Skip to main content

Advertisement

Log in

The Relevance of Biomechanical Analysis in Joint Replacements: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Biomechanical analysis, numerical and experimental, has been extensively used for more than 3 decades to investigate the mechanical behaviour of bone and implant–bone structures in joint replacement. In this review article, a detailed overview of the state-of-the-art techniques used for the development and pre-clinical testing of orthopaedic implants has been presented, with special focus on the hip-joint and hip implants. The efficacies of biomechanical analysis in analysing failure mechanisms in joint replacement, its clinical relevance, challenges and limitations, and future directions have been highlighted. Finite element (FE) modelling and analysis have contributed immensely towards testing of clinical hypotheses and evaluation of implant designs. Over the last few decades, the size and sophistication of the FE models have increased considerably. A critical analysis of the currently available subject-specific FE modelling techniques has been presented including, development of computed tomography-scan-based FE models of bone and implant, assignment of heterogeneous bone material properties, loading and boundary conditions. The relationship between stress–strain analysis and implant failure needs careful interpretation for clinical relevance. Verification and validation of these models are essential for assessing the validity of the predicted results. The salient features of adaptive simulations including bone remodelling and tissue differentiation and its prominence in investigating potential failure mechanisms and implant design evaluations have been discussed. The key considerations for design and development of orthopaedic implants have been suggested. It is envisaged that the FE simulations would be more holistic in nature, incorporating the complexities and variabilities of the clinical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Refs. [30,31,32]

Fig. 2
Fig. 3
Fig. 4

Adapted from Ref. [104]

Similar content being viewed by others

References

  1. M.I.Z. Ridzwan, C. Sukjamsri, B. Pal, R.J. van Arkel, A. Bell, M. Khanna, A. Baskaradas, R. Abel, O. Boughton, J. Cobb, U.N. Hansen, Femoral fracture type can be predicted from femoral structure: a finite element study validated by digital volume correlation experiments. J. Orthop. Res. 36(3), 993–1001 (2018)

    Google Scholar 

  2. International Osteoporosis Foundation, facts and statistics: osteoporosis—incidence and burden. https://www.iofbonehealth.org/facts-statistics#category-14. Accessed 22 July 2020

  3. World Health Organization, Chronic Rheumatic Conditions. http://www.who.int/chp/topics/rheumatic/en/. Accessed 22 July 2020

  4. M. Taylor, P.J. Prendergast, Four decades of finite element analysis of orthopaedic devices: Where are we now and what are the opportunities? J. Biomech. 48, 767–778 (2015)

    Google Scholar 

  5. NJR, 16th Annual Report of National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (2019). https://reports.njrcentre.org.uk/downloads. Accessed 22 July 2020

  6. AOA 2019, Annual Report of Australian Orthopaedic Association (2018–19). https://www.aoa.org.au/about-aoa/communications/annual-reports. Accessed 22 July 2020

  7. R. Huiskes, Failed innovation in total hip-replacement: diagnosis and proposals for a cure. Acta Orthop. Scand. 64(6), 699–716 (1993)

    Google Scholar 

  8. B. Pal, S. Gupta, A.M. New, A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 223, 471–484 (2009)

    Google Scholar 

  9. B. Pal, S. Gupta, A.M.R. New, Influence of the change in stem length on load transfer and bone remodelling for a cemented resurfaced femur. J. Biomech. 43, 2908–2914 (2010)

    Google Scholar 

  10. B. Pal, S. Gupta, A.M.R. New, Design considerations of ceramic resurfaced femoral head: effect of interface characteristics on failure mechanism. Comput. Methods Biomech. Biomed. Eng. 13(2), 143–155 (2010)

    Google Scholar 

  11. M. Viceconti, S. Affatato, M. Baleani, B. Bordini, L. Cristofolini, F. Taddei, Pre-clinical validation of joint prostheses: a systematic approach. J. Mech. Behav. Biomed. Mater. 2(1), 120–127 (2009)

    Google Scholar 

  12. M. Taylor, R. Bryan, F. Galloway, Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review. Int. J. Numer. Methods Biomed. Eng. 29(2), 273–292 (2013)

    Google Scholar 

  13. P. Pankaj, Patient-specific modelling of bone and bone–implant systems: the challenges. Int. J. Numer. Methods Biomed. Eng. 29(2), 233–249 (2013)

