercetin determination 48 nmol L−1 [63]
MWNTsg-PtBMA-b-PS PS-b-PtBMA MWNTs–COOH CHCl3 vapor sensor FTIR, 1H NMR, TGA​

XRD, TEM, SEM
[100]

PEDOT/CNT PEDOT CNT Dopamine detection 20 nM SEM, CV [66]
G/PANI PANI graphene Zn(II)

Cd(II)
Pb(II)

1 µg L−1

0.1 µg L−1

0.1 µg L−1

SEM, FTIR, CV [95]

G/PANI/PS PANI/PS graphene Simultaneous determina-
tion of Pb2+ and Cd2+

3.30 µg L−1 (Pb2+) 
4.43 µg L−1 
(Cd2+)

SEM, TEM, BET [96]

3D-rGO@PANI PANI 3D-RGO Detection of Hg2+ 0.035 nM XPS, SEM [93]
Poly(DTCPA-co-

BHTBT)–CB
poly 

(DTCPA-
co-
BHTBT)

carbon black Volatile organic com-
pounds (VOCs) sensor

15 ± 10 ppm UV–vis, optical pro-
filometer contact angle 
measurements AFM, 
FEG SEM

[98]

GO-PANI PANI GO Carbaryl, carbofuran, 
methomyl

0.136 mg L−1

0.145 mg L−1

0.203 mg L−1

CV, UV–Vis and FTIR 
spectrometry

[101]

PEDOT/GO PEDOT GO Mercury (II) 2.78 nM SEM, TEM [102]
G/p-AHNSA p-AHNSA Graphene Dopamine (DA) and 

5-hydroxytryptamine 
(5-HT)

2 and 3 nM CV, SWV, EIS, SEM [103]

Fig. 5   Different methods used for the synthesis of metal nanoparticles
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	   Another way for the synthesis of metal nanoparticles 
is heating volatile metal compounds in organic media or 
gas phase. The compounds degrade and liberate metal or 
the corresponding metal oxide in dispersed phase.

Nanocomposites based on conducting polymers 
and metal nanoparticles

There are four basic strategies for the preparation of the 
nanocomposites of conducting polymers and metal nano-
particles as mentioned in the review of Kondeatiev et al., 
the commonly used procedures for preparation of nanocom-
posite are:

Electrochemical method: the deposition of metal nano-
particles into the pre-synthesized polymer film, or during 
the electropolymerization process.

Chemical method: the nanocomposite can also be 
performed from colloid dispersions of polymers and 
metal nanoparticles, or in one-step synthesis from mixed 

solution containing monomer and metal ions. Conducting 
polymer–metal composites are obtained by oxidizing the 
conjugated monomer by transition metal cations, which 
induces the simultaneous formation of both the poly-
mer matrix and the metal nanoparticles. Figure 6 sum-
maries the most procedure used for preparation of these 
nanocomposite.

In addition, the electrochemical or chemical methods 
for synthesizing conducting polymer–metal nanocompos-
ite are considered as well as the main factors affecting the 
structure and electrochemical properties of these compos-
ites [34]. The size of the synthesized nanocomposite was 
approximately ranging from 1 to 100 nm. The shape and size 
of the nanocomposite obviously depend on methods of depo-
sition of metal nanoparticles and the shape of conducting 
polymers [40, 112]. The modification of some conducting 
polymers such as polythiophene (PTh), polypyrrole (PPy), 
and polyaniline (PANI) by serval metal nanoparticles was 
reported [113]. The obtained nanocomposites were used in 

Fig. 6   Schematic illustration of the most procedure for the preparation of nanocomposites based on conducting polymer and metal nanoparticle 
CPs/MNPs
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electrochemical sensors [114], energy technology, batteries, 
and fuel cells [115, 116].

