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Abstract

Nanotechnology has revolutionized gene therapy, diagnostics and environmental remediation. Their bulk production, uses
and disposal have posed threat to the environment. With the appearance of these nanoparticles in the environment, their
toxicity assessment is an immediate concern. This review is an attempt to summarize the major techniques used in cytotox-
ity determination. The review also presents a detailed and elaborative discussion on the toxicity imposed by different types
of nanoparticles including carbon nanotubes, gold nanoparticles, silver nanoparticles, quantum dots, fullerenes, aluminium
nanoparticles, zinc nanoparticles, iron nanoparticles, titanium nanoparticles and silica nanoparticles. It discusses the in vitro
and in vivo toxological effects of nanoparticles on bacteria, microalgae, zebrafish, crustacean, fish, rat, mouse, pig, guinea
pig, human cell lines and human. It also discusses toxological effects on organs such as liver, kidney, spleen, sperm, neural
tissues, liver lysosomes, spleen macrophages, glioblastoma cells, hematoma cells and various mammalian cell lines. It
provides information about the effects of nanoparticles on the gene-expression, growth and reproduction of the organisms.
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Abbreviations

CdSe/ZnS  Cadmium selenide/zinc sulphide

CdTe Cadmium telluride

CNTs Carbon nanotubes

DCFDA 2'.7"-Dichlorofluorescein diacetate

DTNB 5,5'-Dithiobis-(2-nitrobenzoic acid)

EPR Electron paramagnetic resonance

HBMVECs Human brain microvascular endothelial cells

HEK Human epidermal keratinocyte

HMSC Human bone marrow derived mesenchymal
stem cells

LD50 Lethal dose 50

LDH Lactate dehydrogenase

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide

MW-CNTs Multi-walled carbon nanotubes

PI Propidium iodide

RNS Reactive nitrogen species
ROS Reactive oxygen species
SCGE Single cell gel electrophoresis assay
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SOD Superoxide dismutase

SW-CNTs  Single-walled carbon nanotubes

TEMP 2,2,6,6-Tetramethylpiperidine

TUNEL TDT-mediated dUTP-biotin nick-end
labelling

WTS-1 Water soluble tetrazolium salts

XTT 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-
2H-tetrazolium-5-carboxanilide

Introduction

Nanoparticles are produced in the size range 1-100 nm [1].
With the advancement in the technology, there has been a
tremendous growth in their applications [2, 3]. Nanoparti-
cles are used in additives for paints, ceramics, foods, paper,
packaging, drug delivery, biosensor and cancer therapy [4].
They are also used as tumour detector [5], paclitaxel [6] and
radiotherapy dose enhancer [7, 8]. They are in demand due
to their small size and greater surface area to volume ratio
[9]. These properties result in higher chemical reactivity and
increased reactive oxygen (ROS) production [10, 11]. Nano-
particles have received much attention due to their toxicity
imposed on the environment during production and disposal
of consumer products [12] (Fig. 1). They impose toxicity by
various processes. Nanoparticles can easily cross the cell
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Fig. 1 Applications of nanopar-
ticles in different occupation
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membranes and interact with intracellular metabolism [13].
ROS formation is one of the mechanisms for nanoparticle tox-
icity [14, 15]. Interaction of nanoparticles with cells induces
pro-oxidant effects leading to ROS generation, mitochondrial
respiration and NADPH-dependent enzyme systems [16—18].
Upon internalization of nanoparticles, phagocytosis induces
the production of reactive oxygen species ROS [17-19].

The reviews published so far on nanoparticle toxicology
provide information about toxicity of engineered nanoparti-
cles to environmental microorganisms [20], titanium oxide
nanoparticle toxicity [21], gold nanoparticle toxicity [21],
risk management of inhaled nanoparticles [22], induced
mitochondrial toxicity of silver nanoparticles [23] and sin-
gle-wall carbon nanotube toxicity [24] and multi-wall carbon
nanotube toxicity [25]. The published reviews are either too
general or very specific (focusing on a single nanoparticle
or toxicological effects on a particular organ) to explain the
toxicity. Second, these reviews are unable to provide a com-
prehensive and detailed information on the toxicity assess-
ment on the higher organisms and cell lines.

This review presents a detailed and elaborative discussion
on the toxicity imposed by the nanoparticles on rat, mouse,
pig, guinea pig, human cell lines and human. The review
also focuses on (1) summarizing the techniques useful in
determining the toxicity of nanoparticles. (2) Determining
the toxic effects of nanoparticles (carbon nanotubes, gold
nanoparticles, silver nanoparticles, aluminium nanoparticles
and quantum dots, etc.) both in vitro and in vivo and (3)
evaluating the effect of nanoparticles on the gene-expres-
sion, growth, behaviour and reproduction of organisms.