    MathSciNet  Google Scholar 

  14. A. Erdemir, T.M. Guess, J. Halloran, S.C. Tadepalli, T.M. Morrison, Considerations for reporting finite element analysis studies in biomechanics. J. Biomech. 45(4), 625–633 (2012)

    Google Scholar 

  15. P.J. Laz, M. Browne, A review of probabilistic analysis in orthopaedic biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(8), 927–943 (2010)

    Google Scholar 

  16. S. Poelert, E. Valstar, H. Weinans, A.A. Zadpoor, Patient-specific finite element modeling of bones. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 227(4), 464–478 (2012)

    Google Scholar 

  17. N. Byrne, M. VelascoForte, A. Tandon, I. Valverde, T. Hussain, A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc. Dis. (2016). https://doi.org/10.1177/2048004016645467

    Article  Google Scholar 

  18. P. Dudek, J. Cieslik, Introduction to reverse engineering and rapid prototyping in medical applications, in Simulations in Medicine: Preclinical and Clinical Applications, ed. by I. Roterman-Konieczna (Walter de Gruyter GmbH & Co KG, Berlin, 2015)

    Google Scholar 

  19. M. Lengsfeld, J. Schmitt, P. Alter, J. Kaminsky, R. Leppek, Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med. Eng. Phys. 20, 515–522 (1998)

    Google Scholar 

  20. M. Viceconti, L. Bellingeri, L. Cristofolini, A. Toni, A comparative study on different methods of automatic mesh generation of human femurs. Med. Eng. Phys. 20, 1–10 (1998)

    Google Scholar 

  21. M. Viceconti, M. Davinelli, F. Taddei, A. Cappello, Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J. Biomech. 37(10), 1597–1605 (2004)

    Google Scholar 

  22. F. Taddei, L. Cristofolini, S. Martelli, H.S. Gill, M. Viceconti, Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J. Biomech. 39(13), 2457–2467 (2006)

    Google Scholar 

  23. A.E. Anderson, C.L. Peters, B.D. Tuttle, J.A. Weiss, Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127(3), 364–373 (2005)

    Google Scholar 

  24. F. Taddei, A. Pancanti, M. Viceconti, An Improved method for the automatic mapping of computed tomography numbers onto finite element models. Med. Eng. Phys. 26, 61–69 (2004)

    Google Scholar 

  25. J.Y. Rho, M.C. Hobatho, R.B. Ashman, Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17(5), 347–355 (1995)

    Google Scholar 

  26. E.F. Morgan, H.H. Bayraktar, T.M. Keaveny, Trabecular bone modulus density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Google Scholar 

  27. E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, M. Viceconti, Subject-specific finite element models can accurately predict strain levels in long bones. J. Biomech. 40, 2982–2989 (2007)

    Google Scholar 

  28. H. Weinans, D.R. Sumner, R. Igloria, R.N. Natarajan, Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J. Biomech. 33(7), 809–817 (2000)

    Google Scholar 

  29. B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjólfsson, M. Viceconti, Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23(2), 135–146 (2008)

    Google Scholar 

  30. R. Ghosh, B. Pal, D. Ghosh, S. Gupta, Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Comput. Methods Biomech. Biomed. Eng. 18(7), 697–710 (2015)

    Google Scholar 

  31. B. Mathai, S. Gupta, Numerical predictions of hip joint and muscle forces during daily activities: a comparison of musculoskeletal models. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 233(6), 636–647 (2019)

    Google Scholar 

  32. B. Mathai, S. Gupta, The influence of loading configurations on numerical evaluation of failure mechanisms in an uncemented femoral prosthesis. Int. J. Numer. Methods Biomed. Eng. (2020). https://doi.org/10.1002/cnm.3353

    Article  Google Scholar 

  33. M. Heller, G. Bergmann, G. Deuretzbacher, L. Durselen, M. Pohl, L. Claes, G.N. Duda, Musculoskeletal loading conditions during walking and stair climbing. J. Biomech. 34, 883–893 (2001)

    Google Scholar 

  34. G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, G. Duda, Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2001)