Gold nanoparticles—polymer

Gold nanoparticles are widely used due to their very inter-
esting properties and their catalytic power. The conduct-
ing polymers with gold nanoparticles as a nanostructured 
materials exhibit unique electrical, optical, and catalytic 
properties. These nanocomposites have been utilized for 
heavy metal, nitrite, ammonia gas, H2O2, dopamine, glu-
cose, ascorbic acid, and uric acid detection. Different meth-
ods for preparation of nanocomposites AuNPs/CPs are used 
such as chemical, electrochemical, thermal evaporation, 
hydrothermal, and spin-coating method. At present, it has 
been found that the best way to synthesis polymer–metal 
nanocomposite is the deposition of metal nanoparticles into 
the polymer film. Metal nanocomposite is formed on the 
surface or in the bulk by drop casting or incorporation of 
pre-synthesized NPs during the electrochemical deposition 
of conducting polymer, as shown in Fig. 6. HAuCl4 was used 
as a precursor for the preparation of AuNPs/polymer with 
a concentration from 3 to 10 mM. The size of the AuNPs 
is related to Au precursor concentration, polymer/AuNPs 
molar ratio, synthesis method, and synthesis time [117–122]. 
Huang et al. have developed a facile and well-controlled 
techniques to prepare water dispersible uniform AuNPs on 
PANI. Uniform gold nanoparticles with a size around of 
2 nm were selectively reduced on polyaniline nanofibers, 
from aqueous solution of HAuCl4. The strong interaction 
between protonated amine and AuCl4

− leads to an excellent 
electrocatalytical effect. The modified electrode exhibited 
a fast response time and high sensitivity for H2O2 sensing 
with a detection limit of 0.1 µM [117]. The same authors 
developed an electrochemical sensor for the oxidation of 
dopamine on molybdenum disulfide nanosheets–polyani-
line (MoS–polyaniline) composites and gold nanoparticles 
(AuNPs)-modified glassy carbon electrode with a size of 
13 nm. The graphene-like MoS–polyaniline composites were 
synthesized by hydrothermal method and a simple in situ 
polymerization procedure. The electrochemical sensor was 
applied to the dopamine detection in human urine sample 
[118]. Two approaches to incorporate the AuNPs with and 
without pre-functionalization into covalently assembled pol-
ythiophene films have been reported (NPs size 14.5 ± 4 nm). 
The adopted approaches involve alternate deposition of 
monomeric and polymeric species for creating multilayers. 
This method has been used to develop facile method for 
nanoparticles incorporation and to facilitate direct inter-
action between conducting polymers and nanoparticles. 
Both the approaches have merits and demerits on their own 
depending on the film requirements. However, the prepara-
tion of this nanocomposite takes a very long time (more than 

6 days) [123]. In other work, the co-polymerization of poly-
vinylpyrrolidone and polyaniline was performed by cyclic 
voltammetry. The nanocomposite of gold nanoparticles with 
co-polymer was synthesized by electrodeposition methods 
on a glassy carbon electrode (GCE) in a homogeneous three-
component solution consisting of aniline, PVP, and AuNPs. 
The modified electrode was used as glucose biosensor [124]. 
Recently, a nanocomposite of the self-assembly gold of 
nanoparticles with polystyrene-b-poly(4vinylpyridine) co-
polymer has been synthesized with a size of 27 nm for (bio)
sensing applications [121]. Spherical gold nanoparticles, 
with a size of 3.5 nm, were used for preparation of glucose 
biosensors in the presence of conducting polymer and were 
successfully applied to beverages for the detection of glucose 
content in a linear range between 0.025 and 1.25 mM. The 
detection limit was 0.025 mM [125]. An approach to elabo-
rate a novel nanocomposite in which gold nanoparticles in 
small size (4.2 nm) are dispersed on polypyrrole matrix has 
been developed by Zhang et al. [119]. The nanocomposite 
has showed great potential for detecting ammonia gas at 
room temperature. In addition, the bioimprinted ds-DNA 
and Au nanoparticles in the o-phenylenediamine were used 
to modified pencil graphite electrode as sensor for the deter-
mination of dopamine. This nanocomposite was prepared 
by electrochemical entrapment of ds-DNA and Au nano-
particles in the o-phenylenediamine. The nanocomposite 
was applied for the determination of dopamine in biological 
samples over the range of 20–7000 nM with a detection limit 
of 6 nM [122]. El-said et al. have synthesized poly(4-ami-
nothiophenol) nanostructures layered on gold nanodots pat-
terned indium tin oxide (ITO) electrode. The modified gold 
nanodots ITO electrode were fabricated by thermal evapora-
tion of pure gold metal onto ITO surface through polystyrene 
monolayer. Then, a monolayer of 4-aminothiophenol was 
self-assembly immobilized onto the gold nanodots array/
ITO electrode by electrochemical polymerization process. 
The size of AuNPs was 80 nm. The obtained electrode was 
used for detection of adenine and guanine in human serum 
sample [126]. The nanocomposite-based gold nanoparticles 
are usually decorated on molecularly imprinted polymer 
membranes (MIPM). In the work of Zhang et al., MIPM 
was used as biomimetic molecular recognition element 
involved in o-aminothiophenol functionalized Au nano-
particles (ATP-AuNPs) with a size of AuNPs 4.2 nm. The 
modified gold electrode was used for detection of herbicide 
simazine (SMZ) in several real samples. The linear depend-
ency of peak current on SMZ concentrations was observed 
from 0.03 to 140 μM and detection limit was estimated to 
be 0.013 μM [120]. In a recent paper, an approach for syn-
thesis of PEDOT/AuNPs composite was developed by Lin 
et al., consisting of electropolymerization of PEDOT from 
solution containing gold nanoparticles and EDOT monomer 
mixed in water solution. It was demonstrated that sensor is 
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highly stable, sensitive, and selective and it was used for 
the detection of nitrite in tap water [127]. Sadanandhan and 
Devaki have modified the glassy carbon electrode with PANI 
through electrochemical polymerization by cyclic voltam-
metry. Then, the gold nanoparticle AuNPs were deposited 
by chronoamperometry on the polymer. The performance of 
the sensor was then tested in blood samples for simultane-
ous sensing of dopamine, ascorbic acid, serotonin, and uric 
acid [128].

