Skip to main content

Advertisement

Log in

Application of Box–Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F.H. Froes, D. Eylon, Powder metallurgy of titanium alloys. Int. Mater. Rev. 35, 162 (1990)

    Article  Google Scholar 

  2. C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys. J. Miner. Met. Mater. Soc. 60, 46–49 (2008)

    Article  Google Scholar 

  3. M.T. Mohammed, Z.A. Khan, A.N. Siddiquee, Beta titanium alloys: the lowest elastic modulus for biomedical applications—a review. Int. J. Chem. Nucl. Met. Mater. Eng. 8(8), 752–757 (2014)

    Google Scholar 

  4. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Development of low rigidity β-type titanium alloy for biomedical applications. Mater. Trans. JIM 43(12), 2970–2977 (2002)

    Article  Google Scholar 

  5. M. Greger, M. Cerny, L. Kander, J. Kliber, Structure and properties of titanium implants. Metall 48(4), 249–252 (2009)

    Google Scholar 

  6. S. Zherebtsov, G. Salishchev, R. Galeyev, K. Maekawa, Mechanical properties of Ti–6Al–4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. Mater. Trans. JIM 49(9), 2020–2025 (2005)

    Article  Google Scholar 

  7. T. Threrujirapapong, K. Kondoh, H. Imai, J. Umeda, B. Fugetsu, Mechanical properties of titanium matrix composite reinforced with low cost carbon black via powder metallurgy processing. Mater. Trans. JIM 50(12), 2757–2762 (2009)

    Article  Google Scholar 

  8. C. Santulli, F. Billi, Normal and off-axis compression tests of biocompatible titanium dental implants monitored by acoustic emission. J. Mater. Sci. Lett. 21, 727–730 (2002)

    Article  Google Scholar 

  9. R.O. Ritchie, D.L. Davidson, B.L. Boyce, J.P. Campbell, O. Roder, High-cycle fatigue of Ti–6Al–4V. Fatigue Fract. Eng. Mater. Struct. 22, 621–631 (1999)

    Article  Google Scholar 

  10. R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, R.O. Ritchie, Influence of microstructure on high-cycle fatigue of Ti–6Al–4V: bimodal versus lamellar structures. Matall. Mater. Trans. A 33A, 899–918 (2002)

    Article  Google Scholar 

  11. C.G. Nava-Dino, C. Lopez-Melendez, R.G. Bautista-Margulis, M.A. Neri-Flores, J.G. Chacon-Nava, S.D. de la Torre, J.G. Gonzalez-Rodriguez, A. Martinez-Villafane, Corrosion behaviour of Ti–6Al–4V alloys. Int. J. Electrochem. Sci. 7, 2389–2402 (2012)

    Google Scholar 

  12. W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, K. Akhtar, Cold compaction study of Armstrong process Ti–6Al–4V powders. Powder Technol. 214, 94–99 (2011)

    Article  Google Scholar 

  13. W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, K. Akhtar, The investigation of die-pressing and sintering behaviour of ITP CP-Ti and Ti–6Al–4V powders. J. Alloy. Compd. 541, 440–447 (2012)

    Article  Google Scholar 

  14. B. Behrens, E. Gastan, N. Vahed, Application of tool vibration in die-pressing of Ti-powder. Prod. Eng. Res. Dev. 4, 545–551 (2010)

    Article  Google Scholar 

  15. H. Choe, S.M. Abkowitz, S. Abkowitz, D.C. Dunand, Effect of tungsten additions on the mechanical properties of Ti–6Al–4V. Mater. Sci. Eng. A 396, 99–106 (2005)

    Article  Google Scholar 

  16. H. Choe, S. Abkowitz, S.M. Abkowitz, Influence of processing on the mechanical properties of Ti–6Al–4V-based composites reinforced with 7.5 mass% TiC and 7.5 mass% W. Mater. Trans. JIM 49(9), 2153–2158 (2008)

    Article  Google Scholar 

  17. A. Afrin, A.B. Sulong, N. Muhamad, J. Syarif, M.I. Ramli, Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater. Des. 55, 165–175 (2014)