    Google Scholar 

  35. OrthoLoad, Loading of orthopaedic implants. https://orthoload.com/database/. Accessed 22 July 2020

  36. S. Gupta, F.C.T. van der Helm, J.C. Sterk, F. vanKeulen, Bl Kaptein, Development and experimental validation of a three-dimensional finite element model of the human scapula. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 218, 127–142 (2004)

    Google Scholar 

  37. R. Ghosh, S. Gupta, Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant–bone interfacial conditions. J. Mech. Behav. Biomed. Mater. 32, 257–269 (2014)

    Google Scholar 

  38. I.A.J. Radcliffe, M. Taylor, Investigation into the affect of cementing techniques on load transfer in the resurfaced femoral head: a multi-femur finite element analysis. Clin. Biomech. 22, 422–430 (2007)

    Google Scholar 

  39. I.A.J. Radcliffe, M. Taylor, Investigation into the effect of varus-valgus orientation on load transfer in the resurfaced femoral head: a multi-femur finite element analysis. Clin. Biomech. 22, 780–786 (2007)

    Google Scholar 

  40. R. Bryan, P. SuryaMohan, F. Galloway, M. Taylor, P.B. Nair, Statistical modelling of the whole human femur incorporating geometric and material properties. Med. Eng. Phys. 32(1), 57–65 (2010)

    Google Scholar 

  41. F. Galloway, M. Kahnt, H. Ramm, P. Worsley, S. Zachow, P. Nair, M. Taylor, A large scale finite element study of a cementless osseointegrated tibial tray. J. Biomech. 46(11), 1900–1906 (2013)

    Google Scholar 

  42. M. Viceconti, S. Olsen, L. Nolte, K. Burton, Extracting clinically relevant data from finite element simulations. Clin. Biomech. 20(5), 451–454 (2005)

    Google Scholar 

  43. A.E. Anderson, B.J. Ellis, J.A. Weiss, Verification, validation and sensitivity studies in computational biomechanics. Comput. Methods Biomech. Biomed. Eng. 10(3), 171–184 (2007)

    Google Scholar 

  44. R. Zdero, S. Shah, P. Goshulak, Surface strain gage testing of whole bone and implants: Chapter 3, in Experimental Methods in Orthopaedic Biomechanics, ed. by R. Zdero (Academic Press, London, 2017)

    Google Scholar 

  45. L. Cristofolini, S.A. Teutonico, L. Monti, A. Cappello, A. Toni, Comparative in vitro study on the long term performance of cemented hip stem: validation of protocol to discriminate between ‘good’ and ‘bad’ design. J. Biomech. 36, 1603–1615 (2003)

    Google Scholar 

  46. J. Eng, L. Cristofolini, E. Varini, M. Viceconti, In vitro method for assessing femoral implant: bone micromotions in resurfacing hip implants under different loading conditions. Proc. Inst. Mech. Eng. Part H. Med. 221, 943–950 (2007)

    Google Scholar 

  47. M. Papini, R. Zdero, E.H. Schemitsch, P. Zalzal, The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs and synthetic femurs. J. Biomech. Eng. 129(1), 12–19 (2007)

    Google Scholar 

  48. B. Pal, S. Gupta, A.M.R. New, M. Browne, Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations. J. Biomech. 43, 1923–1930 (2010)

    Google Scholar 

  49. R. Ghosh, S. Gupta, A. Dickinson, M. Browne, Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 227(2), 162–174 (2012)

    Google Scholar 

  50. J. Eng, M. Tarala, D. Janssen, A. Telka, D. Waanders, N. Verdonschot, Experimental versus computational analysis of micromotions at the implant– bone interface. Proc. Inst. Mech. Eng. Part H Med. 225, 8–15 (2011)

    Google Scholar 

  51. J.W. Dally, W.F. Railey, Experimental Stress Analysis, 3rd edn. (McGraw-Hill College, Boston, 1991)

    Google Scholar 

  52. R. Ghosh, S. Gupta, A. Dickinson, M. Browne, Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. J. Biomech. Eng. (2012). https://doi.org/10.1115/1.4007173

    Article  Google Scholar 

  53. H. Everitt, S.L. Evans, C.A. Holt, R. Bigsby, I. Khan, Acetabular component deformation under rim loading using digital image correlation and finite element methods. Appl. Mech. Mater. 24–25, 275–280 (2010)