Platinum nanoparticles—polymer

The interesting properties of platinum at nanoscale dimen-
sion have gained research attention due to their potential 
application. The platinum nanoparticles are considered 
very effective as a matrix in detection of various kinds of 
biomolecules and macromolecules such as DNA, enzymes, 
other proteins, and antibodies. The same strategies used 
in the deposition of gold nanoparticles were used for the 
deposition of platinum leading to a nanoparticles with diam-
eter ranging from 1 nm to some hundreds nm using PtCl3 
and H2PtCl6 as a precursor. The size and the distribution 
of platinum nanoparticles on the polyaniline and polypyr-
role have been studied by varying the polymer matrix from 
nanofibers to nanotubes. The nanocomposites formed are 
very sensitive to the matrix morphologies. Small polymer 
nanostructure (nanofibers) provides a large number of het-
erogeneous nucleation sites for nucleating Pt nanoparticles, 
leading to better distribution and dispersion of the Pt nano-
particles (2 nM) [129]. Mishra et al. designed a new biosen-
sor for the detection of human C-reactive protein (αCRP), 
by combining two types of advanced materials with com-
plementary properties, polypyrrole film (PPy) and platinum 
nanoparticles (PtNPs). The long chain of PPy in the polymer 
composite acts as a space between the biomolecules and the 
transducer, wherein the Pt nanoparticles help in preserving 
the native protein conformation and reducing the steric hin-
drance for better probe orientation and accessibility of the 
biomolecules to the analyte. The obtained nanocomposite 
has demonstrated a large surface area and a high perfor-
mance towards AgαCRP detection [130]. In the paper of 
Adeloju et al., the surface of the platinum electrode was 
first modified by thin film of platinum nanoparticles with 
a diameter of 30–40 nm priory the deposition polypyr-
role film, providing large surface area for the deposition of 
ultrafine film polypyrrole. This strategy was employed to 
elaborate a biosensor for potentiometric detection of sulfite 
in wine and beer samples in the linear concentration range 
that extends from 0.75 to 65.50 μM of sulfite, with a detec-
tion limit of 12.4 nM, and a response time of 3–5 s [131]. 
Boomi and co-works reported the first chemical synthesis of 
the polyaniline-modified Pt–Pd nanoparticles. The obtained 
nanocomposites exhibited improved antibacterial activity 

when compared to pristine polyaniline and individual metal 
colloids. The Pt–Pd nanoparticles have spherical morphol-
ogy and the particles’ size was found around of 1–7 nm. 
The antibacterial properties depend strongly on the size of 
metal nanoparticles [132]. In addition, Zhai et al. fabricated 
an electrochemical biosensor for glucose with Pt nanopar-
ticle/polyaniline hydrogel hetero structures. This biosensor 
was applied for glucose enzyme sensor with a wide linear 
calibration ranging from 0.01 to 8 mM and the detection 
limitation of 0.7 μM [133].