Assessment of nanoparticle toxicity
Various methods are available for the toxicity assessment

imposed by nanoparticles on the organisms. Figure 2 pre-
sents the types of nanoparticles, experimental models and

(]
’r @ Springer

toxic effects imposed by nanoparticles. The methods for tox-
icity assessment can be categorized as in vitro and in vivo.

In vitro assessment methods

In vitro nanoparticle toxicity assessment is one of the impor-
tant methods. The advantages include lower cost, faster and
minimum ethical concerns. Assessment can be subdivided
into proliferation assay, apoptosis assay, necrosis assay, oxi-
dative stress assay and DNA damage assays.

Proliferation assays

This assay is used to measure the cellular metabolism by
assessment of metabolically active cells. 3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is
the most commonly used tetrazolium salt for in vitro tox-
icity assessment of nanoparticles [26]. The technique is
advantageous due to quick yields, reproducible results and
minimum manipulation of the model cells [27]. The assay
is based on the measurement of tetrazolium salt and it can
sometimes lead to altered measurement due to changes in
the culture media additives [28], media pH [29], ascorbate
[30] and cholesterol [31]. The MTT assay also produces
formazan; therefore, the assays such as such XTT or WST-1
which produce soluble dyes are preferred. [*H] thymidine
incorporation is a method used for assessment of cellular
proliferation, but this method is avoided due to toxicity and
relatively high cost [32]. Alamar Blue is used to measure the
cellular redox potential and advantageous as compared to
MTT assay due to simpler sample preparation [33]. But the
success of the Alamar Blue is hindered due to unavailability
of the biochemical mechanisms of the assay and reaction of
non-porous silicon with Alamar Blue in the absence of the
cells [34]. Another assay is known as cologenic assay where
the proliferating cells are counted by visual inspection after
nanoparticle exposure is also used [35].
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Fig.2 Nanoparticles types, experimental models used for the studies and toxic effects ofnanoparticles

Apoptosis assay

Apoptosis is one of the major markers observed in the
in vitro assessment of nanoparticle toxicity. Generation of
excessive free radical is considered the cause of apoptosis
and DNA damage [36, 37]. Evidence suggested that apop-
tosis and DNA damage can be caused by oxidative stress in
cell culture systems [36]. Many studies have reported the
apoptosis induced by nanoparticles. In vitro studies indi-
cated that silver nanoparticles caused apoptosis in mouse
embryonic stem cells [38]. In another investigation, the
release of apoptosis markers viz. caspase-3 and caspase-9
were examined on the treatment of larval tissues of Dros-
ophila melanogaster with silver nanoparticles at concen-
trations of 50 and 100 pg/ml for 24 and 48 h. The results
suggested the involvement of silver nanoparticles in the
apoptotic pathway of D. melanogaster [39]. Up-regulation
of p38 protein expression was also demonstrated in the expo-
sure of silver nanoparticles in D. melanogaster in time- and
dose-dependent manner. Up-regulation of genes and exten-
sive DNA insult is responsible for inducing cell death and a
cascade of apoptosis pathway [40, 41].

There are a number of methods for assessment of apopto-
sis. These include Annexin-V assay [42], Comet assay [43],
TdT-mediated dUTP-biotin nick end labelling (TUNEL)
assay [44] and inspection of morphological changes [45].
The DNA laddering technique is a technique which is used
to visualize the endonuclease cleavage products of apoptosis

[46]. An irregular reduction in the size of cells and by DNA
fragmentation confirms the induction of apoptosis. Agarose
gel electrophoresis can easily discriminate between apop-
totic and necrotic modes of cell death [47, 48]. Genomic
fragments obtained during electrophoresis of irregular sizes
are typical of necrotic cells and a ladder-like electrophoretic
pattern indicates apoptotic internucleosomal DNA frag-
mentation [49]. Annexin-V and propidium iodide (PI) are
typical cell death markers used in toxicity assessment. The
assay works on the principle that when Annexin-V bounds
to phosphatidylserine, it shows increased fluorescence and
hence indicates the externalization of the plasma membrane.
This externalization of the plasma membrane is induced by
activation of the caspase-dependent pathway. PI is an imper-
meable dye which stains the nucleus only when the integrity
of the cell membrane is lost, which can be related to the late
stage of apoptosis [21, 50]. When human HepG2 hepatoma
cells were treated with silica nanoparticles, morphologi-
cal changes in the nucleus and induction of apoptosis was
observed [51]. The investigation demonstrated the induction
of apoptosis measured by Annexin V/PI in HeLa cell lines
treated with gold nanoparticle [52]. Single cell gel electro-
phoresis assay (SCGE), or comet assay, is a sensitive tool
for the detection of the mutagenic potential of a test mate-
rial [53]. It is used to detect single- and double-stranded
DNA breaks in individual cells, both in vitro and in vivo
[54, 55]. Tt is also used to quantify oxidative DNA damage,
alkali-labile sites, DNA-DNA or DNA-protein cross-links