    Google Scholar 

  54. E. Tayton, S. Evans, D. O’Doherty, Mapping the strain distribution on the proximal femur with titanium and flexible stemmed implants using digital image correlation. J. Bone Jt. Surg. Br. 92(8), 1176–1181 (2010)

    Google Scholar 

  55. A.S. Dickinson, A.C. Taylor, H. Ozturk, M. Browne, Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J. Biomech. Eng. 133(1), 1–6 (2011)

    Google Scholar 

  56. R. Tiossi, L. Lin, R.C.S. Rodrigues, Y.C. Heo, H.J. Conrad, M.G.C. Mattos, R.F. Ribeiro, A.S.L. Fok, Digital image correlation analysis of the load transfer by implant-supported restorations. J. Biomech. 44(6), 1008–1013 (2011)

    Google Scholar 

  57. A.S. Dickinson, A.C. Taylor, M. Browne, The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J. Biomech. 45(4), 719–723 (2012)

    Google Scholar 

  58. T.A. Correa, B. Pal, R.J. van Arkel, F. Vanacore, A. Amis, Reduced tibial strain-shielding with extraosseous total knee arthroplasty revision system. Med. Eng. Phys. 62, 22–28 (2018)

    Google Scholar 

  59. S. Chanda, A. Dickinson, S. Gupta, M. Browne, Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229(8), 549–559 (2015)

    Google Scholar 

  60. K. Madi, G. Tozzi, Q.H. Zhang, J. Tong, A. Cossey, A. Au, D. Hollis, F. Hild, Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med. Eng. Phys. 35, 1298–1312 (2013)

    Google Scholar 

  61. M. Peña-Fernández, A. Barber, G.W. Blunn, G. Tozzi, Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterials system. J. Microsc. 272(3), 213–228 (2018)

    Google Scholar 

  62. F. Gillard, R. Boardman, M. Mavrogordato, D. Hollis, I. Sinclair, F. Pierron, M. Browne, The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. J. Mech. Behav. Biomed. Mater. 29, 480–499 (2014)

    Google Scholar 

  63. M. Palanca, L. Cristofolini, E. DallAra, M. Curto, F. Innocente, V. Danesi, G. Tozzi, Digital volume correlation can be used to estimate local strains in natural and augmented vertebrae: an organ-level study. J. Biomech. 49, 3882–3890 (2016)

    Google Scholar 

  64. G. Tozzi, V. Danesi, M. Palanca, L. Cristofolini, Elastic full-field strain analysis and microdamage progression in the vertebral body from digital volume correlation. Strain 52, 446–455 (2016)

    Google Scholar 

  65. E. DallAra, M. Peña-Fernández, M. Palanca, M. Giorgi, L. Cristofolini, G. Tozzi, Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levels. Front. Mater. (2017). https://doi.org/10.3389/fmats.2017.00031

    Article  Google Scholar 

  66. S. Rapagna, S. Berahmani, C.E. Wyers, J.P.W. van den Bergh, K.J. Reynolds, G. Tozzi, D. Janssen, E. Perilli, Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation. J. Mech. Behav. Biomed. Mater. 97, 278–287 (2019)

    Google Scholar 

  67. R. Zdero, Experimental Methods in Orthopaedic Biomechanics (Academic Press, London, 2017)

    Google Scholar 

  68. R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala, T.J. Sloof, Adaptive bone remodeling theory applied to prosthetic design analysis. J. Biomech. 20, 1135–1150 (1987)

    Google Scholar 

  69. R.T. Hart, D.T. Davy, Theories of bone modelling and remodelling, in Bone Mechanics, ed. by S.C. Cowin (CRC Press, Boca Reton, 1989), pp. 253–277

    Google Scholar 

  70. J.M. García, M. Doblaré, J. Cegoñino, Bone remodelling simulation: a tool for implant design. Comput. Mater. Sci. 25, 100–114 (2002)

    Google Scholar 

  71. D. Carter, T.E. Orr, D. Fyhrie, Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22(3), 231–244 (1989)

    Google Scholar 

  72. H. Weinans, R. Huiskes, B. van Rietbergen, D.R. Sumner, T.M. Turner, J.O. Galante, Adaptive bone remodelling around bonded noncemented total hip arthroplasty: a comparison between animal experiments and computer simulation. J. Orthop. Res. 11, 500–513 (1993)