Silver nanoparticles—polymer

Hybrid nanocomposites based on conducting polymers (CPs) 
and silver nanoparticles (AgNPs) have recently become a 
tool in the preparation of new materials. The obtained nano-
materials exhibit a good level of electrical conductivity as 
well as tunable physical, chemical, and responsive proper-
ties. Several conducting polymers were used to produce 
these nanocomposites among them, polypyrrole (PPy), and 
polyaniline (PANI) [134].

In a detailed review, the strategies of fabrication of 
nanocomposite by combination of silver nanoparticles 
(AgNPs) and conducting polymers and their application 
have been reported. Various strategies for the synthesis of 
AgNPs were detailed such as, polyol process, solvothermal 
method, ultraviolet irradiation, photo-reduction technique, 
electrodeposition process, DNA template method, porous 
material template method, and wet chemical method. The 
role of various additives (inorganic anions, metal cations, 
and organic molecular species) on the aspect ratio of silver 
nanowires (AgNWs) has been reported. Moreover, different 
methods for the preparation of AgNWs/conducting polymers 
composite film are reviewed like spin coating, dip coatings 
and electro-hydrodynamic (EHDA), simple solution mixing 
techniques, and electrospinning [135]. Nia et al. reported a 
new nanocomposite sensors based on polypyrrole (PPy) dec-
orated with silver nanoparticles (AgNPs) and its application 
as a non-enzymatic sensor for hydrogen peroxide (H2O2) 
detection. AgNPs–PPy was deposited on glassy carbon elec-
trode by electrochemical method using cyclic voltammetry. 
The modified electrode revealed that PPy and AgNPs were 
uniformly formed and PPy was decorated with small particle 
size of AgNPs around of 25 nm [136]. In another appli-
cation, Ghanbari has modified the glassy carbon electrode 
(GCE) with a pre-synthesized polypyrrole (PPy) nanofiber 
and then with AgNPs to form a nanocomposite of AgNPs/
PPy/GCE. The modified electrode was used to determina-
tion of hydrazine with a detection limit of 2 µM [137]. It 
was reported in many studies that plants have potential to 
reduce metal ions both on their surface and in various organs 
and tissues. Alam et al. have used Ziziphus mauritiana fruit 
extract to synthesized sliver nanoparticle AgNPs. Then, 
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the enzyme of alcohol dehydrogenase (YADH) has been 
immobilized on chemical synthesized polyaniline-coated 
AgNPs [138]. This approach has been actively studied in 
recent years as an alternative, efficient, inexpensive, and 
environmentally safe method for producing nanoparticles 
with specific properties.

Zang et al. have reported the preparation of a new nano-
composite based on AgNPs–PPy-modified attapulgite 
(ATP) as a clay support by in situ UV-induced dispersion 
polymerization. AgNPs with a size around of 40 nm were 
obtained and the potential applications of obtained com-
posite nanoparticles as an antibacterial agent was explored 
[139]. Recently, Bhadra et al. used polyaniline (PANI) and 
polyvinyl alcohol (PVA) with silver nanoparticles to syn-
thesis the nanocomposite blend (PNPAg). Nanocomposites 
with lower Ag concentrations have highly aligned PNPAg 
nanofibers of diameter 50–80 nm and agglomerations com-
pared to the higher concentrations of Ag and have good opti-
cal and electrical properties. Indeed, the room temperature 
electrical conductivity of the nanocomposites increased with 
Ag nanoparticles [140].