* @ Springer



246

International Nano Letters (2017) 7:243-256

and abasic sites [56-58]. The assay is based on the principle
that the damaged DNA fragments will migrate out of the
cell when an electric current is applied, whereas the undam-
aged DNA will remain in the cell nucleus. In assay, dam-
aged DNA resemble the tail and the intact DNA resemble
the head. The extent of DNA damage is correlated with the
size and shape of the tail and the distribution of DNA within
the comet [59-61]. In the procedure, the cells are lysed to
remove cellular protein and the damaged DNA is allowed to
migrate away from the nucleus by undergoing electrophore-
sis. DNA-specific fluorescent dye is used to stain the sam-
ples. The gel is then analysed for the amount of fluorescence
in the head and tail and the tail length [62—64]. Comet assay
was used to assess the toxicity of zinc oxide nanoparticles at
25 mg Zn/L on D. tertiolecta which resulted in 55% nuclei
damage [65]. In another investigation, comet assay was used
to measure the toxicity imposed by SiO, nanoparticles on D.
tertiolecta at 125 mg/L, which resulted in increasing geno-
toxic effects after 72 h [66]. In the similar study on D. fer-
tiolecta, using TiO, nanoparticles for 24 h resulted in more
than 70% damage to the nuclei after 72 h [66].

TUNEL assay is one of the most widely used methods for
detecting DNA damage in situ TUNEL staining [67]. IT was
initially described as a method for staining cells that have
undergone apoptosis or programmed cell death and internu-
cleosomal DNA fragmentation [47, 68—70]. TUNEL assay
is based on the ability of the enzyme terminal deoxynucle-
otidyl transferase to incorporate labelled dUTP into free
3'-hydroxyl termini generated by the fragmentation of DNA
[67]. IT is not limited to the detection of apoptotic cells
only. It can be used to detect DNA damage associated with
non-apoptotic events including necrotic cell death which is
induced by exposure to toxic compounds [71]. TUNEL assay
was reported to stain cells undergoing active DNA repair
[72]. The pancreatic islet function of Goto Kakizaki rats was
estimated by TUNEL assay of pancreatic p-cells after treat-
ment with insulin-loaded selenium nanoparticles (25 IU/kg)
daily for 2 weeks. In TUNEL assay, apoptotic cells declined
to 2.3 % from initial 17.6 % in the treatment [73].

Necrosis assay

Necrosis is measured by the integrity of the membrane and
it is commonly used to determine the viability of the cells.
Membrane integrity is measured by uptake of the dye such
as Neutral Red [74] and Trypan Blue [75]. The need for
a reliable, rapid, inexpensive and reproducible quantitative
in vitro assay for screening of nanoparticles is generally
acknowledged. Neutral red (2-amino-3 methyl-7-dimethyl-
aminophenazoniumchloride) is a weakly cationic supravital
dye which at slightly acid pH yields a deep red colour. The
Neutral red readily diffuses through the plasma membrane.
It concentrates in the lysosomes and binds by electrostatic
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hydrophobic bonds with anionic sites in the lysosomal
matrix [76, 77]. Alterations of the cell surface lead to lys-
osomal fragility [76]. Such changes brought about by the
action of xenobiotics or nanoparticles [77, 78] can result
in a decreased uptake and binding of Neutral red. It is thus
possible to distinguish between viable and dead cells [79,
80]. In a study, endosome-lysosome system stability which
was measured by neutral red assay decreased after exposure
to the silver nanoparticle (30%) [81]. Another method is
called Trypan blue exclusion test. The dye trypan blue enters
dead cells and is excluded from living cells [82]. A trypan
blue exclusion assay was performed for the evaluation of
cell membrane stability. The medium was then replaced with
zinc nanoparticles at 12, 61, 123, 184, 369 and 737 pM. The
results demonstrated that Zn compounds exerted consider-
able cytotoxicity at 369 pM and higher [83].

Oxidative stress assay

Exposure of nanoparticles leads to the production of reac-
tive ROS and reactive nitrogen species (RNS) [84]. The
method for detection of ROS and RNS involves the reaction
of 2,2,6,6-tetramethylpiperidine (TEMP) with O, stable
radical which can be detected using X-band electron para-
magnetic resonance (EPR) [85]. The application of these
methods is hindered due to their high cost. Fluorescent probe
molecules have emerged as an alternative and cost-effective
approach [86]. But there are limitations with fluorescent
probes as they are inefficient due to their ability to react
with a variety of reactive species. This property leads to
misleading results sometimes [87]. The above problems can
be solved by the use of 2',7'-dichlorofluorescein diacetate
(DCFDA), a non-fluorescent probe. DCFDA is reactive
to HO-, RO-, ROO- and H,0, in the presence of cellular
peroxidases [88]. Oxidative stress can also be assessed by
measuring lipid peroxidation C11-BIODIPY assay and TBA
assay for malondialdehyde [89]. Availability of numerous
other assays makes the assessment much convenient. These
assays include lipid hydro peroxide’s measurement using
Amplex Red assay, antioxidant depletion measurement by
5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and superoxide
dismutase (SOD) activity by Nitro blue tetrazolium assay
[90].