    Google Scholar 

  73. L.M. McNamara, P.J. Prendergast, Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40, 1381–1391 (2007)

    Google Scholar 

  74. K. Mukherjee, S. Gupta, The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 230(10), 918–929 (2016)

    Google Scholar 

  75. D.R. Suarez, H. Weinans, F. van Keulen, Bone remodelling around a cementless glenoid component. Biomech. Model Mechnobiol. 11(6), 903–913 (2012)

    Google Scholar 

  76. S. Rothstock, A. Uhlenbrock, N. Bishop, L. Laird, R. Nassutt, M. Morlock, Influence of interface condition and implant design on bone remodelling and failure risk for the resurfaced femoral head. J. Biomech. 44(9), 1646–1653 (2011)

    Google Scholar 

  77. I.T. Haider, A.D. Speirs, P.E. Beaulé, H. Frei, Influence of ingrowth regions on bone remodelling around a cementless hip resurfacing femoral implant. Comput. Methods Biomech. Biomed. Eng. 18(12), 1349–1357 (2015)

    Google Scholar 

  78. B. Pal, S. Gupta, The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 225, 549–561 (2011)

    Google Scholar 

  79. R. Ghosh, K. Mukherjee, S. Gupta, Bone remodelling around uncemented metallic and ceramic acetabular components. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 227(5), 490–502 (2013)

    Google Scholar 

  80. M. Viceconti, L. Monti, R. Muccini, M. Bernakiewicz, A. Toni, Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clin. Biomech. 16(9), 765–775 (2001)

    Google Scholar 

  81. R.B. Ruben, J. Folgado, P.R. Fernandes, On the optimal shape of hip implants. J. Biomech. 45(2), 239–246 (2012)

    Google Scholar 

  82. S.A. Khanoki, D. Pasini, Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J. Biomech. Eng. (2012). https://doi.org/10.1115/1.4006115

    Article  Google Scholar 

  83. S. Chanda, S. Gupta, D.K. Pratihar, A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant. J. Biomech. Eng. 137, 034502 (2015)

    Google Scholar 

  84. H. Katoozian, D.T. Davy, Effects of loading conditions and objective function on three-dimensional shape optimization of femoral components of hip endoprostheses. Med. Eng. Phys. 22(4), 243–251 (2000)

    Google Scholar 

  85. R.B. Ruben, J. Folgado, P.R. Fernandes, Three-dimensional shape optimization of a hip prosthesis using a multicriteria formulation. Struct. Multidisc. Optim. 34(4), 261–275 (2007)

    Google Scholar 

  86. J.E. Davies, Understanding peri-implant endosseous healing. J. Dent. Edu. 67(8), 932–949 (2003)

    Google Scholar 

  87. F.P. Barry, Biology and clinical applications of mesenchymal stem cells. Birth Defects Res. (Part C) 69, 250–256 (2003)

    Google Scholar 

  88. D.R. Carter, P.R. Blenman, G.S. Beaupré, Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J. Orthop. Res. 6, 736–748 (1988)

    Google Scholar 

  89. A.D. Speirs, M.A. Slomczykowski, T.E. Orr, K. Siebenrock, L.P. Nolte, Three-dimensional measurement of cemented femoral stem stability: an in vitro cadaver study. Clin. Biomech. 15, 248–255 (2000)

    Google Scholar 

  90. L.E. Claes, C.A. Heigele, Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999)

    Google Scholar 

  91. P.J. Prendergast, R. Huiskes, K. Søballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997)

    Google Scholar 

  92. P.J. Prendergast, R. Huiskes, Finite element analysis of fibrous tissue morphogenesis: a study of the osteogenic index with a biphasic approach. Mech. Compos. Mater. 32, 144–150 (1996)

    Google Scholar 

  93. T.N. Gardner, S. Mishra, L. Marks, The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus. Med. Eng. Phys. 26, 493–501 (2004)

    Google Scholar 

  94. D. Lacroix, P.J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002)

    Google Scholar 

  95. D. Lacroix, P.J. Prendergast, G. Li, D. Marsh, Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40(1), 14–21 (2002)

    Google Scholar 

  96. H. Isaksson, W. Wilson, C.C. van Donkelaar, R. Huiskes, K. Ito, Comparison of biophysical stimuli for mechanoregulation of tissue differentiation during fracture healing. J. Biomech. 39(8), 1507–1516 (2006)