Palladium nanoparticles—polymer

Palladium nanoparticles (PdNPs) have been used in a variety 
of fields, especially as catalysts in organic reactions due to 
their superior chemical stability and catalytic activity [141]. 
Few works have been reported in the literature for develop-
ing the nanocomposites by the combination of palladium 
nanoparticles (PdNPs) and conducting polymers (CPs). Pro-
dromidis et al. reported a simple electroless approach for 
the synthesis of PdNPs incorporated in polyaniline (PANI) 
via formation of a preorganized palladium polymer complex 
material followed by slow reduction. The PdNPs were uni-
formly dispersed in the polymer with a diameter size around 
5–10 nm and a large electrochemically active surface area. 
The obtained nanocomposite was applied for electrooxida-
tion of methanol and ethanol. The results suggest that this 
nanocomposite could be considered as an efficient anode 
in fuel cells [142]. In an excellent research work, Li et al. 
reported a facile strategy to produce a novel nanoparticulate 
polyacetylene-supported Pd(II) catalyst [NP–Pd(II)] for use 
in the aqueous Suzuki–Miyaura cross-coupling reaction, 
by simply treating an aqueous solution of PdCl4

2− with 
acetylene under ambient conditions. The nanocomposites 
reveal homogeneous distribution of the Pd(II) along the 
polyacetylene and the aggregation of the NP–Pd(II) with 
diameters of 2–3 nm that make this nanocomposite an ideal 
catalyst combining the advantages of both homogeneous 
and heterogeneous catalysts [143]. Sapurina et al. recently 
reported that polypyrrole nanotubes, prepared by chemical 
reaction in the presence of methyl orange, could be used 
as a conducting substrate for the deposition of noble-metal 

nanoparticles. The synthesized polypyrrole nanotubes were 
decorated with palladium, platinum, rhodium, or ruthenium 
nanoparticles by carbonization method. The catalytic activ-
ity of obtained composites was proved in the reduction of 
4-nitrophenol to 4-aminophenol [144]. In addition, Hos-
seini et al. synthesized palladium nanoparticles/poly(3,4-
ethylenedioxythiophene) nanofibers as a sensors for glucose 
and hydrogen peroxide detection by chronoamperometric 
method. This sensor shows a low detection limit of 1.6 µM 
for glucose and 0.05 µM for H2O2 in the range of 0.04–9 mM 
and 0.2–25 µM, respectively [145].