In vivo toxicity assessment methods

The in vivo toxicity assessment is normally performed on
animal models such as mice and rat. The assessment meth-
ods for in vivo toxicity include bio distribution, clearance,
haematology, serum chemistry and histopathology. Biodis-
tribution studies examine the localization route of nanopar-
ticles to the tissue or organ. Nanoparticles are detected in the
killed or live animals through radiolabels [91]. Clearance of
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nanoparticles is performed by the examination of excretion
and metabolism of nanoparticles at various time points after
exposure [92]. Another method for in vivo toxicity assess-
ment is the examination of changes in the serum chemistry
and cell type after exposure of nanoparticles [93]. Histopa-
thology of the cell, tissue or organ after exposure is used to
determine the toxicity level caused by a nanoparticle [94].
Histopathology examination has been used to nanoparti-
cles’ exposed tissues such as lung, eyes, brain, liver, kid-
neys, heart and spleen [93, 95]. The advancement of toxic-
ity assessment includes use of micro-electrochemistry and
microfluidics [96].

In-vitro toxicity of nanoparticles
Cell viability and lethality

Cell viability and lethality are the two parameters which are
used to measure the toxicity caused by the nanoparticles.
Among the various nanoparticles, carbon nanoparticles
(CNTs) are used most frequently for assessment of viabil-
ity and lethality of cells. They are widely used in chemical,
industrial and biomedical applications due to their unique
properties [97, 98]. They are synthesized as single-walled
carbon nanotubes (SW-CNTs) and multi-walled carbon
nanotubes (MW-CNTs) [99]. The anti-microbial properties
of CNTs have been observed by studies in various bacteria
due to the mechanical damage caused by the nanotubes
[100-102]. A recent study has indicated that functional-
ized CNTs affect soil bacterial diversity [25]. The tox-
icity studies on a micro crustacean (Daphnia magna),
freshwater microalgae (Raphidocelis subcapitata and
Chlorella vulgaris) and a fish (Oryzias latipes) revealed
inhibited the growth of the algae C. vulgaris and R. sub-
capitata with effective SW-CNT concentration 30.96 mg/
mL and 29.99 m/L, respectively [103]. The nanoparticles
synthesized in the form of iron oxide were also reported
toxic in murine macrophage cells, human macrophages,
human hepatocellular carcinoma cells and rat mesenchy-
mal stem cells. Iron oxide nanoparticles reported toxicity
at 25-200 pg/mL for 2 h exposure on murine macrophage
cells. The study observed effects include the decrease in
cell viability [104]. Another study reported a reduction
in the cell viability when murine macrophage cells were
treated with 0.1 mg/mL iron oxide nanoparticles for 7 days
[105]. Another toxicity study which was performed on rat
mesenchymal stem cells at 0.1 mg/mL for 2 days reported
a decrease in cell viability [106]. Silica nanoparticles were
also reported for toxicity to human keratinocytes. In a
study, the toxicity of the silica nanoparticles at 30-300 pg/
mL was evaluated using CHK (human keratinocytes). The
results suggested a decrease in cell viability [107].

Effects on cell lines

The toxicity of nanoparticles was evaluated on various cell
lines. The effect of SW-CNTs was observed by various
researchers on human cell lines, including human HEL 293
cells, HEK cells, A549 cells, human macrophage cells and
human epithelial-like Hela cells [108—110]. In a study lung
fibroblast cells were treated with CNTs to evaluate the toxic-
ity [53]. In another study when A549 cells were exposed to
SW-CNTs at 250-500 pg/ml for 72 h, it resulted in oxida-
tive response and membrane damage, induced by inflamma-
tory response [111]. Another study reported suppression of
inflammatory mediators including IL-6, IL-8 and MCP-1
in vitro [112]. The effects of multi-wall carbon nanotube
were also evaluated on human epidermal keratinocytes [74].
It was suggested that toxicity induced by multi-wall carbon
nanotubes is mediated by pro-inflammatory effects which
are facilitated by NF-kB and ROS [113]. In vitro studies
reported various toxicological effects of MW-CNTs includ-
ing oxidative stress, DNA damage and apoptosis in mamma-
lian cells lines. Other effects include VE-cadherin distribu-
tion and actin filament integrity in human aortic endothelial
cells [114-118].