    Google Scholar 

  97. D.J. Kelly, P.J. Prendergast, Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38, 1413–1422 (2005)

    Google Scholar 

  98. H.Y. Chou, S. Müftü, Simulation of peri-implant bone healing due to immediate loading in dental implant treatments. J. Biomech. 46(14), 871–878 (2013)

    Google Scholar 

  99. A. Dickinson, A. Taylor, M. Browne, Implant–bone interface healing and adaptation in resurfacing hip replacement. Comput. Methods Biomech. Biomed. Eng. 15(9), 935–947 (2012)

    Google Scholar 

  100. K. Mukherjee, S. Gupta, Bone ingrowth around porous coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech. Model. Mechanobiol. 15(2), 389–403 (2016)

    Google Scholar 

  101. J.A. Hanzlik, J.S. Day, Bone ingrowth in well-fixed retrieved porous tantalum implants. J. Arthrop. 28, 922–927 (2013)

    Google Scholar 

  102. K. Mukherjee, S. Gupta, Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms. Med. Biol. Eng. Comput. 55(3), 449–465 (2017)

    Google Scholar 

  103. K. Mukherjee, S. Gupta, Influence of implant surface texture design on peri-acetabular bone ingrowth: a mechanobiology based finite element analysis. J. Biomech. Eng. 139(3), 031006 (2017)

    Google Scholar 

  104. V.V. Ruiwale, R.U. Sambhe, A review on design process of orthopedic implants. IOSR J. Mech. Civ. Eng. 12(6), 76–82 (2015)

    Google Scholar 

  105. M. Kutz, Standard Handbook of Biomedical Engineering and Design (McGraw-Hill, New York, 2003)

    Google Scholar 

  106. K. Alexander, P.J. Clarkson, Good design practice for medical devices and equipment, part I: a review of current literature. J. Med. Eng. Technol. 24, 5–13 (2000)

    Google Scholar 

  107. BS EN ISO 21535:2009 + A1:2016, Non-active surgical implants. Joint replacement implants. Specific requirements for hip-joint replacement implants (British Standards Institute, London, 2009)

  108. BS EN ISO 21536:2009 + A1:2014, Non-active surgical implants. Joint replacement implants. Specific requirements for knee-joint replacement implants (British Standards Institute, London, 2009)

  109. K. Alexander, P.J. Clarkson, Good design practice for medical devices and equipment, part II: design for validation. J. Med. Eng. Technol. 24, 53–62 (2000)

    Google Scholar 

  110. BS EN ISO 14971:2019, Medical devices: application of risk management to medical devices (British Standards Institute, London, 2019)

  111. BS EN IEC 60812:2018, Analysis techniques for system reliability. Procedure for failure mode and effects analysis (FMEA) (British Standards Institute, London, 2018)

  112. BS EN 61025: 2007 Fault tree analysis (FTA) (British Standards Institute, London, 2007)

  113. J.R. Meakin, D.E.T. Shepherd, D.W.L. Hukins, Fused deposition models from CT scans. Br. J. Radiol. 77, 504–507 (2004)

    Google Scholar 

  114. E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. (2012). https://doi.org/10.1155/2012/245727

    Article  Google Scholar 

  115. Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, A review of 3d printing technology for medical applications. Engineering 4(5), 729–742 (2018)

    Google Scholar 

  116. BS 7251-12:1995, ISO 7206-8:1995, Orthopedic joint prostheses. Specification for endurance of stemmed femoral components with application of torsion (British Standards Institute, London, 1995)

  117. R. Mundi, H. Chaudhry, S. Mundi, K. Godin, M. Bhandari, Design and execution of clinical trials in orthopaedic surgery. Bone Joint Res. 3(5), 161–168 (2014)

    Google Scholar 

  118. N. Kelly, D.T. Cawley, F.J. Shannon, J.P. McGarry, An investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty. Med. Eng. Phys. 35(11), 1599–1606 (2013)

    Google Scholar 

  119. J.H. Marangalou, K. Ito, M. Cataldi, F. Taddei, B. van Rietbergen, A novel approach to estimate trabecular bone anisotropy using a database approach. J. Biomech. 46(14), 2356–2362 (2013)