Other metal—polymer nanocomposites

Besides gold, platinum, palladium, etc, others metallic nano-
particles have been studied during the last decade such as 
copper, bismuth, and nickel. Copper nanoparticles (CuNPs) 
have fascinating properties such as the good thermal and 
electrical conductivity, nonlinear optical properties, and cost 
much less than the other metals. CuNPs are very well known 
for their potential application in cooling fluids for electronic 
systems, conductive inks, switches, or photochromic glasses 
in optical devices and nonlinear optical materials [146]. In 
addition, the CuNPs are widely used in electrochemistry as 
electrode materials. The effect of copper concentration and 
surfactants on the conductivity and stability of composite 
polymer-supported copper nanoparticles (CuNPs) were stud-
ied by Pham et al., and the nanoparticles with average diam-
eter of 56 nm were synthesized by chemical reduction in the 
presence of cetyltrimethylammonium bromide (CTAB) and 
polyvinylpyrrolidone (PVP) as stabilizer. They have shown 
that these compounds prevent and protect the copper nano-
particles from the agglomeration and oxidation. The CuNPs 
were incorporated in PEDOT:PSS in aqueous solution to 
form conducting composite [147], who could be used for 
different applications. In situ chemical oxidation polymeri-
zation method was used to synthesis copper nanoparticles 
intercalated polyaniline nanocomposite. This nanocomposite 
was used to elaborate a sensor, which was applied for gas 
sensing towards different gases namely NH3, CO, CO2, NO, 
and CH4 at room temperature. The sensor films exhibited a 
highly selective response for NH3 with negligible response 
towards the other gases. Although the sensor have a draw-
back related to its sensitivity at high concentration, the satu-
ration of the sensor was observed at concentration exceeding 
50 ppm. The large surface area and charge transfer resulting 
of CuNPs intercalation in PANI matrix were the character-
istics allowing the enhancement of the gas response [148]. 
The same method was used to synthesize nanocomposites 
of polypyrrole (PPy) containing copper sulfide (CuS). The 
nanocomposite was characterized by the means of FTIR, 
scanning electron microscope, and X-ray diffraction, dif-
ferential scanning calorimetry, confirming the formation 
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of CuS/PPy nanocomposites with porous, granular, and 
globular surface morphology and crystallinity. Besides, the 
thermal stability and the conductivity were also studies, 
indicating a better thermal stability. The dielectric behavior 
increases the order ness and the packing. Despite dielectric 
loss arises due to the localized motion of the charge carriers. 
The conductivity of CuS/PPy nanocomposite increases with 
the increase in the concentration of CuS. The nanocompos-
ites have a large scientific and technological interest and 
possible application like sensors [149]. Ternary NiO/CuO/
PANI nanocomposites were synthesized by in situ growth 
of NiO/CuO nanoparticles via electrodeposition and elec-
trochemical oxidation, in a PANI matrix prepared through 
electrodeposition. Due to the large surface area and good 
conductivity of NiO/CuO/PANI nanocomposite, a non-
enzymatic sensor exhibited high electrocatalytic activity 
towards the oxidation of glucose. The modified electrode 
displayed higher sensitivity and a lower detection limit of 
2.0 μM [150]. MnOx nanoparticles have attracted large atten-
tion due to its abundance and relatively environmentally 
friendly nature [151]. To improve the capacitance property 
of PEDOT, Yang et al. used manganese dioxide nanopar-
ticles MnO2–NPs, to produce a high-performance electro-
chemical energy storage electrode. The PEDOT/MnO2–NPs 
were prepared by simple thermal treatment and chemical 
vapor phase polymerization (VPP) methods. Despite the 
low conductivity and aggregation of MnO2–NPs, the con-
trol of the loading and distribution of MnO2–NPs in PEDOT 
matrix offer uniform dispersion of nanoparticles into porous 
PEDOT matrix, which enhance the performance of the com-
posite electrode [39]. The conductive PEDOT:PSS matrix 
was also used by Ju et al., with tin selenide SnSe nanosheets 
to achieve high-performance polymer-based thermoelectric 
devices. The subsequent solvent treatment appears a promis-
ing strategy to create the nanocomposites [152]. Other nano-
composites based on Gallium nitride nanoparticles (GaN) 
and poly(3,4-ethylenedioxythiophene)-co-polypyrrole 
(GaN/PEDOT–PPY) were synthesized using supercritical 
ammonia method and by chemical oxidative polymerization 
method. The nanocomposite was used as an electrochemical 
catalyst for the oxidation of an antihelminthic drug meben-
dazole using differential pulse voltammetry [153]. Bismuth 
recognized with a low toxicity and widely used in electro-
analytical as environmentally friendly electrode since the 
first publication of Wang et al., [154]. Bismuth nanoparti-
cles were employed in synthesis of different nanocomposite 
materials for application in different area example power 
generation as thermoelectric material [155, 156] and electro-
analysis as sensor. Polyaniline–bismuth oxide (PANI–Bi2O3) 
nanocomposite was used to fabricate a sensor for the detec-
tion of pramipexole in pharmaceutical formulation. The pre-
pared electrode has lower charge transfer resistance leading 
to higher electrocatalytic activity. A highest concentration 

of PANI–Bi2O3 suspension causing thickness of the hybrid 
film and increasing concentration of surfactant leads to the 
increase of hydrophobicity of surfactant micelles that were 
decreased the performance of the sensor. The LOD and 
LOQ for the pramipexole detection are 1.10 and 3.35 µg/
mL, respectively [157]. Salih et al. have modified carbon 
paste electrode (CPE) with poly(1,8-diaminonaphthalene) 
and bismuth film for detection of lead. The bi-poly1,8-DAN/
CPE was prepared and characterized by cyclic voltammetry 
and electrochemical impedance spectroscopy. It was dem-
onstrated that higher concentration could cause the reduc-
tion of active sites on the surface of electrode. The modi-
fied electrode was applied for the analysis of lead in water 
samples using square wave voltammetry in acidic medium 
[158]. Similarly, Elbasri et al. have fabricated the modi-
fied poly(1,8-Diaminonaphthalene) by nickel ions particles 
(NiPs) on carbon paste electrode (CPE) for electrocatalytic 
oxidation of methanol in alkaline medium for direct metha-
nol fuel cells (DMFCs). The obtained composite was char-
acterized by scanning electron microscopy (SEM), cyclic 
voltammetry (CV), and electrochemical impedance spec-
troscopy (EIS) [159]. Different metallic particles were used 
to develop a sensor for the electroanalysis of ascorbic acid 
(AA). Platinum electrode modified with polyterthiophene 
(P3T) and doped with metallic particles (Cu, Co, Ag, Au, 
and Pd) was fabricated by first the electropolymerization of 
the monomer and then the incubation of the modified elec-
trode in metallic ions solution to form the composite materi-
als. The good sensitivity was obtained with the P3T–Ag film 
towards the target molecule AA, due to the high electron 
conductivity and good stability of the silver nanoparticles. 
The limit of detection was found to be 5.1710−10 mol L−1 
using square wave voltammetry (SWV) [160].