Gold nanoparticles (AuNPs) in MRC-5 human lung fibro-
blasts induced autophagy with oxidative stress [119]. In a
study, the cellular motility was used to demonstrate the cyto-
toxicity of metal and semiconductor nanoparticles on ani-
mal cells. The study utilizes the potential of electrical cell-
substrate impedance analysis as a highly suitable method
to quantify the in vitro cytotoxicity of gold nanorods and
quantum dots. The method was validated by fluorescence
and dark field microscopy [120]. Toxicity of starch-coated
silver nanoparticles was studied on human glioblastoma cells
(U251) and human lung fibroblast cells (IMR-90). The study
resulted in dose-dependent reduction in ATP content and
DNA damage. The study demonstrated that the DNA dam-
age is due to silver nanoparticle deposition and interaction
with DNA followed by cell cycle arrest in G,/M phase [121].
Cytotoxic study on fibroblast cells NIH3T3 showed that sil-
ver nanoparticles induced mitochondria-dependent apoptosis
associated with JNK activation and reactive oxygen species
[122]. Toxicity of silver nanoparticles was also evaluated
on human hematoma cell line HepG?2 using micronucleus
test, viability assay and DNA microarray analysis [123]. A
study reported the toxicity of silver nanoparticles in HeLa
cells. Exposure resulted in upregulation of ho-1, mt-2A and
oxidative stress genes [124]. The results of three different
types of silver nanoparticle treatment on E. coli suggested
compromised replication fidelity of the risk gene [125].

Long-term exposure of CdTe quantum dots was observed
on the live cells. The study was focused on assessment of
intracellular Cd?* concentration in human breast cancer
cells (MCF-7) which were treated with cadmium telluride
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(CdTe), cadmium selenide/zinc sulphide (CdSe/ZnS) nano-
particles capped with cysteamine, mercaptopropionic acid
and N-acetyl cysteine conjugated to cysteamine. The study
demonstrated that CdTe quantum dots were cytotoxic with
significant lysosomal damage and production of ROS [126].
The effects of different surface coatings on quantum dots
were observed with relation to the toxicity on the human
epidermal keratinocytes (HEKSs). The results suggested that
carboxylic acid-coated quantum dots enhanced the release of
IL-1p, IL-6 and IL-8. It was determined that surface coating
is the primary determinant of immunotoxicity and cytotox-
icity in HEKs [127]. The cytotoxicity of thiols stabilized
CdTe, CdTe/CdS/ZnS core—shell-shell structured quantum
dots and CdTe/CdS core shell structure was observed on
cell lines including HEK293T and K562. The results dem-
onstrated that CdTe QDs was highly toxic for cells [128].
A hippocampal neuronal culture model was used for the
neurotoxicity investigation of cadmium selenium quantum
dots. The study focused on voltage-gated sodium chan-
nel and cytoplasmic calcium level. The results evidenced
induced neuron death and elevated cytoplasmic calcium lev-
els [129]. The exposure of CdSe quantum dot on enterocyte-
like Caco-2 cells as a model for intestine epithelium was
investigated. Results suggested that acid treatment of PEG-
coated quantum dots increased the toxicity [130]. Another
study investigated the in vitro and in vivo toxicity of CdTe
nanoparticles on human hepatoma HepG2 cells [131].

The aluminium nanoparticles in the size range 1-10 pM
were used for 24 h on human brain microvascular endothe-
lial cells (HBMVECsS). The study demonstrated that treat-
ment resulted in the decrease in mitochondrial function, cell
viability and an increase in oxidative stress [132]. Mamma-
lian cells were treated with 10-400 pg/mL aluminium nano-
particles to examine the toxic effects. The observed results
suggested that no significant toxicity was observed on cell
viability in the study [133]. In another study cell viability
was determined with respect to the interaction of human
bone marrow derived mesenchymal stem cells (HMSC)
with aluminium nanoparticles in the range 25-40 pg/mL.
The results from the study indicated a decrease in the cell
viability [134]. Another study investigated the effect of
increasing concentration of aluminium nanoparticles on rat
blood cells at 500-2000 mg/kg for 72 h. It was observed
from the study that the toxicity was dose dependent [135].
A study conducted on mammalian cell lines suggested that
at 0-5000 pg/mL, aluminium nanoparticles were responsible
for DNA damage after treatment for 2 h [136].

Mechanistic studies
Mechanistic studies were performed to assess the effects

of nanoparticles in vitro. In vitro studies have revealed
CNTs disrupt the membrane potential, membrane integrity,

a
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metabolic activity and cellular reproduction [137, 138]. Gold
nanoparticles are responsible for mitochondrial damage,
affecting cellular micro mobility, autophagy and oxidative
stress [119, 139]. In vitro studies on silver nanoparticles’
toxicity have suggested that interference with DNA repli-
cation, fidelity, apoptosis, oxidative stress, cytotoxicity,
chromosome instability, intracellular calcium transients,
JNK activation and cell cycle arrest in mammalian cells
[121-125, 140, 141]. Fullerenes are responsible for DNA
damage and oxidative stress in mammalian cells lines
[142-144]. In a study on FE1-Muta™ mouse lung, epithelial
cells were investigated to observe the effects of Cy, fuller-
enes and SW-CNTs for cytotoxicity, genotoxicity and ROS
production [142].