    Google Scholar 

  120. D. Janssen, R.E. Zwartelé, H.C. Doets, N. Verdonschot, Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 67–75 (2010)

    Google Scholar 

  121. E. Verhulp, B. van Rietbergen, R. Huiskes, Comparison of micro-level and continuum-level voxel models of the proximal femur. J. Biomech. 39(16), 2951–2957 (2006)

    Google Scholar 

  122. P.M. Cattaneo, M. Dalstra, L.H. Frich, A three-dimensional finite element model from computed tomography data: a semi-automated method. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 215(2), 203–213 (2001)

    Google Scholar 

  123. D.M. Geraldes, A. Phillips, A comparative study of orthotropic and isotropic bone adaptation in the femur. Int. J. Numer. Meth. Biomed. Eng. 30(9), 873–889 (2014)

    Google Scholar 

  124. M. Taylor, D.S. Barrett, D. Deffenbaugh, Influence of loading and activity on the primary stability of cementless tibial trays. J. Orthop. Res. 30(9), 1362–1368 (2012)

    Google Scholar 

  125. F. Taddei, S. Martelli, H.S. Gill, L. Cristofolini, M. Viceconti, Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation. J. Biomech. Eng. 132(2), 021002 (2010)

    Google Scholar 

  126. S. Gupta, B. Pal, A.M.R. New, The effects of interfacial conditions and stem length on potential failure mechanisms in the uncemented resurfaced femur. Ann. Biomed. Eng. 38(6), 2107–2120 (2010)

    Google Scholar 

  127. J. Shi, M. Browne, M. Strickland, G. Flivik, M. Taylor, Sensitivity analysis of a cemented hip stem to implant position and cement mantle thickness. Comput. Methods Biomech. Biomed. Eng. 17(15), 1671–1684 (2014)

    Google Scholar 

  128. A. Roques, M. Browne, A. Taylor, A. New, D. Baker, Quantitative measurement of the stresses induced during polymerisation of bone cement. Biomaterials 25(18), 4415–4424 (2004)

    Google Scholar 

  129. A. Ramos, M.W. Schiller, I. Abe, P.A. Lopes, J.A. Simões, Experimental measurement and numerical validation of bone cement mantle strains of an in vitro hip replacement using optical FBG sensors. Exp. Mech. 52(9), 1267–1274 (2012)

    Google Scholar 

  130. A.B. Lennon, P.J. Prendergast, Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence. J. Biomech. 35(3), 311–321 (2002)

    Google Scholar 

  131. C. Li, Y. Wang, J. Mason, The effects of curing history on residual stresses in bone cement during hip arthroplasty. J. Biomed. Mater. Res. B Appl. Biomater. 70(1), 30–36 (2004)

    Google Scholar 

  132. J.R.T. Jeffers, M. Browne, M. Taylor, Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement. Biomaterials 26(27), 5532–5541 (2005)

    Google Scholar 

  133. J.R.T. Jeffers, M. Browne, A.B. Lennon, P.J. Prendergast, M. Taylor, Cement mantle fatigue failure in total hip replacement: experimental and computational testing. J. Biomech. 40(7), 1525–1533 (2007)

    Google Scholar 

  134. M. Pérez, J. Palacios, Comparative finite element analysis of the debonding process in different concepts of cemented hip implants. Ann. Biomed. Eng. 38(6), 2093–2106 (2010)

    Google Scholar 

  135. D. Waanders, D. Janssen, K.A. Mann, N. Verdonschot, The behaviour of the micro-mechanical cement–bone interface affects the cement failure in total hip replacement. J. Biomech. 44(2), 228–234 (2011)

    Google Scholar 

  136. Q.H. Zhang, G. Tozzi, J. Tong, Micro-mechanical damage of trabecular bone–cement interface under selected loading conditions: a finite element study. Comput. Methods Biomech. Biomed. Eng. (2012). https://doi.org/10.1080/10255842.2012.675057

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the current and former research scholars of the Biomechanics Laboratory, Department of Mechanical Engineering, IIT Kharagpur, for their scientific contributions in this research area.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, B., Gupta, S. The Relevance of Biomechanical Analysis in Joint Replacements: A Review. J. Inst. Eng. India Ser. C 101, 913–927 (2020). https://doi.org/10.1007/s40032-020-00611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00611-5

Keywords

Navigation