The incorporation of metal nanoparticles with conduct-
ing polymers has led to a significant increase in the perfor-
mance of devices in terms of sensitivity, selectivity, multi-
plexed detection capability, capacitance, and portability. In 
general, nanomaterials have played a key role in chemistry, 
biology, physics, engineering, and medicine. Table 2 shows 
the characteristics and the applications as sensors and fuel 
cells based on various nanostructured conducting polymers 
and nanoparticles.

Challenges and trends

The preparation, electrical characterization, and applications 
of composite layers formed by dispersing carbon on metal-
lic nanostructures in polymer have been described. Indeed, 
the attractive properties of carbon structures such as carbon 
paste, carbon nanotube, carbon nanofibers, and graphene 
make them suitable materials for polymerizations of a num-
ber of monomers. The combination of carbon materials 
with polymers improves the properties of these materials 
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for different purposes (from electrochemical detection to fuel 
cell). From the work detailed in this review, it is clear also 
that the metallic nanoparticles such as gold, platinum, and 
silver combined with conducting polymers have much to 
offer in the different fields. However, to our best knowledge, 
no comparative study covering the electropolymerization of 
conducting polymer and carbon nanomaterial or metallic 
nanoparticles was reported. The fabrication of nanocompos-
ites by chemical mode takes more time in all steps of prepa-
ration than electrochemical mode, either for nanoparticles 
synthesis or for polymerization. It could be take more than 
48 h [165]. Furthermore, it was noted that the nanoparticles 
were generally synthesized by chemical ways which was 
more difficult compared to electrochemical one [166]. In 
addition to the use of many reagents, it requires a great deal 
of time and can spread out over long period [167]. In addi-
tion, all works mentioned that the modified electrode has 
good stability expressed by the responses of the electrodes 
found to be constant for the long term. The percentage of 
nanoparticles in the constitution of nanocomposites varies 
from one case to another. It was estimated to be between 0.1 
and 20% [168–170]. We have seen that the combination of 
conducting polymers and carbon nanomaterials or nanopar-
ticles has led to better properties of these components [46, 
171–173]. Metallic nanoparticles offer unique advantages 
when used for electroanalysis: enhancement of mass trans-
port, catalysis, and high-effective surface area. The carbon 
nanostructures have attracted significant research activity 
due to their great potential application. Therefore, the ques-
tion is: what will be the behavior of the nanocomposites if 
we combine NPs/polymers/CNMs? The formation of multi-
components nanocomposites was expected to improve their 
physical or chemical properties. Moreover, some advanta-
geous properties were resulted by the fusion effects of these 

components including spectral, electronic, magnetic, opti-
cal properties, and specific surface area. Some interesting 
papers have been devoted to the strategies employed for 
the preparation of NPs/polymers/CNMs. As mentioned by 
recent papers, multi-component nanocomposites synthesized 
with the combination of CNMs/CPs and MNPs produce new 
materials with exciting properties such as catalysis, enhance-
ment of mass transport, high-effective surface area, and con-
ductivity. Moreover, various strategies for the preparation 
of nanocomposites have been reported [166, 174–179]. In 
the light of recent works, it remains a challenge to founding 
new approaches to synthesize new nanocomposite materi-
als based on carbon nanoparticles or metallic nanoparticles. 
The idea is to improve the simplicity and efficiency of the 
new composite and extend the application of the composite 
materials in different fields with a low cost.
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