In-vivo toxicity of nanoparticles

Dose and LD50

The toxicity of nanoparticles is determined by the expo-
sure conditions, exposure duration and dose. In a study,
3T3 cells were treated with 1-10 mm size SWCNTs with
an exposure time of 1 h. The treatment resulted in 20%
viability [145]. In another study immortalized epider-
mal keratinocytes with 80% confluency were treated with
SWCNTs in concentration range 0.06-0.24 mg/mL for 2,
4, 6, and 8 h. The treatment resulted in decreased viability
after 4 h and ~ 65% viability on exposure to nanoparti-
cles at 0.24 mg/mL [146]. When human embryonic kid-
ney cells were treated with SWCNTs at 0.7812-200 pg/
mL for 24-120 h; then it was observed that cytotoxicity
was time and dose-dependent with G1 cell cycle arrest
in 43.5% cells after day 1 [147]. But when mouse peri-
toneal macrophage-like cells were treated with SWCNTs
in the range 0-7.3 pug/mL for 4, 8, 12 and 18 h, the cells
ingested the nanoparticles without toxic effects [148].
When guinea pig alveolar macrophages were treated with
SWCNTs at 1.41-226 ug/cm? for 3 h, the study resulted
in cytotoxicity at 0.38 pg/cm? and necrosis at 3.06 ug/cm?
[149]. It was observed that the cytotoxicity of SWCNTs
was dose dependent and 60—80% reduction in cell number
was observed when rat alveolar epithelial cells, NR8383
and human alveolar epithelial cells, A549 were treated at
5-100 pg/mL for 24-96 h [150]. Strongest adverse effect
of SWCNTs was observed when HEKs were treated at
0.8-100 pg/mL for 24—120 h. The study resulted in 79, 50
and 31% viability at 100 pg/mL when treated for 1, 3 and
5 days, respectively [151]. The toxicity of MWCNTSs was
also evaluated on different cell lines. In a study when HEK
cells were treated with MWCNTSs with 80% confluency
at 0.1-0.4 mg/mL for 1, 4, 8, 12, 24 and 48 h, the study
resulted in ~ 73% viability at 0.4 mg/mL. When purified
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MWCNTs were used to examine the toxicity on human
skin fibroblasts with 70% confluency at 0.06-0.6 mg/mL
for 24 and 48 h, it was observed that the toxicity was dose
dependent [152].

Gold nanoparticles’ exposure at 150 pm for 3 h on
HeLa and 3T3/NIH cells resulted in cell viability reduc-
tion by 20 and 5%, respectively [153]. In another study,
gold nanoparticles were exposed to macrophage cells with
particle size range 10—100 um for 24—72 h. The study dem-
onstrated that the 100 pm nanoparticles decreased the cell
viability to 85% in 72 h [154]. In a study on human dermal
fibroblasts, cells were used to assess the toxicity imposed
by gold nanoparticles at 0—0.8 mg/mL for 2—6 days. The
results from the study demonstrated dose-dependent
decrease in the cell area and density [155]. Gold Nano
shell was also used to study the cytotoxic effects. A study
conducted on Vero cells at 0.001-200 pg/mL for 6 and
24 h resulted in decreased cell viability on exposure to
gold Nano shells [156].

Fe;0, nanoparticles’ exposure to human fibroblast
cells at 0-1000 pg/mL for 24 h resulted in 25-50% reduc-
tion in cell viability [157]. In another study conducted on
mouse macrophages, Fe;O, nanoparticles were exposed
at 0.2 mg/mL for 1 and 4 days. The study demonstrated
that cytotoxicity was dose dependent [158]. When human
breast carcinoma SK-BR-3 cells were exposed to Fe;0,
nanoparticles at 10—400 nm for 1-48 h, the study resulted
in 91% viability [159].

Treatment of Hela cells with CdSe quantum dots with
sizes 1, 10 and 100 nm for 2 h resulted in survival of 90%
cells [160]. In another experiment human lymphoblastoid
cells were treated with CdSe quantum dots at 0.2 um size
for 12 h; the study resulted in decreased cell activity [161].
When three cell lines viz. primary hepatocytes, Hela
cells and Vero cells, were treated with 0—4 mg/mL CdSe
quantum dots for 24 h, the study resulted in low damage
at 0.1 mg/mL, while increased damage was observed at
0.2 mg/mL. HepG?2 cells’ and Wister mice cells’ treat-
ment with CdSe quantum dots at 10-400 ppm for 12-72 h
resulted in more than 80% cell viability at up to 400 ppm
[162]. CdTe quantum dots were also examined to observe
the cytotoxic effects on the cells. Treatment of rat pheo-
chromocytoma cells with 0.01-100 pg/mL CdTe quantum
dots for 24 h resulted in a decrease in metabolic activity
by 50% [163]. Similarly, treatment of human hepatoma
HepG?2 cells with CdTe quantum dots at 0-107> M for
24 h resulted in ~ 50% reduced viability at 1075 M [164].