    Google Scholar 

  18. M. Ghorbani, A. Afshar, N. Ehsani, M.R. Saeri, C.C. Sorrell, Interface characterization of plasma sprayed hydroxyapatite coat on Ti–6Al–4V. Int. J. Eng. Trans. B 15(2), 173–182 (2002)

    Google Scholar 

  19. B. Isik, A. Kentli, The prediction of surface temperaturein drilling Ti6Al4V. Arch. Met. Mater. 59(2), 467–471 (2014). doi:10.2478/amm-2014-0077

    Google Scholar 

  20. E.A. Rahim, S. Sharif, Z.A. Ahmad, A.S. Mohruni, I.A. Syed, Machinability investigation when drilling titanium alloys. in International Conference on Leading Edge Manufacturing in 21st Century, Nagoya, Japan (2005)

  21. P.K. Shetty, R. Shetty, D. Shetty, F. Rehaman, T.K. Jose, Machinability study on dry drilling of titanium alloy Ti–6Al–4V using L9 orthogonal array. in International Conference on Advances in Manufacturing and Materials Engineering (AMME2014), Procedia Materials Science, vol. 5, pp. 2605–2614 (2014)

  22. A. Kumar, V. Kumar, J. Kumar, Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. Int. J. Adv. Manuf. Technol. 68, 2645–2668 (2013)

    Article  Google Scholar 

  23. A. Kumar, V. Kumar, J. Kumar, Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology. Int. J. Eng. Technol. 2(4), 708–719 (2012)

    Google Scholar 

  24. D.S. Badkar, K.S. Pandey, G. Buvanashekaran, Development of RSM- and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength. Int. J. Adv. Manuf. Technol. 65, 1319–1338 (2013)

    Article  Google Scholar 

  25. M. Manjaiah, S. Narendranath, S. Basavarajappa, V.N. Gaitonde, Wire electric discharge machining characteristics of titanium-nickel shape memory alloy. Trans. Nonferrous Met. Soc. China 24, 3201–3209 (2014)

    Article  Google Scholar 

  26. M.M. Rahman, M.A.R. Khan, K. Kadirgama, M.A. Maleque, R.A. Bakar, Parametric optimization in EDM of Ti–6Al–4V using copper tungsten electrode and positive polarity: a statistical approach, mathematical methods and techniques in engineering and environmental science. in 13th WSEAS Conference Proceedings, pp. 24–29 (2011)

  27. F. Nourbakhsh, K.P. Rajurkar, A.P. Malshe, J. Cao, Wire electro-discharge machining of titanium alloy. in Proceedings of the First CIRP Conference on Biomanufacturing, Procedia CIRP vol. 5, pp. 13–18 (2013)

  28. M.P. Garg, A. Jain, G. Bhushan, An investigation of wire electric discharge machining of high temperature Titanium alloy. in Proceedings of the 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, India

  29. H. Joardar, N.S. Das, G. Sutradhar, An experimental study of effect of process parameters in turning of LM6/SiCp metal matrix composite and its prediction using response surface methodology. Int. J. Eng. Sci. Technol. 3(8), 132–141 (2011)

    Google Scholar 

  30. R.C. Chaurasia, S. Nikkam, Beneficiation of low-grade iron ore fines by multi-gravity separator (MSG) using optimization studies. Part. Sci. Technol. (2016). doi:10.1080/02726351.2015.1124161

    Google Scholar 

  31. D.C. Montgomery, Design and Analysis of Experiments, 7th edn. (Wiley, Delhi, 2009)

    Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the financial support provided by C.S.I.R., New Delhi under Major Research Project Grant [Sanction Letter No. 22(0587)/12/EMR-II dated 02.04.2012] without which this work could not been attempted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunangsu Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Sarkar, S., Karanjai, M. et al. Application of Box–Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM. J. Inst. Eng. India Ser. D 99, 9–21 (2018). https://doi.org/10.1007/s40033-017-0145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-017-0145-0

Keywords

Navigation