Effects on organ systems
In in vivo models, the effect of CNTs appears to be related

to their method of administration. Various research groups
have found that exposure of nanoparticles to the respiratory

system could result in asthma, bronchitis, emphysema and
lung cancer. Entry of nanoparticles through the gastrointes-
tinal tract could lead to Crohn’s disease and colon cancer.
Furthermore, it has been discovered that the nanoparticles’
exposure to the circulatory system may result in blood clot-
ting and heart disease (reviewed in [99, 165]). In vivo toxic-
ity of carbon nanotubes toward animals was evaluated in a
few studies which focused on organisms including guinea
pig, mouse and rat. The effect of soot-containing carbon
nanotubes containing Co/Ni was observed on guinea pig
[166]. Effect of single-walled carbon nanotubes containing
metals was evaluated in mouse and rat by various researchers
[167—-170]. In one of the above studies, acute lung toxicity
was evaluated for intratracheally instilled SW-CNTs in rats
[170]. In this study cell injury, multifocal granulomas and
transient inflammatory reactions were observed. Another
study reported lymphocyte and macrophage influx, early
neutrophil accumulation, elevation of pro-inflammatory
cytokines and fibrogenic transforming growth factor [169].
Effect of MW-CNTs was also evaluated in a study conducted
on rat [171]. In the study, MW-CNTs were administrated
intratracheally in rats. The study evaluated the inflamma-
tion, lung persistence and fibrotic reactions both histologi-
cally and biochemically. Pulmonary lesions were observed
in the bronchial lumen which was characterized by collagen
rich granulomas. Stimulation for the production of TNF-a
was also observed. Toxicity of carbon nanotubes was also
observed on an aquatic organism such as rainbow trout
[172]. In the study, rainbow trout were treated with SW-
CNTs at 0.1-0.5 mg/L for 10 days. The study recognized
the SW-CNTs as a respiratory toxicant, responsible for neu-
rotoxicity and cell cycle defects. MW-CNTs are also known
for increased micronuclei frequency and chromosomal aber-
rations, promotion of allergic response in mice, activation of
cyclooxygenase enzymes through suppression of systemic
immune function in spleen and altered gene expression in the
liver [173—177]. Other effects of MW-CNTs include apop-
tosis, phenotypic defects, toxicity in bacteria and formation
of abnormal spinal cords in zebrafish embryo [178-180].
In vivo exposure of gold nanoparticles reported apopto-
sis and acute inflammation in the liver, bioaccumulation in
organs and penetration ability in sperm head and tail regions
[181-183]. In a study 13 nm sized PEG coated gold nano-
particles were used to observe the toxicity in the liver. It was
observed that the particles accumulated in liver and spleen
up to 7 days after injection. These nanoparticles induced
apoptosis and inflammation in the liver. The study also dem-
onstrated the presence of PEG-coated gold nanoparticles in
spleen macrophages and lysosome of liver [181]. In vivo
studies have reported the astrocyte swelling, blood—brain
barrier destruction, oxidative stress induced by free radicals,
alteration of gene expression and neuronal degeneration on
exposure to silver nanoparticles [184—186]. The distribution
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and accumulation of silver nanoparticles were investigated
in rats by subcutaneous injection. The results indicated that
particles were distributed in liver, spleen, kidney, brain and
lung [186]. The ability to form oedema and permeability to
blood-brain barrier was investigated on rats by intraperi-
toneal, intracerebral and intravenous administration. The
results suggested that nanoparticles were able to induce
oedema formation in the brain by influencing blood brain
barrier in vivo [185]. A study utilized silver nanoparticles
(25 nm) to evaluate its effects on the gene expression in the
different regions of the mouse brain. The study suggested
that the silver nanoparticles were able to produce neurotox-
icity by the generation of free radicals [184]. The results
demonstrated uptake of silver nanoparticles in liver, gills
and kidney. The study also evidenced induced expression
of cypla2 in the gills suggesting an increase in oxidative
metabolism [187].

It was observed from the in vitro studies that quantum
dots are able to cross the placental barrier and reached mice
pups in pregnant mouse. They also affect mouse oocyte
development and were able to penetrate the UV-radiation
and compromise skin barrier [188—190]. Titanium oxide-
containing sunscreen was used on the human skin to evalu-
ate its toxicity [191]. The results revealed that nanoparticles
penetrated the open part of the hair follicles. The penetra-
tion of the nanoparticles was reported in a study where
the sunscreen was applied to relatively hairy skin [192].
Previous studies reported pulmonary toxicity where the
silica nanoparticles’ administration was intra-tracheal. The
results from the study evidenced acute pulmonary inflam-
mation and neutrophil infiltration to the lung tissues in a
dose-dependent manner [193]. Similar studies using silica
nanoparticles reported induction of anti-inflammatory medi-
ators and reversibility of fibrotic changes [194, 195]. A few
studies in lung tissues suspected translocation and diffusion
of silica nanoparticles away from the lung tissue through
systematic circulation and deposition in extra pulmonary
organs [196—198].

Mechanistic studies

In vivo, mechanistic studies were performed to assess the
toxicity caused by nanoparticles. Silver nanoparticles are
also known for genotoxicity and cytotoxicity in fish includ-
ing accumulation in gill tissues and lysosomal destabili-
zation in adult oysters. They are also known for adverse
effects on oyster embryonic development, oxidative stress
and expression of p53 protein in zebrafish [187, 199-202].
In another study conducted on zebrafish, it was observed
that silver nanoparticles caused induction of apoptosis
and oxidative stress in the liver. After nanoparticles’ treat-
ment, there was upregulation of the p53-related pro-apop-
totic genes Noxa, Bax and p21 [200]. Oyster embryo was
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used to examine the toxic effects of silver nanoparticles on
embryonic development. The study evidenced a significant
increase in metallothionein gene expression in embryos
[201]. Another study demonstrated the genotoxicity and
cytotoxicity of silver nanoparticles on fish cells. The results
evidenced the induced aneuploidy and chromosomal aberra-
tions after treatment. The study demonstrated that nanopar-
ticles are genotoxic and cytotoxic to fish cells [202]. In D.
melanogaster, they are known as oxidative stress, heat shock
stress, upregulation of p53 proteins [39]. In Caenorhabditis
elegans, they are known for oxidative stress and a decrease
in reproduction potential [203].

Cytotoxicity of quantum dots was also determined in
another study where cadmium sulphate CdS quantum dots
were synthesized. The study revealed that CdS quantum dots
are more toxic as compared to microsized CdS and they
elevate ROS production by 20-30%. The study proposed that
CdS quantum dots’ cytotoxicity is mediated by intracellu-
lar ROS production, cadmium ions (Cd*) release and GSH
depletion [204]. Quantum dots are responsible for photo-
toxicity in Daphnia magna under UV-B light [205]. In vivo
studies suggested that fullerenes are responsible for elevated
gene expression of MHC class II molecules, increased pro-
inflammatory cytokines and increased T cell distribution in
lungs [142, 206-210]. Oxidative damage in the liver, colon
mucosa and lung was observed in the study conducted on rat
by oral exposure of Cy, fullerenes and SW-CNTs. Doses of
SW-CNTs increased the levels of 8-0xodG in lung and liver.
Cyp fullerenes administration increased the hepatic 8-oxodG
level and high dose generated 8-0xodG in the lung [206]. In
oysters they are known for affecting oyster embryonic devel-
opment, cellular damage in the alimentary canal in Daphnia
magna, growth inhibition in freshwater fish Carassius aura-
tus, increase in mortality rates in gestating daphnids, nitric
oxide production in Mytilus hemocytes [211-215].

The toxicity of zinc nanoparticles has been reported on
human cervix carcinoma cell line (HEp-2), human hepato-
cyte HEK 293 cell line and human bronchial epithelial cells.
Zinc nanoparticles in the range 10—100 pg/mL were used for
24-48 h on HEp-2 cells. The observed results from the study
demonstrated that the zinc oxide nanoparticles were toxic for
the cells causing DNA damage and reduction in cell viability
[216]. Another study focused on the assessment of in vivo
toxicity of zinc nanoparticles at 14-20 pg/mL for 12 h to
determine the effects of treatment on cell viability, DNA
damage, ROS production and apoptosis [217]. When HEK
293 cell line was treated with 0—100 pg/mL zinc oxide nano-
particles for 24 h, it was observed that there was a reduction
in cell viability. Results also demonstrated DNA damage,
oxidative stress and mitochondrial damage [218]. Simi-
larly, when human bronchial epithelial cells were treated
with zinc oxide at 100 pg/mL, the observed effects include
the release of LDH, decrease in cell viability and oxidative
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stress [219]. The toxicity of titanium nanoparticles affects
differentiation, cell proliferation, apoptosis and mobility
[220, 221]. The toxicity of the titanium oxide nanoparticle
was observed when keratinocyte cell line (HaCaT), human
dermal fibroblasts and human immortalized sebaceous gland
cell lines (SZ95) were used. The cytotoxicity affected cellu-
lar functions including differentiation, cell proliferation and
mobility which resulted in apoptosis [220].Upregulation of
fibrogenic mediators including IL-4, IL-10 and IL-13 was
also observed contributing to fibrotic changes [195].
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